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Abstract
In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging opti-
mization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. 
In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where 
the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the 
exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the 
MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay's model with 
three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable 
battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively 
utilizes hybrid machine learning-based tuning for Tremblay's model parameters to overcome the disadvantages of human-
based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms 
of some statistical metrics and Wilcoxon’s test-based non-parametric test. As a result, the conducted performance measures 
have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO.

Keywords  Meta-heuristic algorithm · Manta ray foraging optimization · Particle swarm optimization · Swarm 
optimization · Tremblay's model · Li-ion battery · Battery dynamics model

1  Introduction

To solve hard and complicated real engineering problems, 
engineers should take the right decisions variables, and 
then, they will need a vital process for attaining the best 
solution which is named optimization. Therefore numerous 
methods were presented to solve optimization problems 

particularly nonlinear problems (NLPs), some of them 
were conventional and others were known as metaheuristics. 
Meta-heuristic algorithms (MetAs) are powerful artificial 
intelligence tools that can be classified to subcategories: 
chemical-based optimization algorithms like equilibrium 
optimizer (EO) [1], the chemical reaction based optimiza-
tion algorithm [2] bio-inspired methods like coronavirus 
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optimization algorithm [3], co-evolving algorithms [4], 
quantum evolutionary algorithm [5], quantum-inspired 
acromyrmex evolutionary algorithm [6], genetic algorithm 
(GA) [7], tabu search [8], cultural algorithm [9], stochas-
tic fractal search [10], backtracking optimization algorithm 
[11], biogeography-based optimization algorithm (BBO) 
[12], swarm intelligence methods such as artificial immune 
system [13], memetic algorithm [14], group search opti-
mizer [15], beehive algorithm [16], wolf search algorithm 
[17], Egyptian vulture optimization algorithm [18], swal-
low swarm optimization algorithm [19], ant lion algorithm 
(ALO) [20], grey wolf optimization (GWO) [21], chicken 
swarm optimization [22], shark smell optimization [23], 
butterfly-inspired algorithm [24], physics-based methods 
like black hole (BH) [25], simulated annealing (SA) [26], 
lightning search algorithm (LSA) [27], water cycle process 
(WCP) [28], multiple cyclic swarming optimization [29], 
colliding bodies optimization (CBO) [30], behavior-based 
techniques like brain storm optimization [31], volleyball 
premier league algorithm [32], gaining-sharing knowledge 
based algorithm [33], teaching-learning-based optimization 
(TLBO) [34], league championship algorithm (LCA) [35], 
mine blast algorithm (MBA) [36], flower pollination algo-
rithm (FPA) [37, 38], trigonometric-based like sine–cosine 
algorithm (SCA) [39], etc. Additionally, researchers chose 
another pursuit through combining some properties of two 
or more techniques to improve efficiency and shorten the 
computational time. In this regard, some several attentions 
have been developed such as PSO-GA hybrid with Adam 
optimization [40], a synergy of the sine–cosine algorithm 
and particle swarm optimizer (SCA-PSO) [41], hybrid 
sine–cosine algorithm with differential evolution (SCA-DE) 
[42], hybrid DE and extremal optimization (DE-EO) [43], 
hybrid fruit fly optimization algorithm and firefly algorithm 
(FOA-FA) [44], hybrid Grey wolf optimization with particle 
swarm optimization (GWO-PSO) [45], enhanced tunicate 
swarm algorithm (ETSA) [46], hybrid ABC, and PSO [47]. 
The traditional methods with their two forms, direct and 
gradient-based methods, face some serious disadvantages 
for example, the delay in direct search methods or non-dif-
ferentiability and discontinuity in gradient-based methods. 
Also, they rely on the initial solution and may fail to reach 
the promising regions. On the other hand, metaheuristics 
have proven their worth as they overcome the previous short-
ages of traditional methods. Meta-heuristic algorithms are 
suitable for non-convex, non-differentiable or discontinu-
ous fitness functions and constraints. In addition, they can 
avoid being trapped in local optima in sharp and multiple 
peak problems. Moreover, they avoid computation of the 
gradients of the objective function and the constraints as 
well [44]. Lately, MRFO has gained popularity, since it is 
deployed in many engineering and other fields for example, 
Alturki et al. presented an MRFO-based optimal control 

strategy to enhance the proportional-integral (PI) control-
lers of DC/DC and DC/AC converters for PV grid-connected 
system [48]. Jinlin Wei et al. proposed filtering equipment 
protection based on MRFO, which improves the internal 
capacitance distribution of filtering device. To attain this 
goal, the unbalanced current generated due to the alerted 
capacitance should be minimized to keep the device safe 
[49]. Ouyang et al. used MRFO to determine the K-means’ 
initial center of clustering, which optimized the image seg-
mentation efficiency [50]. Chattopadhyay et al. deployed an 
MRFO in feature selection for recognizing speech emotion, 
which increased the classification accuracy significantly 
[51]. Tiwari et al. minimized the total operating cost for 
distributed generator evaluated by load dispatch [52], while 
Sultan et al. used MRFO to solve multi-objective problems 
of sizing components of hybrid PV, wind turbine, and fuel 
cell system [53]. Simultaneously, other researchers have 
integrated MRFO with other algorithms like, Duan et al. 
replaced the clan updating operator in the elephant herd-
ing optimization (EHO) method with the somersault for-
aging tactic of Manta rays, and enhanced the diversity of 
the population by the Gaussian mutation [54]. Houssein 
et al. [55] proposed that a modified MRFO with opposition-
based learning (OBL), named MRFO-OBL, was employed 
to solve the problem of the image segmentation with multi-
level thresholding’s, where the MRFO-OBL was employed 
to identify the COVID-19 using chest CT images. Houssein 
et al. [56] applied the MRFO to optimize the parameters 
of support vector machine (SVM) to classify the electro-
cardiogram (ECG) arrhythmia. In addition, Karuppusamy 
proposed a hybrid MRFO for feature selection and Con-
volutional Neural Network (CNN) as classifier for brain 
tumor detection [57]. An improved version of the MRFO 
based on Levy flight and Morlet wavelet mutation strategy 
for extracting the Magnetorheological (MR) dampers con-
trol parameters has been proposed. This version was tested 
on CEC 2014 and CEC 2017 benchmark problems [58]. 
While Abdul Razak et al. adopted the GA’s mutation and 
crossover to improve MRFO’s convergence action, where 
the proposed genetic MRFO (GMRFO) was optimized an 
interval type 2 fuzzy logic for inverted pendulum system 
[59]. Also, GMRFO was tested on some composite natures 
of the test functions. Quantum MRFO (QMRFO) has been 
proposed by Ramadan et al. to estimate the parameters of 
the three diode solar photovoltaic model [60]. In addition, 
a gradient-based optimizer (GBO) hybridized with MRFO, 
named MRFO–GBO, has been solved the multi-objective 
economic emission dispatch (EED) problems [61].

Despite the fact that the aforementioned (MetAs) have 
been presented their abilities while dealing with different 
optimization issues; however, because of the no-free-lunch 
theorem [62], there is potential attempt to investigate differ-
ent algorithms for further improvement when dealing with 
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some optimization tasks. The revelation that the NFL theo-
rem exists has encouraged this work to improve MRFO's 
capabilities by developing a hybrid variant with the PSO 
algorithm. Therefore, this paper presents a hybrid variant 
of the Manta ray foraging optimization (MRFO) with the 
particle swarm optimization (PSO), named MRFO-PSO, to 
achieve better balance among the exploration and exploita-
tion abilities. The performance of the MRFO-PSO is vali-
dated on 23 benchmark problems and its applicability is 
confirmed through estimating the parameters of Tremblay's 
model with three different commercial lithium-ion bat-
teries. The statistical measures along with pairwise tool 
have affirmed that the MRFO-PSO is capable of realizing 
very promising performances when compared with other 
optimizers.

The reminder sections of this paper is arranged as fol-
lows. In Sect. 2, material and methods regarding the math-
ematical representation of the function optimization and 
basics of the original MRFO and PSO. The producers of the 
proposed MRFO-PSO are presented in Sect. 3. In Sect. 4, 
the experimental simulations and results regarding the func-
tion optimization and lithium-ion battery are presented. In 
Sect. 5, the findings are concluded.

2 � Materials and Methods

2.1 � The Mathematical Statement of the 
Optimization Problem

Generally, any optimization problem has a standard formula-
tion as follows.

where F(x) is the objective or fitness function, which should 
be minimized for design space ℜn ( ℜn defines the set of 
all ordered n-tuples of real numbers), in which there are 
n dimensions of candidate solutions usually called fea-
sible solutions, xi denotes the ith element of the decision 
vector ( x), and ui and li define the lower and upper limits, 
respectively.

2.2 � Basics of MRFO

MRFO was proposed in 2020 by Zhao et.al [63] based on 
the foraging strategy of giant marine creatures called Manta 
rays which have a bird shape-like. It initializes a population 
of candidate solutions which act as Manta rays individuals 
searching for the best position. The plankton is consumed to 
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be concentrated; also the best solution obtained so far acts as 
the plankton. The search strategy consists of three phases: 
chain foraging, cyclone foraging, and somersault foraging.

2.2.1 � Chain Foraging Phase

In this phase, every fish in Manta rays' school follows its 
frontal individual moving in a foraging chain and the best 
solution found so far. The updating by the chain foraging is 
formulated mathematically as follows:

where xt
i
 represent the i th individual's position at the itera-

tion ( t), r is a random vector belong to [0, 1], a is weighting 
function, and xb represents the best position obtained so far. 
The updated position ( xt+1
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) is performed by the current posi-

tion ( xt
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) and previous position (xt
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 ) and the best positionxb.

2.2.2 � Cyclone Foraging

Manta ray individuals create a foraging chain along with 
making spiral movements while searching for the food 
source. Flocked Manta rays in this step not only follow the 
Manta ray that in front of the chain but also chase a spiral 
pattern to get closer to the prey. This spiral movement of 
the Manta ray in behavior in n dimensional search space is 
modeled mathematically as follows:

where B is weight coefficient, T  is the total number of 
iterations, and r, r1 ∈ [0, 1] represent random numbers. The 
cyclone foraging enables the individuals of Manta rays to 
exploit the feasible region with the best solution obtained 
so far. Moreover, for a good exploration, each individual 
is forced to find a new position globally placed far from 
its current position by assigning reference position which 
determined randomly in the whole space. This exploration 
mechanism is written mathematically as
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where xrand is a random position placed indiscriminately in 
the search space limited by lower and upper bounds ui and 
li , respectively.

2.2.3 � Somersault Foraging

All Manta rays’ individuals swim forward and backward 
to the pivot with updating their positions by somersaults 
around the best position obtained so far which are modeled 
as follows:

where � , called somersault factor, it determines the range 
of somersault in which Manta ray can swim ( � = 2 ), r2, r3 
are random values within the [0, 1] range. Therefore, the 
behavior of somersault foraging enables Manta rays to move 
freely in new domains among their positions and symmetri-
cal positions according to the best position obtained up till 
now. Also, the somersault range is proportional to iteration 
inversely; because it is reduced when iteration increases.

2.3 � Basics of PSO

Although PSO was proposed in 1995 by Kennedy and Eber-
hart [64], it has wide popularity in the optimization field due 
to its superior performance. PSO was inspired by bird flocks 
while searching their food, PSO starts with a population with 
N birds which act as feasible solutions, each bird or parti-
cle has initial position and velocity. Every bird updates its 
velocity vi as well as its position xi in the new iteration t + 1 
considering the personal best position (Pi) , and the global 
best position of the whole swarm ( � ) as follows:

where vt
i
, vt+1

i
 are the particle velocity at the current and next 

iterations, respectively, � is a weighting function � ∈ [0, 1] , 
c1, c2 are weighting constants, rand is a random number 
between 0 and 1, and xt+1

i
, xt

i
 are the particle position at the 

current and next iterations, respectively.

3 � The Proposed MRFO‑PSO

In this section, the proposed synergy of the MRFO with 
PSO is introduced. MRFO and PSO are typical examples of 
meta-heuristic algorithms and have been employed to deal 
with various engineering tasks efficiently. However, MRFO 
lacks for memory to keep the best information of the previ-
ous trials. Thus, as MRFO has trouble in reaching a global 
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area, a PSO’s group can boost the searching of the MRFO 
for attaining optimal seeking system. In this context, the 
Manta ray individual’s ability is enhanced by utilizing the 
velocity concept that inspired from PSO in the cyclone for-
aging phase to update the position of MRFO, where Eqs. (8), 
and (5) can be modified as follows:

where �t+1
i

 is the individual position reached by its veloc-
ity vt+1

i
 , and Υ1 is the best position reached by its velocity 

obtained so far, while Υ2 is the second-best individual posi-
tion reached in the last iteration. Besides, the pseudo-code 
of the MRFO-PSO algorithm is shown in Fig. 1, while the 
flowchart is shown in Fig. 2.

4 � Results and Discussion

In this section, we tested the performance of the MRFO-PSO 
on 23 benchmark functions and utilized our hybrid algo-
rithm to extract parameters of three cases of Li-ion batter-
ies. The experiments are conducted on Matlab 2013a with 
device specifications: Processor Intel® core ™ i7-7500U 
CPU@ 2.70 GHz 2.90GHZ. RAM 8 GB and 64-bit operat-
ing system.

4.1 � Benchmark Functions

To prove the effectiveness of the MRFO-PSO, it is tested 
the on different natures of benchmark problems such as 
Kowalik's, Goldstein-Price's, Foxholes's, Branin's, HGBat's, 
Rastrigin's, and Schwefel's functions. These functions have 
an assortment of difficult obstacles regarding the objective 
function such as noise, rotation, ill-conditioning, multimo-
dality, and non-separable. We considered the parameter 
settings of algorithms as suggested in the corresponding 
literature. Tables 1, 2, 3 illuminate the 23 test functions and 
their peculiarities, formularizations, dimensions ( n ), range 
( [li, ui], i = 1, 2,… , n ), and the minimum solution. However, 
Table 1 shows unimodal functions (F1–F7), Table 2 shows 
multimodal benchmark functions (F8–F13), and Table 3 
shows multimodal benchmark functions with fixed dimen-
sion (F14–F23)) with settled dimensions ( n ). The outputs 
are illustrated in Table 4 which depicts the prior efficiency 
of MRFO-PSO.
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4.2 � Simulation Results on the Benchmark Problems

The performance of the proposed MRFO-PSO is com-
pared with some well-known algorithms include the FFA 
[44], WOA [65], DA [66], GWO [21], ALO [20], origi-
nal MRFO, and other state-of-art methods. The obtained 
outcomes regarding the studied benchmark problems are 
tabulated in Table 4 using some central tendency statistical 
metrics which are the average value of the fitness (mean), 
best value of the fitness (Min), median value (Median), 

worst value of the fitness (Max), and the standard deviation 
(STD) to confirm that the archived results are not happen 
by chance. Based on the mean results, it can be observed 
that the MRFO-PSO can provide competitive and progres-
sive results in comparison with the other optimizers. These 
results are obtained through carrying out each algorithm for 
30 independent runs. It is found that the MRFO-PSO reaches 
the optimum for the functions F1, F2, F3, F9, F11, F14, 
F15, F16, F17, F18, F20, F21, F22, and also overcomes its 
competitors and gets first in terms of the minimum value in 
functions F5, F6, F7, F8, F12, F13. In addition, MRFO-PSO 
gets first in terms of mean, median, maximum, and standard 
deviation for the functions F1, F3, F4, F6, F9, F10, F11, 
F12, F13, F14, MRFO-PSO has the least standard devia-
tion for the function F2, F7, F15, F17. MRFO-PSO has the 
best mean for F5, F16, and F21. MRFO-PSO scores the 
best median for F16, F17, F18, F19, F20, and F21. MRFO 
reached the minimum for functions F2, F9, F10. MRFO 
has the least standard deviation for F8, F16, F20 functions. 
MRFO gets the least median in functions F14 and F15, F19, 
F21. MRFO has the best mean for F15 only. MRFO scores 
the best maximum for functions F14, F15, F19, and F21. 
While FFA scores least minimum, median, and maximum 
for F19 only. WOA gets the least mean, median and maxi-
mum for F8, WOA gets the least mean, median, maximum, 
and standard deviation for F9, F11, and F19 functions, where 
WOA scores the optima in F10, F14. However, DA gets the 
least min, median, and max in F19 and reaches the minimum 
for F14. Also, we notice GWO reaches optimum for F11 
and F14, F19, but obtain the best median, maximum, and 
standard deviation for F19, F22, and F23, and GWO has the 
best mean for F21, F22 and F23 as well. Finally, ALO has 
the best values of minimum, mean, median, and maximum 
in F17and F18, but gets the least mean, median, maximum, 
and standard deviation in F19. However, ALO has the best 
minimum and median for F21 and also scores the optimum 
for F22. Figures 3 and 4 show box plots and convergence 
rates for the results of some selected test functions. 

4.3 � Comparisons with Some Advanced Variants 
of MRFO

In this subsection, the proposed MRFO-PSO is further 
evaluated through comparing its performance with some 
advanced variants of MRFO reported in the literature 
including modified MRFO (m-MRFO) [67], and MRFO 
and Gaussian mutation-based elephant herding optimiza-
tion for global optimization (MGEHO) [54]. The results 
are recorded in Table 5 using the mean value of the fitness 
function along with the standard devotion (STD). It can 
be observed from the table that the proposed MRFO-PSO 

Fig. 1   Pseudocode of MRFO-PSO algorithm
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Fig. 2   The flowchart of the 
MRFO-PSO algorithm

Table 1   Unimodal benchmark 
functions

Function name Formula n Range Minimum

Sphere F1 =
∑n

i=1
x2
i

100 [− 100, 100] 0
Schwefel 2.22 F2 =

∑n

i=1
�xi� +

∏n

i=1
�xi� 100 [− 10, 10] 0

Schwefel 1.2
F3 =

∑n

i=1

�

∑i

j−1
xj

�2 100 [− 100, 100] 0

Schwefel 2.21 F4 = ���i{|xi|, 1 ≤ i ≤ n} 100 [− 100, 100] 0
Rosenbrock F5 =

∑n−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] 100 [− 30, 30] 0

Step F6 =
∑n

i=1
([xi + 0.5])2 100 [− 100, 100] 0

Quartic F7 =
∑n

i=1
ix4

i
+ random[0, 1) 100 [− 1.28, 1.28] 0
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can exhibit very competitive results on most of the studied 
benchmark functions.

4.4 � Lithium‑Ion Battery

Rechargeable batteries have been used worldwide in numer-
ous applications for instance: electric vehicles (EVs) [68], 
unmanned aerial vehicle (UAV), drones, flapping wing 
micro vehicles (FWMAVs) [69], aerospace missions, solar 

planets, wind power farms, electric sets, mobile phones, 
laptops, and power banks [70]. However, the several advan-
tages of Li-ion batteries like long life, high cell voltage, low 
self-discharge rate as well as high energy density, encour-
aged engineers to utilize them in diverse systems. In con-
trast, there are some challenges such as increment of internal 
resistance, capacity deterioration due to degradation which 
will severely affect safety and distance vehicles can travel. 
In addition, there is no place for power supply failure in 

Table 2   Multimodal benchmark functions

Function 
name

Formula n Range Minimum

Schwefel F8 =
∑n

i=1
− xi���(

√

�xi�) 100 [− 500, 500] − 418.9829*5
Rastrigin F9 =

∑n

i=1
[x2

i
− 10���(2�xi) + 10] 100 [− 5.12, 5.12] 0

Ackley
F10 = −20���(−0.2

�

1

n

∑n

i=1
x2
i
) − ���(

1

n

∑n

i=1
���(2�xi)) + 20 + e

100 [− 32, 32] 0

Griewank F11 =
1

4000

∑n

i=1
x2
i
−
∏n

1=1
���(

xi
√

i
) + 1 100 [− 600,600] 0

Penalized
F12 =

�

n

�

10 sin(�yi) +
n−1
∑

i=1

(yi − 1)2
�

1 + 10 sin
2(�yi+1)

�

+ (yn − 1)2

�

+
n
∑

i=1

u
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xi, 10, 100, 4
�

yi = 1 +
xi+1

4
u
�

xi, a, k,m
�

=

⎧

⎪

⎨

⎪

⎩

k(xi − a)mxi > a

0 − a < xi < a

k(−xi − a)mxi < −a

100 [− 50, 50] 0

Penalize 2
F13 = 0.1

{

sin
2(3�x1) +

n
∑

i=1

(xi − 1)2
{

1 + sin
2(3�xi + 1)

}

+
(

xn − 1)2
[

1 + sin
2(2�xn

)]

}

+

n
∑

i=1

u
(

xi, 5, 100, 4
)

30 [− 50, 50] 0

Table 3   Multimodal benchmark functions with fixed dimension

Function name Formula n Range Maximum

Foxholes
F14 =

�

1

500
+
∑25

j=1

1

j+
∑2

i=1
(xi−aij)

6

�−1 2 [− 65, 65] 1

Kowalik
F15 =

∑11

i=1

�

ai −
x1(b

2

i
+bix2)

(b2
i
+bix3+x4)

�2 4 [− 5, 5] 0.00030

Six-hump Camel-Back F16 = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [− 5, 5] − 1.0316

Branin F17 = (x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6)2 + 10(1 −

1

8�
)���x1 + 10 2 [− 5, 5] 0.398

Goldstein-Price F18 =
[

1 +
(

x1 + x2 + 1
)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)

]

+
[

30 +
(

2x1 − 3x2
)2(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)

]

2 [− 2, 2] 3

Hartman 3 F19 = −
∑4

i=1
ci���(−

∑3

j=1
aij(xj − pij)

2) 3 [1, 3] − 3.86

Hartman 6 F20 = −
∑4

i=1
ci���(−

∑6

j=1
aij(xj − pij)

2) 6 [0, 1] − 3.32

Shekel5 F21 = −
∑5

i=1
[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10] − 10.1532

Shekel7 F22 = −
∑7

i=1
[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10] − 10.4028

Shekel10 F23 = −
∑10

i=1
[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10] − 10.5363



	 International Journal of Computational Intelligence Systems           (2022) 15:62 

1 3

   62   Page 8 of 22

Table 4   The results obtained by MRFO-PSO and the compared algorithms

Func-
tion

MRFO-PSO MRFO FFA WOA DA GWO ALO

F1 Mean 0 0 3817.449775 2.87433E−88 35,282.67205 1.38286E−18 6087.895432
Min 0 0 2105.653131 8.8553E−106 16,983.03329 2.0819E−19 1298.237375
Median 0 0 3446.814796 1.21248E−92 37,709.76737 4.59058E−19 6364.63198
Max 0 0 5787.94451 2.50323E−87 45,916.68548 5.14917E−18 11,095.4251
Std 0 0 1243.886718 7.82369E−88 8554.372278 1.67148E−18 2734.027906

F2 Mean 5.4000e-323 0 609,563.2103 4.55E−73 251.8555159 1.48E−11 275.5777969
Min 0 0 119.0660968 7.24E−91 185.0443446 3.23E−12 73.77359442
Median 4.000e-323 0 242.0847918 5.62E−79 258.8857493 1.50E−11 344.1806061
Max 1.63000e-322 1.000e-323 3,008,033.994 4.48E−72 327.2339334 3.50E−11 492.7632379
Std 0 0 1,254,201.635 1.42E−72 47.16819385 1.06E−11 164.1384262

F3 Mean 0 0 14,300.60592 1,275,626.576 386,495.5268 877.3317939 158,447.0097
Min 0 0 4403.734738 870,885.9905 155,522.42 12.46037695 107,537.8744
Median 0 0 14,203.10034 1,202,193.133 381,827.6966 566.4772898 158,306.3092
Max 0 0 23,444.4424 2,186,282.857 610,747.4214 2289.473947 216,821.7413
Std 0 0 6260.047332 401,176.9861 141,025.6504 796.7864346 38,326.77051

F4 Mean 4.9000e−324 4.9000e−324 11.76854073 86.56621715 56.69635796 1.412702635 47.46176646
Min 4.9000e−324 4.9000e−324 8.823440783 58.02233218 48.2289067 0.120170667 36.36555695
Median 4.9000e−324 4.9000e−324 11.54787131 91.36159745 55.54135234 0.49188892 45.55449513
Max 4.9000e−324 4.9000e−324 15.33870828 97.6117535 69.1417825 4.753266729 56.69230437
Std 0 0 2.177977245 13.10271064 6.206412802 1.748485093 7.104306705

F5 Mean 95.7545523 95.90239626 27,183,858.7 98.51332721 40,937,492.17 98.3860123 3,493,053.094
Min 94.56670397 94.60155512 6,377,308.717 98.41256315 8,920,920.797 97.15001233 683,865.0899
Median 95.44217459 95.42796007 21,295,011.06 98.50675822 48,748,874.87 98.52797034 2,495,141.819
Max 98.04207247 98.08408475 59,845,760.14 98.61784907 64,315,521.53 98.6225629 12,592,833.86
Std 1.11754043 1.280741261 19,714,404.96 0.059886588 18,867,011.22 0.438844214 3,440,377.293

F6 Mean 0.4875755 2.228825765 3053.870864 9.730412689 48,210.65852 13.62691448 5630.525305
Min 0.099236103 0.815721485 1679.634355 6.105723301 38,851.00965 11.49277878 2789.914238
Median 0.439872669 2.342475822 2860.397428 10.04908464 44,515.63681 13.75723631 5177.045267
Max 1.281984631 3.05914942 5060.218761 12.40259428 62,986.08577 15.64263317 9142.217634
Std 0.35084462 0.79398511 1132.487575 1.986438853 8954.835023 1.153952344 1992.286637

F7 Mean 0.00022799 0.000167533 390.7854862 0.005953347 96.46098356 0.007489531 8.115407577
Min 2.33E−05 3.88E-05 58.65337143 0.000236507 33.81323153 0.004039786 5.226767194
Median 0.000212247 0.000132769 446.1443703 0.001699469 89.91059509 0.006330992 8.115958713
Max 0.000436223 0.000490992 589.559281 0.024495723 174.561456 0.01221833 10.84973065
Std 0.00012425 0.000139686 160.2588464 0.008037843 45.44031662 0.003232453 1.743122206

F8 Mean − 23,724.19594 − 23,165.98707 − 3570.382045 − 33,266.16802 − 8703.810113 − 15,287.0667 − 18,387.8032
Min − 26,351.64017 − 26,338.03233 − 4584.738523 − 41,878.6229 − 11,103.19629 − 

17,622.48337
− 21,347.78934

Median − 23,407.55732 − 23,147.82477 − 3534.347237 − 29,816.75778 − 8978.139541 − 
15,295.63798

− 18,058.91585

Max − 21,758.43825 − 20,889.16993 − 3063.448067 − 28,168.97945 − 6085.408901 − 
13,807.04388

− 18,058.91585

Std 1556.74181 1436.900615 449.4669363 5841.161477 1401.627779 1126.508375 1040.033117
F9 Mean 0 0 1108.38547 0 918.3722704 4.447724821 449.7071309

Min 0 0 897.5395833 0 632.6363248 4.55E-13 341.1086913
Median 0 0 1102.997006 0 925.3340247 2.467509263 435.5323673
Max 0 0 1335.509738 0 1154.114881 19.1559801 608.9555748
Std 0 0 142.8850082 0 134.9362478 6.067417029 81.8649115
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Table 4   (continued)

Func-
tion

MRFO-PSO MRFO FFA WOA DA GWO ALO

F10 Mean 8.88E−16 8.88E−16 7.106917995 3.73E−15 16.50016114 1.17E−10 16.13478871

Min 8.88E−16 8.88E−16 4.562451465 8.88E−16 15.84470261 3.20E−11 14.23492759

Median 8.88E−16 8.88E−16 7.327806968 4.44E−15 16.46211152 9.09E−11 16.59375056

Max 8.88E−16 8.88E−16 9.016048676 4.44E−15 17.3617155 3.05E−10 17.19230433

Std 0 0 1.327721191 1.50E−15 0.571604928 7.78E−11 0.98408625
F11 Mean 0 0 1296.662111 0 437.7148993 8.88E−17 52.96208371

Min 0 0 1259.012386 0 297.173223 0 18.23072152
Median 0 0 1296.563627 0 419.9636712 1.11E−16 56.4126613
Max 0 0 1347.138349 0 681.4814938 3.33E−16 79.90073666
Std 0 0 30.66194472 0 112.4108763 1.02E−16 19.29865778

F12 Mean 0.00345953 0.019507632 7417.011473 0.212839096 24,006,927.5 0.436748212 30,244.63358
Min 0.000854047 0.012361309 10.26618196 0.123313079 7,141,327.08 0.343595105 144.3287168
Median 0.002362694 0.018190002 711.0214255 0.176683096 21,399,814.15 0.423742085 8675.11941
Max 0.010269186 0.027753096 55,245.0115 0.448942998 41,747,194.68 0.555506507 181,825.739
Std 0.00305566 0.006105475 17,441.17979 0.095462571 13,056,599.49 0.065652486 55,976.65127

F13 Mean 9.89097196 9.898545218 954,372.2288 5.727602622 120,772,077 7.732802789 1,985,286.179
Min 9.887680714 9.893496834 86,350.66424 4.456461082 34,681,560.22 7.160889561 62,287.29061
Median 9.890951885 9.897622255 835,892.3019 5.512363646 74,057,326.52 7.705682845 1,317,536.099
Max 9.89355678 9.907040031 1,940,117.928 7.299432331 367,062,269.4 8.689560809 6,324,295.519
Std 0.00194903 0.00374923 553,039.6878 1.031800536 103,395,801.3 0.433151717 2,137,666.125

F14 Mean 0.99800384 0.998003838 13.32161866 2.669439167 4.966903487 7.925530449 3.86223415
Min 0.998003838 0.998003838 0.998004464 0.998003838 0.998003838 0.998003838 1.9920309
Median 0.998003838 0.998003838 5.025788487 1.496166649 2.980140503 10.76318067 2.982105157
Max 0.998003838 0.998003838 99.03385437 10.76318067 22.90063432 12.67050581 7.873992977
Std 1.05E−16 1.96E−16 30.19048911 2.985516658 6.602352987 4.986349132 2.040263377

F15 Mean 0.00054737 0.000527711 0.002277392 0.000542221 0.005868206 0.00047299 0.001299779
Min 0.000307486 0.000307486 0.00143423 0.000308791 0.000764249 0.000307506 0.000882004
Median 0.000315771 0.000307486 0.002251949 0.000556127 0.002797749 0.000517917 0.001311159
Max 0.001594051 0.00159405 0.004023464 0.000757206 0.021438439 0.000599208 0.001637815
Std 0.00046449 0.000472433 0.00068537 0.000159759 0.007741009 0.000118175 0.000265605

F16 Mean − 1.031628453 − 1.031628453 − 0.753672101 − 1.031628451 − 1.031566804 − 1.0316284 − 1.031628453
Min − 1.031628453 − 1.031628453 − 1.031042958 − 1.031628453 − 1.031627873 − 1.031628449 − 1.031628453
Median − 1.031628453 − 1.031628453 − 0.948881891 − 1.031628453 − 1.031619774 − 1.031628422 − 1.031628453
Max − 1.031628453 − 1.031628453 − 0.063157118 − 1.031628445 − 1.031239604 − 1.031628297 − 1.031628453
Std 1.48E−16 7.40E−17 0.373800663 3.45E−09 0.000119323 4.42E−08 4.18E−13

F17 Mean 0.39788736 0.397887358 0.479317847 0.397908988 0.397890239 0.397888283 0.397887358
Min 0.397887358 0.397887358 0.397888383 0.397887491 0.397887364 0.397887413 0.397887358
Median 0.397887358 0.397887358 0.398871657 0.397900808 0.397888049 0.397888066 0.397887358
Max 0.397887358 0.397887358 1.193876748 0.397989363 0.397900481 0.397889621 0.397887358
Std 0 0 0.251101631 3.03E−05 4.98E−06 8.42E−07 1.01E−13

F18 Mean 3 3 11.90557403 3.000280919 3.000217282 3.000030188 3
Min 3 3 3.000678776 3.000001951 3.000000002 3.000001128 3
Median 3 3 4.089018136 3.00006805 3.000025673 3.000016441 3
Max 3 3 65.46545639 3.001532561 3.001723275 3.00009187 3
Std 2.34E−15 1.41E−15 19.26056387 0.000466474 0.000533516 3.54E−05 1.14E−12
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intensive care units, operations rooms in hospitals, giant 
firms' systems, and military training systems. Subsequently, 
it is a persistent necessity to estimate the 'State of Charge 
(SOC)' which determines the charge level by percentage as 
well as the remaining useful life (RUL) which defines the 
residual time required to subrogate the battery, so deficiency 
warning could be released prior the critical limit. To prohibit 
damages or calamitous collapses, periodic maintenance is a 
must. As a result, prognostication of battery main charac-
teristics like SOC, RUL, current, and voltage is an urgent 
battery prognostics and health management problem which 
imposes itself in research scope [71]. Therefore, accurate 
dynamics modeling of batteries not only helps optimize 
design and manufacturing but also plays a crucial role in 
dismantling and re-usage exercised electrical vehicles (EV) 
batteries in implementations of the power grid. The more 
precise battery dynamics modeling is, the more sustainable 
the EV industry becomes. However, many models were 

proposed in the literature classified into three categories: 
electrochemical, analytical, and analog [72].

4.4.1 � Tremblay's Model

Tremblay's model [73] has been adopted by many research-
ers owing to its computational simplicity the reason why it 
operates exceedingly swift while running in software envi-
ronments like MATLAB, and its efficacy during simulation, 
especially, EV applications. Nonetheless, Tremblay's model 
merges Li-ion battery dynamics, experiential and electro-
chemical simultaneously. The charge curve is analogous to 
the discharge curve. Howbeit, the discharge curve is formed 
by multiple zones shown in the schematic graph as in Fig. 5, 
the discharge voltage drops in the first sharp zone, thence 
it has an approximately fixed slope in the intermediate 
zone, and drops again sharply, contrariwise for charging. 

Table 4   (continued)

Func-
tion

MRFO-PSO MRFO FFA WOA DA GWO ALO

F19 Mean − 0.3004789 − 0.300478907 − 0.300478907 − 0.30047891 − 0.300478907 − 0.300478907 − 0.300478907

Min − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907

median − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907

Max − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907 − 0.300478907

Std 6.90E-15 3.51E-16 0 0 0 0 0
F20 Mean − 3.262548611 − 3.298216547 − 2.831599043 − 3.176940451 − 3.246082859 − 3.2719839 − 3.285926276

Min − 3.321995172 − 3.321995172 − 3.123434646 − 3.316555003 − 3.321865686 − 3.321991576 − 3.321995172
Median − 3.262548611 − 3.321995172 − 2.815247618 − 3.170641978 − 3.30895718 − 3.32197271 − 3.321995172
Max − 3.20310205 − 3.20310205 − 2.607638931 − 3.094605251 − 3.106929403 − 3.086660823 − 3.199467588
Std 0.06266218 0.050129742 0.139874537 0.076924725 0.093480078 0.08545736 0.058084026

F21 Mean − 6.0747981 − 5.564997924 − 4.581474305 − 7.85237791 − 6.015645127 − 9.646965221 − 6.619931042
Min − 10.15319968 − 10.15319968 − 10.15319875 − 10.14954262 − 10.09773454 − 10.15292015 − 10.15319968
Median − 5.055197729 − 5.055197729 − 3.667996012 − 10.09336085 − 5.06672207 − 10.15222594 − 5.055197729
Max − 5.055197729 − 5.055197729 − 0.293107471 − 2.607648465 − 2.6282272 − 5.100699776 − 2.682860396
Std 2.149506357 1.612129768 3.62819684 3.019200605 2.933215261 1.597395001 3.175086367

F22 Mean − 7.2137793 − 5.619198699 − 5.801568732 − 5.068347971 − 6.069470304 − 10.40200819 − 7.148729246
Min − 10.40294057 − 10.40294057 − 10.39715332 − 10.40172521 − 10.3962719 − 10.40267472 − 10.40294057
Median − 5.087671825 − 5.087671825 − 5.064916661 − 5.085418216 − 5.12542205 − 10.40203873 − 7.765881682
Max − 5.087671825 − 5.087671825 − 1.59465723 − 0.90984962 − 1.836695553 − 10.40091025 − 2.765897328
Std 2.744792976 1.68083556 3.36785268 3.257533961 3.102930995 0.000582737 3.518563168

F23 Mean − 7.703139903 − 7.291652399 − 2.548247012 − 6.562080523 − 5.820304368 − 10.53538456 − 7.01474945
Min − 10.53640982 − 10.53640982 − 10.53601567 − 10.52713785 − 10.46541562 − 10.53613262 − 10.53640982
Median − 7.832445302 − 5.128480787 − 1.513479836 − 5.128183307 − 5.144060895 − 10.53543506 − 7.832445302
Max − 3.835426803 − 5.128480787 − 0.999106748 − 1.633493299 − 1.67652131 − 10.5344374 − 1.859480301
Std 3.011307854 2.792642543 2.88460661 3.415595559 3.427387248 0.000530934 3.801603702

Bold values of best results among the comparative algorithms are exhibited
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By electrochemical features of the Li-ion battery, the dis-
charge curve is decomposed into four components: the base 
potential, exponential drop at the discharge start, a potential 
drop due to internal resistance, sharp potential drop at the 
discharge end, resulted from polarization. The discharge 

voltage can be estimated according to Eq. (14); otherwise, 
Eq. (15) describes the charge voltage [74]:

Discharge voltage:

Fig. 3   Box plots for some selected functions



	 International Journal of Computational Intelligence Systems           (2022) 15:62 

1 3

   62   Page 12 of 22

Fig. 4   Convergence for some selected results
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Charge voltage:

where exponential zone amplitude, exponential zone time 
constant inverse, and polarization voltage are represented 
by �, �,C coefficients, respectively. While V� represents the 
voltage at time �,E0 is the base potential, and the internal 
resistance isR , I� represents the discharge current at � time; 
Q is the nominal capacity; whereas Ω� is the discharged 
capacity at � time, which is derived from:Ωτ = ∫

τ

0
Iτdτ , since 

the current is constant so the Ωτ = Iτ.τ , If
τ
 is the first-order 

step response usually called the filtered current at the time � 
which is established as

(14)V� = E0 + � exp (−�Ω) − I�R −
CQΩ�

Q − Ω�

−
CQI

f
�

Q − Ω�

.

(15)

V� = E0 + � exp
(

−�Ω�

)

− I�R −
CQΩ�

Q − Ωt

−
CQI

f
�

Q + 0.1Ω�

,

Table 5   The comparison of 
the MRFO-PSO and some 
advanced variants of MRFO

Bold values best results among the compared optimizers are highlighted

Fun m-MRFO MGEHO MRFO-PSO

Mean Std Mean Std Mean Std

F1 1.47E−270 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F2 2.93E−135 9.31E−135 0.00E + 00 0.00E + 00 5.40E−323 0.00E + 00
F3 1.47E−263 0.00E + 00 6.68E−294 0.00E + 00 0.00E + 00 0.00E + 00
F4 4.51E−135 1.61E−134 0.00E + 00 0.00E + 00 4.90E−324 0.00E + 00
F5 2.40E + 01 4.10E−01 4.46E−297 0.00E + 00 9.58E + 01 1.12E + 00
F6 3.75E−07 2.53E−07 1.19E + 00 4.95 E00 4.88E−01 3.51E−01
F7 1.19E−04 1.06E−04 3.67E−03 7.03E−03 2.28E−04 1.24E−04
F8 − 7.51E + 03 6.62E + 02 0.00E + 00 0.00E + 00 − 2.37E−04 1.56E + 03
F9 0.00E + 00 0.00E + 00 7.01E−05 5.65E−05 0.00E + 00 0.00E + 00
F10 8.88E−16 0.00E + 00 0.00E + 00 0.00E + 00 8.88E−16 0.00E + 00
F11 0.00E + 00 0.00E + 00 − 1.26E04 1.41E + 01 0.00E + 00 0.00E + 00
F12 6.79E−09 4.71E−09 0.00E + 00 0.00E + 00 3.46E−03 3.06E−03
F13 2.02E + 00 1.37E + 00 8.88E−16 0.00E + 00 9.89E + 00 1.95E−03
F14 9.98E−01 1.37E−16 0.00E + 00 0.00E + 00 9.98E−01 1.05E−16
F15 3.38E−04 1.67E−04 9.02 E−4 3.29 E−3 5.47E−04 4.65E−04
F16 − 1.03E + 00 6.52E−16 2.12 E−3 8.10 E−3 − 1.03E00 1.48E−16
F17 3.98E−01 0.00E + 00 1.11E−293 0.00E + 00 3.98E−01 0.00E + 00
F18 3.00E + 00 1.57E−15 − 1.33E−15 0.00E + 00 3.00E + 00 2.34E−15
F19 − 3.86E + 00 2.67E−15 0.00E + 00 0.00E + 00 − 3.00E−01 6.90E−15
F20 − 3.28E + 00 5.83E−02 0.00E + 00 0.00E + 00 − 3.26E00 6.27E−02
F21 − 9.98E + 00 9.31E−01 − 9.87E−01 2.28E−01 − 6.07E00 2.15E + 00
F22 − 1.00E + 01 1.35E + 00 0.00E + 00 0.00E + 00 − 7.21E00 2.74E + 00
F23 − 1.05E + 01 1.51E−15 0.00E + 00 0.00E + 00 − 7.70E00 3.01E + 00

Fig. 5   Schematic graph of the discharge curve
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Table 6   The boundaries of 
studied cases

Case Boundary � � C E0 R Q

Case I Upper limit 3.9528 29.2162 37.724 0.0831 0.09 22.5
Lower limit 0 0 0 0 0 0

Case II Upper limit 1.3318 39.456 33.2597 0.0011 0.03 200
Lower limit 0 0 0 0 0 0

Case III Upper limit 13.7832 8.9532 147.523 0.0212 0.09 75
Lower limit 0 0 0 0 0 0

Table 7   The statistical results of 
the different algorithms for the 
studied cases

Case MRFO-PSO MRFO FFA WOA DA GWO ALO

Case I Mean 0.016235 0.170724 90.99323 4.70351 7.308268 1.0944505 4.778585
Min 0.015128 0.015128 3.79595 1.19448 0.689771 0.3423699 1.007829
Median 0.016001 0.015128 11.15199 2.26922 6.867903 0.9118503 4.119789
Max 0.018431 1.571092 757.9694 15.9253 13.49731 3.8770778 9.355362
Std 0.001094 0.492039 234.9652 4.96859 4.660264 1.0286288 3.325728

Case II Mean 0.270681 0.260513 1509.908 9.30681 8.970724 0.5584453 15.31753
Min 0.260513 0.260513 6.783259 0.30657 0.441596 0.2672242 3.247749
Median 0.260513 0.260513 17.52245 11.3762 10.62895 0.298084 16.69621
Max 0.310986 0.260513 14,842.82 17.3089 17.2571 2.6692663 16.9655
Std 0.021133 2.18E-15 4684.866 7.88719 7.025392 0.7469393 4.250027

Case III Mean 0.421697 0.310146 2597.873 35.1644 55.93047 24.546672 43.47972
Min 0.149853 0.149854 15.66367 2.41465 13.51091 2.8330533 7.420252
Median 0.163295 0.149865 73.38813 16.8893 36.41602 8.3004532 37.58454
Max 2.563543 1.666025 24,665.19 104.248 184.9011 172.67945 89.5566
Std 0.754633 0.477183 7757.699 39.6977 52.52654 52.314716 31.75317

Table 8   The extracted parameters of the different algorithms for the studied cases

Algorithm RSS � � C E0 R Q

Case I MRFO-PSO 0.015128 0.408138798 1.816450269 3.76149887 0.009370579 0.062567909 2.314153265
MRFO 0.015128 0.408210849 1.814727487 3.773297582 0.009366075 0.089695572 2.314129007
FFA 3.79595 3.9528 0.071449282 0.200178425 0.081721746 0.000111582 22.46093423
WOA 1.19448 3.926476308 0 0 0.030688275 0 2.459480407
DA 0.689771 0.34504181 19.0284594 3.877807207 0.019155345 0.017266594 2.375931164
GWO 0.3423699 0.607953942 0.313907192 3.4136937 0.010858775 0.015435592 2.331619841
ALO 1.007829 0.164669085 25.30505355 3.942980107 0.037869163 0.013518312 2.522679251

Case II MRFO-PSO 0.260512901 0.160864758 3.863050155 3.31023996 0.0011 0.003277328 22.6269982
MRFO 0.260512901 0.160864761 3.863050542 3.407918184 0.0011 0.01304515 22.6269982
FFA 6.783258643 1.3318 10.72380686 3.238660431 0.0011 0 23.49264297
WOA 0.306566872 0.219831245 39.45542764 3.337478509 0.001099984 0.006500495 22.63427802
DA 0.441595806 0.153521702 0.379531854 3.251721849 0.000921267 0.000963452 22.54143344
GWO 0.267224217 0.173290517 3.026364282 3.327238541 0.00108938 0.005261774 22.62390324
ALO 3.247749115 0.991621827 16.62297171 3.299894051 0.00040399 0.011385273 22.26312555

Case III MRFO-PSO 0.149853447 1.70387981 0.372380091 14.35588295 0.004737981 0.042818374 8.249542526
MRFO 0.149853611 1.70378797 0.372500529 14.33802244 0.004739306 0.036796131 8.249592544
FFA 15.66366727 13.74603659 0.021359455 2.040345018 0.021008118 0 74.37208551
WOA 2.414653615 2.184801099 0.369542406 13.95881174 0.002862755 0.002389046 8.193942899
DA 13.51090703 0.524766786 0.285550022 14.69115421 0.016788534 0.00275067 9.059359631
GWO 2.833053252 3.673961949 0.06023017 12.14704898 0.005590857 0.089822861 8.329738685
ALO 7.420252401 1.107769507 3.960014442 15.2361956 0.021196532 0.074839585 8.858287072
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Consider �r as the response time. Sequentially, there 
are four unknown parameters �, �,C,E0 should be esti-
mated; however, R,Q are selected as nominal values by 
manufacturers, due to the human error in the three-key-
point method as they depend on the personal perspectives 
and expertise, and the R,Q should be also estimated to 
obtain more accurate simulation. Therefore, the control 
variable X = [�, �,C,E0,R,Q] is the candidate solution for 
the parameter extraction problem of the Lithium battery 
dynamics model. Moreover, the objective function is taken 
as the residual sum of squares ( RSS)

(16)If
�
= I� ⋅

[

1 − exp

(

−
�

�r

)]

.

where Vi
s
 is the discharge voltage sampled from the datasheet 

curve, Vi
c
 is the calculated discharge voltage, and m is the 

number of sampled points in the datasheet curve. In this 
study, we used the samples points extracted by Yong Wang 
and Lin Li uploaded in an Excel file on (http://​bingh​amton.​
edu/​seorl). For problem boundaries, we used their initial 
values Xinitial multiplied by 10 as the upper boundary, and 
0 as the lower boundary for all cases [74]. In context, three 
cases are studied.

(17)min ∶ RSS =

m
∑

i=1

[

Vi
s
− Vi

c

]2
,

(a) Case I (b) Case II

(c) Case III

Fig. 6   Convergence curve of RSS for the studied cases

http://binghamton.edu/seorl
http://binghamton.edu/seorl
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4.4.2 � Case I

In this case, the Samsung Cylindrical ICR18650-22 lith-
ium-ion rechargeable battery [75] is investigated with the 
upper and lower limits listed in Table 6. By implementing 
the proposed MRFO-PSO as well as the compared algo-
rithms, we can obtain the results of the RSS in terms of 
the statistical results as shown in Table 7. Furthermore, 
the optimal extracted parameters by the implemented algo-
rithms corresponding to the best RSS value are illuminated 
in Table 8. Based on the reported results, it can be observed 
that MRFO-PSO gets the minimum RSS then GWO comes 
in the second order but DA gets the third. Additionally, 
MRFO-PSO comes first in terms of mean, maximum, and 
standard deviation but gets second in terms of median after 
MRFO. The convergence cures and box plots of the pro-
posed MRFO-PSO as well as the compared algorithms 
are depicted in Figs. 6 and 7, respectively. Moreover, the 
estimated data obtained by MRFO-PSO and data sheet are 

compared in Fig. 8. Based on the figure, the estimated model 
exhibits a good agreement with the experimental data.

4.4.3 � Case II

The second case is a prismatic cell produced by Tenergy manu-
facturer [76], and its boundary is in Table 8. The upper and lower 
limits are listed in Table 6. By conducting the proposed MRFO-
PSO and the compared optimizers, we can achieve the results of 
the RSS in terms of the statistical measures which are recorded 
in Table 7. In addition, the optimal estimated parameters by the 
implemented algorithms corresponding to the best RSS value 
are presented in Table 8. Based on the reported results, it can be 
observed that MRFO-PSO can provide very competitive results 
regarding the RSS value. The convergence behaviors and box 
plots of the proposed MRFO-PSO as well as the compared algo-
rithms are depicted in Figs. 6 and 7, respectively. Moreover, 
the extracted data achieved by MRFO-PSO and data sheet are 

(a) Case I (b) Case II

(c) Case III

Fig. 7   Box plots for the studied cases
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(a) Case I (b) Case II

(c) Case III

Fig. 8   Discharge curve of extracted parameters by proposed MRFO-PSO for the studied cases

Table 9   Wilcoxon’s test for the reported results in Tables 4 and 5

Compared methods p Value Solution evaluations

Proposed Competitors R
+

R
− Winner

MRFO-PSO FFA 0.00001 253 0 MRFO-PSO
MRFO-PSO WOA 0.02444 114 39 MRFO-PSO
MRFO-PSO DA 0.00001 231 0 MRFO-PSO
MRFO-PSO GWO 0.01078 129 42 MRFO-PSO
MRFO-PSO ALO 0.00034 184 6 MRFO-PSO
MRFO-PSO MRFO 0.0151 58 8 MRFO-PSO
MRFO-PSO m-MRFO 0.00374 97 23 MRFO-PSO
MRFO-PSO MGEHO 0.11642 78 93 ≈

Table 10   Wilcoxon’s test for the studied cases of the lithium-ion bat-
tery

Compared methods Solution evaluations

Proposed Competitors p Value R
+

R
− Winner

MRFO-PSO FFA 0.00001 465 0 MRFO-PSO
MRFO-PSO WOA 0.00001 465 0 MRFO-PSO
MRFO-PSO DA 0.00001 465 0 MRFO-PSO
MRFO-PSO GWO 0.00001 465 0 MRFO-PSO
MRFO-PSO ALO 0.00001 465 0 MRFO-PSO
MRFO-PSO MRFO 0.02202 197 56 MRFO-PSO
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compared in Fig. 8. Based on the figure, the estimated model 
exhibits a good agreement with the experimental data.

4.4.4 � Case III

The third case is UBBL03 (type LI-7) rechargeable battery 
cell produced by Ultralife manufacturer [77], and the upper 
and lower limits are listed in Table 6. By carrying out the pro-
posed MRFO-PSO and the compared ones, we can obtain the 
optimized results of the RSS in terms of the statistical results 
which are shown in Table 7. Furthermore, the optimal extracted 
parameters by the implemented algorithms corresponding to 
the best RSS value are illuminated in Table 8. Based on the 
reported results, it can be observed that MRFO-PSO gets the 
minimum RSS which is competitive with the MRFO, and can 
provide superior results over the compared ones. The conver-
gence cures and box plots of the proposed MRFO-PSO as 
well as the compared algorithms are depicted in Figs. 6 and 7, 
respectively. Moreover, the identified parameters obtained by 
MRFO-PSO and data sheet are compared in Fig. 8. Based on 
the figure, it is noted that estimated parameters acquire a good 
agreement with the experimental data.

4.5 � Performance Assessment Based on Wilcoxon 
Test

The performance of the MRFO-PSO is further investigated 
to ensure that the obtained outcomes are not acquired by 
chance. In this sense, a non-parametric statistical test, named 
Wilcoxon signed-rank test, is applied [78] are performed. 
The Wilcoxon’s test is applied on the resulted mean values 
of the benchmark functions.

The Wilcoxon test is presented to illustrate the statistical 
significant difference among the obtained results by pro-
posed MRFO-PSO algorithm and other peers. The outcomes 
of Wilcoxon’s test are recorded in Table 9. The rank R+ 
values have larger values than the opposite rank R− , which 
means that all tests reject the null hypothesis. Moreover, the 
p value is smaller than the significance level ( �sig = 0.05) for 
most cases, which ensured the superior results of MRFO-
PSO over the compared ones. From Table 9, it can be noted 
that the results of MRFO-PSO is not significant ( ≈ ) to those 
obtained by MGEHO as the significance level is greater than 
0.05 . Furthermore, the Wilcoxon’s test is applied on the 
studied cases of the lithium-ion battery model by carrying 
out each algorithm for some different runs. The best results 
of all runs are employed as the samples for Wilcoxon test, 
and then, the results of this are reported in Table 10. From 
Table 10, it can be clearly observed the MRFO-PSO is very 
competitive with MRFO and outperforms the other ones.

As depicted in Tables 9 and 10, in most tasks, the recorded 
p value is far less than 0.05, which affirms that MRFO-PSO 
has stronger significance.

5 � Conclusion and future work

A new hybrid Manta ray foraging optimization (MRFO) with 
particle swarm optimization (PSO), named MRFO-PSO, was 
presented for further promoting the harmony among the inclu-
sive exploration and confined exploitation abilities while dealing 
with optimization tasks. The MRFO-PSO was conducted and 
validated on a well-studied set of benchmark problems along with 
the comparisons with some optimization methods. The experi-
mental results were made through evaluating some statistical 
measures and non-parametric tests which have demonstrated that 
the MRFO-PSO provides competitive and progressive solutions 
compared with other competitors. In addition, the applicability of 
MRFO-PSO is performed to estimate the Tremblay's model of the 
lithium-ion battery. The final experimental results illustrate that the 
MRFO-PSO can contribute powerful assistance for the lithium-ion 
battery and it has the potential to be very fruitful in dealing with 
more practical tasks with complicated search spaces as well. The 
major contributions regarding the presented work are

1. The proposed MRFO-PSO enhances the convergence 
rate and population diversity of the original MRFO by 
achieving the global solution after a few iterations.
2. MRFO-PSO confirmed its effectiveness by the comparison 
with other optimization methodologies while dealing with 
large-scale benchmark functions of different complexities.
3. MRFO-PSO has affirmed its applicability by estimating 
the parameters of the lithium-ion battery.

5.1 � Future Work

The increasing popularity of electric vehicles highlights the 
importance of the study of lithium batteries for electric vehi-
cles, The lithium battery used in electric vehicles is a very 
large battery pack, and the testing of the SOC and SOH of the 
whole battery pack requires the support of experimental equip-
ment, to overcome these issues, we will endeavor to include 
the volume of the battery pack in the future model, as well as 
built the future failure time for the battery pack.

Appendix

See Table 11
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Table 11   The abbreviations and 
symbols used in this paper

NLP Nonlinear problems

MRFO Manta ray foraging optimization
PSO Particle swarm optimization
MRFO-PSO Hybrid MRFO with PSO
EHO Elephant herding optimization
OBL Opposition-based learning
CT Computerized tomography
Covid-19 Coronavirus disease 2019
SVM Support vector machine
ECG Electrocardiogram
CNN Convolutional neural network
GA Genetic algorithm
MR Magnetorheological
GMRFO Genetic Manta ray foraging optimization
QMRFO Quantum Manta ray foraging optimization Algorithm
PV
GBO
MRFO–GBO
EED

Solar photovoltaic
Gradient-based optimizer
Integrated MRFO with GBO
Economic emission dispatch

Fi(x) Fitness function
n No. of dimensions
x Candidate solution
ith Order of the variable
li Lower limit
ui Upper limit
ℜn Design space
xt
i

The ith individual's position at the iteration t
r Random vector belong to [0, 1]
a Weighting function
xb The best position where plankton is concentrated
� Random number within the range of [0, 1]
B Weight coefficient
T Total number of iterations
r1 Random number
xrand Random position placed indiscriminately in the search space
� Somersault factor
r2, r3 Random values within [0, 1] range
vi Bird (particle) velocity
xt+1
i

The particle position at the next iteration t + 1

� Best position of the whole birds
Pi The best position bird had
� Weighting function,
�t+1
i

The individual position reached by its velocity

vt+1
i

Velocity of Manta ray individual
Υ1 Best position reached by Manta ray individual 's velocity obtained so far
Υ2 Second best individual position reached in the last iteration
� Exponential zone amplitude
� Exponential zone time constant inverse
C Polarization voltage
V� The voltage at time �
E0 The base potential
R The internal Resistance
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