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Abstract
The constrained optimization problems can be transformed into multi-objective optimization problems, and thus can be 
optimized by multi-objective evolutionary algorithms. This method has been successfully used to solve the constrained 
optimization problems. However, little theoretical work has been done on the performance of multi-objective evolutionary 
algorithms for the constrained optimization problems. In this paper, we theoretically analyze the performance of a multi-
objective evolutionary algorithms on the constrained minimum spanning tree problem. First, we theoretically prove that the 
multi-objective evolutionary algorithm is capable of finding a (2,1)-approximation solution for the constrained minimum 
spanning tree problem in a pseudopolynomial runtime. Then, this simple multi-objective evolutionary algorithm is shown 
to be efficient on a constructed instance of the problem.

Keywords Approximation algorithm · Multi-objective evolutionary algorithm · Constrained optimization · Spanning tree 
problem · Combinatorial problem

Abbreviations
CMST  Constrained minimum spanning tree
EAs  Evolutionary algorithms
MOEAs  Multi-objective evolutionary algorithms
GSEMO  Simple multi-objective evolutionary algorithm 

that searches globally
BMST  Biobjective minimum spanning tree

1 Introduction

The constrained minimum spanning tree (CMST) problem 
aims to find a spanning tree in a connected undirected graph 
where each edge has two costs: weight and length, respec-
tively, such that the total weight is minimized under the con-
dition that the total length is not larger than a given budget 
L. Since it is NP-hard [1], researchers tend to believe that 
there is no polynomial time algorithm for solving this prob-
lem, and devote to exploring polynomial time approximation 
schemes for the CMST problem [2–6].

As general-purpose and powerful search engines, evolu-
tionary algorithms (EAs) have been extensively used to solve 
constrained optimization problems [7–14]. There are sev-
eral constraint-handling methods used with EAs. The multi-
objective optimization method is among the most popular 
ones [15–18]. This method first transforms a constrained 
optimization problem into a multi-objective optimization 
problem. Then, multi-objective EAs (MOEAs) or other 
multi-objective optimization algorithms are used to solve 
the resulting multi-objective optimization problem. At last, 
the solutions found by multi-objective optimization algo-
rithms are transformed back into the original constrained 
optimization problem.

Recently, the theoretical analysis of the approximation 
performance of EAs on NP-hard combinatorial optimiza-
tion problems has attracted more and more attentions from 
researchers. One reason for this phenomenon may be that 
a large number of combinatorial optimization problems 
are NP-hard, for which we tend to believe that there is no 
algorithms being able to find their globally optimal solu-
tions in polynomial runtime. Thus, we are interested in what 
approximation solutions EAs can find in polynomial runtime 
on such problems. Another reason may be that the theoreti-
cal analysis of the approximation performance of EAs on 
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NP-hard combinatorial optimization problems is helpful in 
deeply understanding the mechanism of EAs.

The approximation performance of the (1+1) EA has been 
studied on some single objective combinatorial optimization 
problems [19–21], and the MOEA’s approximation perfor-
mance has been analyzed on some single objective [21–23] 
and some multi-objective combinatorial optimization prob-
lems [24, 25] in recent years.

For constrained optimization problems, Zhou and He 
[26] analyzed the time complexity of the (1+1) EA with 
penalty function methods for solving constrained optimiza-
tion problems. They showed that higher penalty coefficients 
may be good choices for some instances of constrained opti-
mization problems, while on other instances lower penalty 
coefficients may be good choices. Qian et al. [27] theoreti-
cally compared EAs using penalty function methods with 
EAs using multi-objective optimization methods on two 
classes of constrained optimization problems: the minimum 
matroid optimization problem (P-solvable) and the mini-
mum cost coverage problem (NP-hard). They found that 
EAs using multi-objective optimization method are more 
efficient to find the optimal and approximation solutions, 
respectively.

The CMST belongs to the class of constrained optimiza-
tion problems, which are still attractive to researchers [28–30]. 
There is still no theoretical investigation on the approximation 
performance of the EA on this problem. This paper aims to 
discover what solutions to the CMST problem can be found 
by a simple MOEA within a polynomial runtime. This simple 
MOEA is identical to the simple multi-objective evolutionary 
algorithm that searches globally (GSEMO) in [24]. To use 
GSEMO to solve the CMST problem, we should first trans-
form the CMST problem into a biobjective minimum span-
ning tree (BMST) problem by considering the total length of 
a minimum spanning tree as an additional objective. Then, 
we focus on the performance of GSEMO on this resulting 
BMST problem.

The contributions of this paper are as follows. First, it is 
revealed that GSEMO can find a (2,1)-approximation solu-
tion for the CMST problem in a pseudopolynomial runtime. 
Second, it is illustrated that the MOEA is capable of find-
ing the optimal solutions for some instances of the CMST 
problem.

The remainder of this paper is organized as follows. Next 
section describes the constrained minimum spanning tree 
problem and GSEMO. Section 3 reveals the approximation 
performance of GSEMO on the CMST problem. Section 4 
constructs an instance of the CMST problem and analyzes the 
performance of GSEMO on it. Finally, the last section con-
cludes this paper.

2  The Constrained Minimum Spanning Tree 
Problem and GSEMO

In this section, we describe the CMST problem and 
GSEMO. At the beginning, we define some concepts to 
be used in this paper.

2.1  Related Concepts

The first concept is the concept of a spanning subgraph.

Definition 1 (spanning subgraph) Given two graphs 
G = (V ,E) and G� = (V �,E�) , where V(V �) and E(E�) are the 
sets of nodes and edges of G(G�) , respectively, if V � = V  and 
E′ ⊆ E , then G′ is a spanning subgraph of G.

Clearly, a spanning subgraph may be unconnected, and 
may contain cycles. We then define a spanning tree based 
on the concept of a spanning subgraph.

Definition 2 (spanning tree) Given two connected undi-
rected graphs G = (V ,E) and G� = (V �,E�) , where V(V �) and 
E(E�) are the sets of nodes and edges of G(G�) , respectively, 
if G′ is a connected spanning subgraph of G and the number 
of edges contained in E′ equals |V| − 1 , where |V| is the num-
ber of nodes in G, then G′ is a spanning tree of G.

The last one is the relationship “ ≤ ” between two 
2-dimensional vectors.

Definition 3 For two 2-dimensional vectors u = (u1, u2) 
and v = (v1, v2) , if one of the following two conditions is 
satisfied: 

(1) u1 < v1 and u2 ≤ v2;
(2) u1 ≤ v1 and u2 < v2,

then we denote it by u ≤ v.

2.2  The Constrained Minimum Spanning Tree 
Problem

In a given connected undirected graph G = (V ,E) , where V 
and E are the sets of n nodes and m edges, respectively, each 
edge e ∈ E associates with two different nonnegative costs 
we and le . We denote the set of edges contained in a spanning 
tree T of G by E(T). The CMST problem is to find a span-
ning tree T of G, such that 

∑
e∈E(T) le ≤ L and 

∑
e∈E(T) we is 

minimized, where L is a given budget. We refer to we and le 
as the weight and the length of e, respectively.
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The CMST problem can be formulated as follows:

where T  is the set of all spanning trees of G.
Though the CMST problem has only one objective func-

tion to be optimized, with a constraint, it becomes an NP-
hard problem, which we usually think that there is no algo-
rithm being able to find its globally optimal solution in a 
polynomial runtime.

If an algorithm can obtain a spanning tree T for the 
CMST problem in a polynomial runtime with l(T) ≤ �L 
and w(T) ≤ �W  , where W is the minimum weight among 
all spanning trees of the input graph whose lengths are no 
more than L, then we call this algorithm an ( �,�)-approxima-
tion algorithm for the CMST problem.

2.3  GSEMO

If the CMST problem is transformed into a BMST prob-
lem, then the MOEA can be used to find solutions for 
the transformed BMST problem. Let S be the set of all 
possible selections of the edges of G. Since each selec-
tion corresponds a subset of the edge set E, each selec-
tion determines one and only one spanning subgraph of 
G. Therefore, S is the set of all spanning subgraphs of G. 
Obviously, T ⊆ S.

GSEMO will search in S. We call S the search space 
and call a possible selection in S a solution. Denote the 
number of edges contained in G by m, and describe all 
edges in a fixed sequence (e1, e2,… , e

m
) . We encode a 

solution X as a bit string (x1, x2,… , x
m
) ∈ {0, 1}m , where 

xi = 1 if edge ei is selected and xi = 0 otherwise. Clearly, 
each bit string in {0, 1}m corresponds to one solution in 
S, and vice versa. Thus, bit string and solution can be 
interchangeably used.

For solution X ∈ S , let H(X) denote the spanning subgraph 
corresponds to X, and |X| the number of edges contained in 
H(X), w(X) (l(X)) the sum of weight (length) of each edge 
contained in H(X), i.e., �X� =

∑m

i=1
xi , w(X) =

∑
i�xi=1 w(ei) , 

and l(X) = ∑
i�xi=1

l(e
i
) . Let u

wl
= max{w

max
, l

max
} , wu = n2 ⋅ uwl , 

and lwl = min{wmax, lmax} , where wmax and lmax are the 
maximum values of weight and length on all edges of G, 
respectively.

The fitness function of any solution X ∈ S is commonly 
defined as follows [31]:

f (X) = (f 1(X) , f 2(X)),
f 1(X) = (c(X) − 1) ⋅ w2

u
+ (|X| − (n − 1)) ⋅ w

u
+ w(X),

(1)

min f1(T) ∶=
∑

e∈E(T)

we

s.t. f2(T) ∶=
∑

e∈E(T)

le ≤ L,

T ∈ T,

f 2(X) = (c(X) − 1) ⋅ w2

u
+ (|X| − (n − 1)) ⋅ w

u
+ l(X), 

where c(X) denotes the number of connected components 
in H(X).

For solution X, if H(X) is unconnected, then the fitness 
function ensures the decrease of the number c(X) of connected 
components of H(X); if H(X) is already connected, the fitness 
function ensures the decrease of the number of redundant edges 
contained in H(X) under the condition of keeping H(X) a con-
nected spanning subgraph unchanged; if H(X) is a spanning 
tree, i.e., X ∈ T  , then f 1(X) and f 2(X) of the fitness function 
f (X) are the weight and the length of a spanning tree, respec-
tively, i.e., f 1(X) = f1(X) and f 2(X) = f2(X) . For two solutions 
X1 , X2 ∈ S , if f (X1) ≤ f (X2) , then we say that X1 dominates X2.

Let Su and Sc denote the subspaces of S including all 
unconnected spanning subgraphs and all connected span-
ning subgraphs, respectively. Clearly, the fitness func-
tion can guide the search of GSEMO from Su into Sc , and 
finally into T .

GSEMO starts with a population containing only a 
solution selected from S uniformly at random. If the termi-
nation criterion is not fulfilled, then a solution is selected 
from the population uniformly at random. An offspring 
solution is obtained by flipping each bit of the selected 
solution with probability 1/m. If this offspring solution 
cannot be dominated by any solution in the population, 
then it is included in the population; meanwhile, all solu-
tions dominated by this offspring solution are removed 
from the population. GSEMO for the transformed BMST 
problem can be described as Algorithm 1.

Algorithm 1: GSEMO
01: Begin
02:       Initialize a solution X ∈ {0, 1}m uniformly at 

random;
03:    P ← {X};
04:    While termination criterion is not fulfilled
05:             Choose a solution X from P uniformly at 

random;
06:       Obtain an offspring Y by flipping each bit in X 

with
            probability 1/m;
07:       If ∀X ∈ P : Y is not dominated by X and
             f (Y) ≠ f (X) then
08:          Q ∶= {X|X ∈ P, Y dominates X};
09:          P ← P ∪ {Y} ⧵ Q;
10:    End while
11: End
The termination criterion of GSEMO may be a solution 

with a certain quality having been found or a given number 
of iterations having been reached. We care about how many 
iterations GSEMO should run to find a (set of) solution(s) 
with given quality. Therefore, the runtime in this paper 
refers to the number of iterations that GSEMO runs.
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3  The Approximation Performance 
of GSEMO on the CMST Problem

If the weight and length on each edge are positive integer 
numbers, then we will reveal that GSEMO include in its 
population a (2,1)-approximation solution for the CMST 
problem in a pseudopolynomial runtime.

First, we prove that among all spanning trees with 
objective vectors on the convex hull of the Pareto front of 
the transformed BMST problem, there is a (2,1)-approxi-
mation solution to the CMST problem. Then, we reveal 
that GSEMO can include this approximation solution in 
its population in pseudopolynomial runtime.

To prove that there is a (2,1)-approximation solution 
whose objective vector is on the convex hull of the Pareto 
front of the transformed BMST problem, we should dis-
cuss Lagrangian relaxation of the CMST problem, and 
then discuss the relationship between Lagrangian relaxa-
tion of the CMST problem and the transformed BMST 
problem.

3.1  Lagrangian Relaxation of the CMST Problem

Lagrangian relaxation is generally a method to approach the 
global optimum for constrained optimization problems [32, 
33]. It can also be used to approach the global optimum of 
the CMST problem [2].

By relaxing the budget constraint 
∑

e∈E(T) le ≤ L , we 
obtain the Lagrangian relaxation of the CMST problem, 
which is a minimum spanning tree problem for any � (≥ 0 ) 
as described in the following:

We call � Lagrangian multiplier.
If we are able to compute the optimal solution for the 

relaxed problem (2) with a fixed Lagrangian multiplier 
� ≥ 0 , then l ( � ) is a lower bound of the optimal value of 
the CMST problem.

In fact, let T∗ be an optimal solution of the CMST prob-
lem, then we have l ( � ) ≤ f1(T∗) + �(f2(T∗) − L) . Together 
with f2(T∗) − L ≤ 0 as T∗ obviously satisfies the budget con-
straint, we have l ( � ) ≤ f1(T∗).

Assume that the optimal value of the problem (1) is Wopt , 
then l(�) ≤ Wopt.

To get the best lower bound on Wopt , one should maxi-
mize l(�) over all � ≥ 0 . If we denote max

�≥0
l(�) by LR, then 

LR is the best lower bound on Wopt . Note that problem (2) 
on a fixed � is just a minimum spanning tree problem with 

(2)
l(�) ∶= min f1(T) + �(f2(T) − L)

s.t. T ∈ T.

respect to the costs ce = we + �le . We denote by �
∗
 the value 

of � that maximizes l(�) , and let c∗
e
= we + �

∗
le.

It is well known that the function l(�) is concave and 
piecewise linear as those thick line segments shown in 
Fig. 1. In Fig. 1, each spanning tree T ∈ T  with weight 
w(T) and length l(T) corresponds to a line function in space 
(l, �) with intercept w(T) and slope l(T) − L , and the lower 
envelope of all these line functions describes the function 
l(�) . We denote all these line functions describing l(�) by 
gi (i ∈ {0, 1,… , s} with slopes ki , such that ki < ki+1 for all 
i ∈ {0, 1,… , s}.

3.2  The Transformed Biobjective Minimum 
Spanning Tree Problem

The CMST problem can be transformed into a BMST prob-
lem by considering the total length of a spanning tree as an 
additional objective as follows:

The transformed BMST problem (3) has two objective func-
tions f1 and f2 . We denote by f the vector (f1(T), f2(T)) , i.e., 
f ∶= (f1(T), f2(T)) , and call f the objective vector.

For two spanning trees T1 and T2 , if f (T1) ≤ f (T2) , then 
we say that T1 dominates T2.

Definition 4 (Pareto optimal solution) For the transformed 
BMST problem (3), if a spanning tree T cannot be dominated 
by any spanning tree T � ∈ T  , then T is a Pareto optimal solu-
tion for the transformed BMST problem (3).

(3)
min f1(T)

min f2(T)

s.t. T ∈ T.

Fig. 1  Function l(�) in space (l, �)
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Generally, there are many Pareto optimal solutions for the 
transformed BMST problem (3).

The set of all Pareto optimal solutions of the trans-
formed BMST problem (3) is called the Pareto set. The 
objective vector of any Pareto optimal solution is called a 
Pareto optimal objective vector, and the set of all Pareto 
optimal objective vectors is called the Pareto front. The 
convex hull of the Pareto front of the transformed BMST 
problem consists of line segments which connect two adja-
cent outermost Pareto optimal objective vectors. Figure 2 
shows the Pareto front and the convex hull of the trans-
formed BMST problem (3).

Scalarization approaches can be used to find some 
Pareto optimal solutions for multi-objective optimization 
problems, and the weighted-sums approach is the com-
monly used one [34, 35]. In Fig. 2, all circles including 
hollow circles and solid circles represent the Pareto opti-
mal objective vectors, and the lines connecting the solid 
circles describe the convex hull of the Pareto front of prob-
lem (3).

Let 0 ≤ � ≤ 1 , then the transformed BMST problem 
(3) can be formulated by the weighted-sums approach as 
follows:

According to [35], the weighting-sums approach can 
only find each Pareto optimal solution with objective vec-
tor on the convex hull of the Pareto front of the trans-
formed BMST problem.

Assume that the convex hull of the Pareto front of the 
transformed BMST problem is described by line functions 
l1,… , l

h
 with slopes k�

i
< k�

i+1
 for all i ∈ {1,… , h} . Let pi 

(1 ≤ i ≤ h − 1) be the intersection point of line functions 
li and li+1 . In addition, let p0 and ph be the Pareto optimal 
objective vectors with minimum value with respect to f1 

(4)
s(�) = min �f1(T) + (1 − �)f2(T)

s.t. T ∈ T.

and f2 , respectively. Obviously, p0 , p1 , … , ph are Pareto 
optimal objective vectors of the transformed BMST prob-
lem. We call p0 , p1 , … , ph extremal points.

Note that not all of Pareto optimal objective vectors are 
on the convex hull of the transformed BMST problem. For 
example, some Pareto optimal objective vectors may be 
above the convex hull, such as the point p′′ shown in Fig. 2.

3.3  Relationship Between Lagrangian Relaxation 
of the CMST Problem and the Transformed 
BMST Problem

There exists an intrinsic relationship between the weighted-
sums approach and Lagrangian relaxation [36, 37]. Based on 
this relationship, we reveal the relationship between Lagran-
gian relaxation of the CMST problem and the transformed 
BMST problem in this subsection.

From the forms of problems (2) and (4), we have the fol-
lowing lemma.

Lemma 1 For the CMST problem, if a spanning tree can be 
found by Lagrangian relaxation with Lagrangian multiplier 
� , then it can also be found by the weighted-sums approach 
with weighting coefficient � = 1∕(1 + �) . Conversely, if a 
spanning tree can be found by the weighted-sums approach 
with weighting coefficient � and 𝜆 > 0 (= 0) , then it can also 
be found by Lagrangian relaxation with Lagrangian multi-
plier � = (1 − �)∕� (= +∞).

Proof For the CMST problem, if a spanning tree T ′ can be 
found by Lagrangian relaxation with a fixed Lagrangian 
multiplier � , then we have f1(T �) + �(f2(T

�) − L) = min
T∈T

f1(T) + �(f2(T) − L) . Since � is fixed and L is constant, by 
adding �L to both sides of the equation, we have 
f1(T

�) + �f2(T
�) = minT∈Tf1(T) + �f2(T) . Furthermore, we 

obtain 1

1+�
f1(T

�) +
�

1+�
f2(T

�) = min
T∈T

1

1+�
f1(T) +

�

1+�
f2(T) , 

s ince  � ≥ 0  .  Let  � = 1∕(1 + �) ,  and  we have 
�f1(T

�) + (1 − �)f2(T
�) = minT∈T�f1(T) + (1 − �)f2(T) , which 

means that the solution T ′ can also be found by the weighted-
sums approach with weighting coefficient � = 1∕(1 + �).

If a spanning tree T ′ can be found by Lagran-
gian relaxation with a f ixed weighting coeffi-
cient 𝜆 > 0 ,  then we have �f1(T �) + (1 − �)f2(T

�) = 
min

T∈T�f1(T) + (1 − �)f2(T) . Since � is fixed and L is constant, 

by adding −(1 − �)L to both sides of the equation, we have 

�f1(T
�) + (1 − �)(f2(T

�) − L) = min
T∈T�f1(T) + (1 − �)(f2(T) − L)  . 

Furthermore, we obtain f1(T �) +
(1−�)

�
(f2(T

�) − L) = min
T∈T

f1(T) +
(1−�)

�
(f2(T) − L) , since 𝜆 > 0 . Let � = (1 − �)∕� , we 

have f1(T
�) + �(f2(T

�) − L) = minT∈Tf1(T) + �(f2(T) − L) , 
Fig. 2  The Pareto front and the convex hull of the Pareto front of the 
transformed BMST problem
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which means that the solution T ′ can also be found by 

the Lagrangian relaxation with Lagrangian multiplier 

� = (1 − �)∕�.

If a spanning tree T ′ can be found by Lagrangian relaxa-

tion with a fixed weighting coefficient � = 0 , then we have 
f2(T

�) = minT∈Tf2(T) , which means that T ′ is a minimum 
spanning tree with respect to f2 . Thus, it can also be pro-
duced by Lagrangian relaxation with a sufficient large 
Lagrangian coefficient [33], which we denote by +∞ .  
 ◻

3.4  Approximation Performance of GSEMO 
on the CMST Problem

Note that the Lagrangian relaxation of the CMST problem is 
a minimum spanning tree problem with respect to the costs 
ce = we + �le.

Let S be the set of spanning trees of minimum cost with 
respect to c∗

e
= we + �

∗
le , where �

∗
 is the value of � that 

maximizes l(�) . For set S , Ravi and Goemans [2] proved 
the following lemma.

Lemma 2 There is a spanning tree T ∈ S , such that w(T) is 
at most LR and l(T) < L + lmax.

Without loss of generality, assume that the length of 
each edge in G is not larger than L, i.e., le ≤ L for each edge 
e ∈ E . Thus, lmax ≤ L . The reason is that any edge with 
length larger than L cannot be used to construct a spanning 
tree with total length not more than L. Therefore, accord-
ing to Lemma 2, there is a spanning tree T ∈ S , such that 
w(T) is at most LR and l(T) ≤ L + lmax , which implies that 
w(T) ≤ W and l(T) ≤ 2L as LR ≤ W and lmax ≤ L , i.e., T is a 
(2,1)-approximation solution. Since such a (2,1)-approxima-
tion solution is in S , it corresponds to a line function g ∈ A

∗
.

In the following, we will show that GSEMO can also find 
a (2,1)-approximation solution for the CMST problem in a 
pseudopolynomial runtime, under condition that the weight 
and length on each edge are positive integer numbers. Before 
that, we describe three useful lemmas and prove a lemma.

Lemma 3 [38, 39] Let T∗ and T be the minimum spanning tree and 
an arbitrary spanning tree of a given connected graph G = (V ,E) , 
respectively. Let E(T∗) and E(T) be the set of edges of T∗ and T, 
respectively. Then, there exists a bijection � : E(T∗) ⧵ E(T) → 
E(T) ⧵ E(T∗) , such that �(e) ∈ E(T) ⧵ E(T∗) is on the cycle pro-
duced by including e ∈ E(T∗) ⧵ E(T) into T, and w(�(e)) ≥ w(e).

Lemma 3 tells us that an arbitrary spanning tree can be 
transformed into the minimum spanning tree by exchanging 

at most n − 1 pairs of edges between these two spanning 
trees, and each exchange cannot increase the weight of the 
spanning tree. Furthermore, we have the following Lemma.

Lemma 4 [40] Let x be a solution describing a spanning tree 
T. Then, there exists a set of n 2-bit flips, such that the aver-
age weight decrease of these flips is at least (w(x) − wopt)∕n.

Lemma 5 (Multiplicative Drift [41]) Let S ⊆ ℝ be a finite 
set of positive numbers with minimum smin . Let {X(t)}t∈ℕ be 
a sequence of random variables over S ∪ {0} . Let � be the 
random variable that denotes the first point in time t ∈ ℕ for 
which X(t) = 0.

Suppose that there exists a constant 𝛿 > 0 , such that

E[X(t) − X(t+1)|X(t) = s] > 𝛿s

holds for all s ∈ S with P[X(t) = s] > 0 . Then for all 
s0 ∈ S with P[X(0) = s0] > 0,

E[�|X(0) = s0] ≤
1+ln(s0∕smin)

�
.

Lemma 5 is usually used to estimate the runtime of 
evolutionary algorithms. Based on Lemmas 3 to 5, we can 
estimate the runtime for GSEMO to find a spanning tree 
for each objective vector on the convex hull of the Pareto 
front of the transformed BMST problem starting from any 
initial solution.

Lemma 6 The expected runtime for GSEMO starting from 
any initial solution to construct a population which includes 
a spanning tree for each objective vector on the convex hull 
of the Pareto front of the transformed BMST problem is 
O(nm2lwl(ln n + uwl)).

Proof Before a connected graph is found, the population 
contains only one solution, as the solution with the small-
est number of connected components dominates that with 
a larger number of connected components. Let the current 
solution is x whose number of connected components is 
k, and then, its number of connected components can be 
reduced by one with probability at least k−1

m
 , which implies 

that the expected waiting time is at most m

k−1
 . Therefore, 

a connected graph will be included in the population in 
expected time O(m( 1

n−1
+⋯ +

1

2
+ 1)) = O(m ln n).

After a connected graph has been found, and before a 
spanning tree has been found, the population contains only 
one connected graph, as the connected graph with the small-
est number of edges dominates that with a larger number of 
edges. Let the current connected graph is x whose number 
of edges is k, then its number of edges can be reduced by at 
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least one with probability at least k−(n−1)
m

 , which implies that 
the expected waiting time is O( m

k−(n−1)
) . Therefore, a span-

ning tree will be included in the population in expected time 
O(m( 1

m−(n−1)
+⋯ + 1

2
+ 1)) = O(m ln(m − n + 1)) = O(m ln n) as 

m = O(n2).
Once the first one spanning tree has been included, the 

population accepts only spanning trees. Since for each value 
of f 1 and f 2 , there is only one spanning tree can be included, 
the population contains at most nlwl spanning trees, i.e., pop-
ulation size is O(nlwl) , where lwl = min{wmax, lmax}.

Let x be the solution in population with the smallest value 
of f 1 ( f 2 ), and w(x) be its weight, then it can be selected 
form population with probability Ω( 1

nlwl
) , as the population 

s i z e  i s  O(nlwl)  .  C o n s i d e r  t h e  p r o g r e s s 
Δ(t) = w(x(t)) − w(x(t+1)) = (w(x(t)) − wopt) − (w(x(t+1)) − wopt) of the 
GSEMO in the tth generation. Furthermore, according to 
Lemma 4, the weight of x(t) can be decreased by average of 
(w((t)−wopt))∕n with probability Θ(n∕m2) . Altogether, the 
probability that the weight of x(t) can be decreased by aver-
a ge  o f  (w(x(t)) − wopt)∕n  i s  Ω(

1

nlwl
⋅

n

m2
)  .  T h u s , 

E[Δ(t)|x(t) − wopt] = Ω((w(x(t)) − wopt) ⋅
1

nm2lwl
) . Then, accord-

ing to Lemma 5, the minimum spanning tree with respect to 
f 1 ( f 2 ) will be included in population by the GSEMO in 
e x p e c t e d  t i m e  E[�] = O(nm2lwl(1 + ln(nwmax)) 
(O(nm2lwl(1 + ln(nlmax)))  = O(nm2lwl(ln n + lnwmax)) 
(O(nm2lwl(ln n + ln lmax))).

After that, a spanning tree for p0 (ph) will be included 
in population in expected time O(nm2lwl(ln n + lnwmax)) 
(O(nm2lwl(ln n + ln lmax))) according to Lemma 5.

Now, we analyze the expected time for the GSEMO 
to construct a spanning tree for each objective vector on 
the convex hull of the Pareto front of the transformed 
BMST problem after a Pareto optimal solution p0 has been 
constructed.

Let T be a spanning tree corresponding to extremal point 
pi ( 0 ≤ i ≤ h − 1 ), then an exchange of two edges may trans-
form T into a spanning tree T ′ corresponding to extremal 
point pi+1 or a spanning tree on line li that connecting pi and 
pi+1 . Note that the resulted spanning tree T ′ cannot locate 

below line li . Suppose the resulted spanning tree T ′′ be over 
line li , then the remaining exchanges that transform T ′′ into 
T ′ can transform T into a spanning tree lying below line li , 
as T can be transformed into T ′ according to Lemmas 1 
and 3. Suppose that there are hi spanning trees on line li , then 
the GSEMO can transform T into T ′ in expected time 
O(m2nlwl(hi + 1)) , as the probability of performing an 
exchange of two edges is 1

m2
 and the probability of selecting 

T from population is 1

nlwl
.

Finally, the GSEMO constructs a spanning tree for 
each objective vector on the convex hull of the Pareto 
front of the transformed BMST problem in expected time 
O(m2nlwl

∑h−1

i=0
(hi + 1)) = O(m2nlwl ⋅ �H�) . Here, H is the set 

containing all objective vectors on the convex hull of the 
Pareto front of the transformed BMST problem, and |H| is 
the number of elements in H. Since both weight and length 
on each edge of G are positive integer numbers, and note 
that for each value of f 1 or f 2 , there exists a Pareto optimal 
solution, we have |H| ≤ u

wl
 , where uwl = max{wamx, lmax}.

Altogether, the GSEMO constructs a spanning tree 
for each objective vector on the convex hull of the Pareto 
front of the transformed BMST problem in expected time 
O(nm2lwl(ln n + uwl)) .   ◻

Theorem 1 GSEMO starting from any initial solution can 
construct a population which includes a (2,1)-approxima-
tion solution for the CMST problem in expected runtime 
O(nm2lwl(ln n + uwl)).

Proof of Theorem  1 According to Lemma  2, there is a 
(2, 1)-approximation solution for the CMST problem in 
S , which can be found by Lagrangian relaxation. Then, by 
Lemma 1, it can be found by the weighted-sums approach, 
which means that it is a solution with objective vector on 
the convex hull of the Pareto front of the transformed BMST 
problem.

According to Lemma 6, GSEMO can find a spanning tree 
for each objective vector on the convex hull of the trans-
formed BMST problem in time O(nm2lwl(ln n + uwl)).

Therefore, GSEMO can find a (2,  1)-approxi-
mation solution for the CMST problem in runtime 
O(nm2lwl(ln n + uwl)) .   ◻

Fig. 3  An instance G′ of the 
CMST problem



 International Journal of Computational Intelligence Systems           (2022) 15:57 

1 3

   57  Page 8 of 11

4  Instance that GSEMO Can Optimize 
Efficiently

In this section, an instance G� = (V �,E�) of the CMST prob-
lem is constructed to show that GSEMO can efficiently 
optimize some instance of the CMST problem. As shown 
in Fig. 3, V � = {v1 , v11 , v12 , v13 , … , vi , vi1 , vi2 , vi3 , … , vn , vn,1 , 
vn,2 , vn,3 , vn+1} , and E′ contains edges connecting vi to vij 
and also edges connecting vij to vi+1 for i ∈ {1,… , n} and 
j ∈ {1, 2, 3} . Therefore, there are 4n + 1 nodes and 6n edges 
in G′ , i.e., |V �| = 4n + 1 and |E�| = 6n.

For an edge e ∈ E� , we call the vector (we, le) cost 
vector of e. The cost vector of edges (vi, vij) is (0, 0) for 
i ∈ {1,… , n} and j ∈ {1, 2, 3} . While the cost vectors of 
edges (vi1, vi+1) , (vi2, vi+1) , and (vi3, vi+1) are (2, 0), (1, 1), 
and (0, 2), respectively, for i ∈ {1,… , n}.

For this instance, we aim to find a spanning tree with 
minimum weight under the condition that its length is no 
more than n, that is

We first transform problem (5) into the following BMST 
problem, then use GSEMO to find all Pareto optimal solu-
tions, and finally select one solution with minimal weight 
among those having lengths no more than n

There are 2n + 1 Pareto optimal solutions whose objective 
vectors are (2n, 0), (2n − 1, 1) , … , (1, 2n − 1) , (0, 2n), respec-
tively. Each Pareto solution contains all edges of cost vec-
tor (0, 0). Besides, a Pareto optimal solution with (2n − i, i) 
contains n − i edges of cost vector (2, 0) and i edges of cost 
vector (1,1) if 0 ≤ i ≤ n , or 2n − i edges of cost vector (1, 1) 
and i − n edges of cost vector (0, 2) if n < i ≤ 2n.

If GSEMO can find all Pareto optimal solutions of the 
problem (6), then we can select from the population a solu-
tion with minimum weight among all solutions with lengths 
no more than n. For G′ , the optimal solution has cost vector 
(n, n). In this sense, we say that GSEMO can find the opti-
mal solution of the problem (5).

Theorem 2 When transforming the constrained MST prob-
lem to a BMST problem, GSEMO can find the optimal 

(5)

min
∑

e∈E(T)

we

s.t.
∑

e∈E(T)

le ≤ n,

T ∈ T.

(6)

min
∑

e∈E(T)

we

min
∑

e∈E(T)

le

s.t. T ∈ T.

solution for instance G′ in expected runtime O(n4) starting 
with any initial solution.

Proof Note that |V �| = 4n + 1 and |E�| = 6n . According 
to the proof of Lemma 6, starting with any initial solu-
tion GSEMO can construct a population consisting of 
connected subgraphs of G′ in expected time O(n ln n) . 
Moreover, according to the proof of Lemma 6, GSEMO 
can create a population consisting of spanning trees from 
a population of connected subgraphs in expected time 
O(n ln n).

If the population consists of spanning trees, then the pop-
ulation size is at most 2n + 1 , since in the population, there 
is at most one spanning tree for each objective vector (k, ∗) , 
where k is an integer and 0 ≤ k ≤ 2n.

Now, we consider the spanning tree T whose weight w(T) 
is minimal among all spanning trees in the population. If 
w(T) > 0 , then T contains at least one edge of cost vector 
(1,1) or (2,0); otherwise, w(T) = 0 which contradicts that 
w(T) > 0.

Let edge (vi0,j0 , vi0+1) be one of such edges with cost vector 
(2, 0) or (1, 1), i.e., i0 ∈ {1,… , n} and j0 = 1 or 2, contained 
in T. There are two cases needed to be considered with 
respect to whether edge (vi0 , vi0,j0 ) is contained in T or not.

The first case is that edge (vi0 , vi0,j0 ) is contained in T. In 
this case, one edge from {(vi0 , vi0,3), (vi0,3, vi0+1)} is not con-
tained in T and the other is contained in T; otherwise, there 
is a cycle consisting of vi0 , vi0,j0 , vi0,3 and vi0+1 in T or node vi0,3 
is isolated. Adding the other edge to T and simultaneously 
removing edge (vi0,j0 , vi0+1) will create a new spanning tree 
T ′ whose weight is at least one less than that of T.

The second case is that edge (vi0 , vi0,j0 ) is not contained 
in T. In this case, adding edge (vi0 , vi0,j0 ) and removing edge 
(vi0,j0 , vi0+1) will produce a new spanning tree T ′ whose 
weight is at least one less than that of T.

No matter which case it is, a new spanning tree T ′ whose 
weight is at least one less than that of T can be created by 
adding one edge and simultaneously removing another one 
edge. Since there is no solution in the population dominates 
T ′ or f (T) = f (T �) , it will be included in the population. The 
probability of choosing T to mutate is Ω( 1

n
) and the probabil-

ity of producing T ′ from T is Ω( 1

n2
) , which implies that T ′ 

can be included in the population in expected time O(n3) . In 
other words, the weight of T can be decreased by at least one 
in expected time O(n3) . Thus, a spanning tree with weight 0 
will be created in expected time O(n4) after a population con-
sisting of spanning trees has been constructed, as the weight 
of any spanning tree is no more than 2n, i.e., 0 ≤ w(T) ≤ 2n . 
The spanning tree with weight 0 is the Pareto optimal solu-
tion whose objective vector is (0, 2n), since there is only 
one spanning tree with weight 0 and it consists of all edges 
with weight 0.
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Assume that a Pareto optimal solution T with objective 
vector (i, 2n − i) (0 ≤ i < n) has been included in the popu-
lation, then T consists of i edges of cost vector (1, 1) and 
n − i edges of cost vector (0, 2), and all edges of cost vec-
tor (0,0). A Pareto optimal solution T ′ with objective vec-
tor (i + 1, 2n − i − 1) can be created from T by adding one 
edge (vi,2, vi+1) (i ∈ {1,… , n}) with cost vector (1, 1) and 
removing the edge (vi,3, vi+1) with cost vector (0, 2). The 
probability of choosing T from the population is Ω( 1

n
) and 

the probability of creating T ′ from T is Ω( 1

n2
) , so T ′ will be 

included in the population in expected time O(n3) after T 
has been included. Therefore, Pareto optimal solutions with 
objective vectors (1, 2n − 1) , … , (n, n) will be all included in 
the population in expected time O(n4) after the Pareto opti-
mal solution with objective vector (0, 2n) has been included.

Assume that a Pareto optimal solution T with objective 
vector (n + i, n − i) (0 ≤ i < n) has been included in the 
population, then T consists of n − i edges of cost vector (1, 1) 
and i edges of cost vector (2, 0), and all edges of cost vec-
tor (0,0). A Pareto optimal solution T ′ with objective vector 
(n + i + 1, n − i − 1) can be created from T by adding one edge 
(vi,1, vi+1) (i ∈ {1,… , n}) with cost vector (2, 0) and remov-
ing the edge (vi,2, vi+1) . Analogously, T ′ will be included in the 
population in expected time O(n3) after T has been included. 
Furthermore, Pareto optimal solutions with objective vectors 
(n + 1, n − 1) , … , (2n, 0) will be all included in the population 
in expected time O(n4) after the Pareto optimal solution with 
objective vector (n, n) has been included.

Altogether, all Pareto optimal solutions with objective 
vectors (0, 2n), (1, 2n − 1) , … , (n, n), … , (2n − 1, 1) , (2n, 0) 
will be included in the population by GSEMO in expected 
runtime O(n4) starting with any initial solution.   ◻

We now experimentally verify the theoretical results on 
instance G′ . Experimental computer is Intel(R) Core(TM) 

2.10-GHz with 2.0-GB RAM. Table 1 and Fig. 4 report the 
experimental results of 30 independent runs when n varies 
from 1 to 25, which show that by transforming the CMST 
problem of instance G′ to a BMST problem, GSEMO can 
efficiently find the optimal solution when n varies from 1 
to 25.

5  Conclusions and Discussions

Theoretical analysis of the performance of the EA on (NP-)
hard problems is nowadays a hot topic. Especially, the 
approximation performance analysis of the EA on NP-hard 
combinatorial optimization problems recently attracts much 
attention from researchers.

Following this line of research, we analyze the approxi-
mation performance of GSEMO on the CMST problem. By 
analyzing the relationship between the CMST problem and 
its transformed BMST problem, we reveal that GSEMO can 
find a (2,1)-approximation solution for this problem in a 
pseudopolynomial runtime.

On a constructed instance of the CMST problem, we 
show that GSEMO is efficient to find its optimal solution. 
This illustrates that the MOEA is capable of finding the opti-
mal solutions for some instances of the CMST problem.

The results of approximation performance analysis and 
the runtime analysis on the constructed instance show that 
GSEMO is suitable for the CMST problem.

In the future, we will investigate the performance of the 
MOEA on those CMST problems with two or more con-
straints, including the approximation performance.
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