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Abstract
For eye state recognition (closed or open), a mechanism based on deep convolutional neural network (DCNN) using the 
Zhejiang University (ZJU) and Closed Eyes in the Wild (CEW) dataset, has been proposed in this paper. In instances where 
blinking is consequential, eye state recognition plays a critical part for the development of human–machine interaction 
(HMI) solutions. To accomplish this objective, pre-trained CNN architectures on ImageNet were first trained on the both 
dataset, which included both open and closed-eye states, and then they were tested, and their performance was quantified. The 
AlexNet design has proven to be more successful owing to these assessments. The ZJU and CEW datasets were leveraged to 
train the DCNN architecture, which was constructed employing AlexNet modifications for performance enhancement. On 
the both datasets, the suggested DCNN architecture was tested for performance. The achieved DCNN design was found to 
have 97.32% accuracy, 95.37% sensitivity, 97.97% specificity, 93.99% precision, 94.67% F1 score, and 99.37% AUC values 
in the ZJU dataset, while it was found to have 97.93% accuracy, 98.74% sensitivity, 97.15% specificity, 97.11% precision, 
97.92% F1 score, and 99.69% AUC values in the CEW dataset. Accordingly, when compared to CNN architectures, it scored 
the maximum performance. At the same time, the DCNN architecture proposed on the ZJU and CEW datasets has been 
confirmed to be an acceptable and productive solution for eye state recognition depending on the outcomes compared to the 
studies in the literature. This method may contribute to the development of HMI systems by adding to the literature on eye 
state recognition.
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Abbreviations
ZJU  Zhejiang University
DCNN  Deep convolution neural network
CEW  Closed eyes in the wild
HMI  Human–machine interaction
CVS  Computer vision syndromes
ECG  Electrocardiogram
EEG  Electroencephalogram
EOG  Electrooculogram
SVM  Support vector machine
HOG  Histogram oriented gradient
ANN  Artificial neural network

CNN  Convolutional neural network
LKT  Lucas–Kanade–Tomasi
LTP  Local ternary patterns
MultiHPOG  Multi-scale histograms of principal ori-

ented gradients
LBP  Local binary pattern
Multi-TPLBP  Multi-three-patch local binary pattern 

histogram
WBCNNTL  Weight binarization convolution neural 

network and transfer learning
DCNNE  Dual convolution neural network 

ensemble
DFNN  Deep-fusion neural network
ReLU  Rectified linear unit
FC  Fully connected layers
TP  True positive
TN  True negative
FP  False positive
FN  False negative
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ROC  Receiver-operating characteristic
AUC   Area under curve

1 Introduction

One of the facial traits used to help decide whether an eye 
is open or closed is the state of the eye. Furthermore, it is 
a fundamental criterion that accurately depicts a person’s 
physiological state. Even though eye state can be described 
in a variety of ways, it can generally be divided into two 
categories: open and closed. It has great potential in many 
fields such as drowsiness recognition [1], facial expression 
recognition [2, 3], liveness detection [4], and eye fatigue 
estimation [5]. In addition, eye state is a constructive instru-
ment for establishing HMIs and is commonly utilized in 
computer vision systems [6]. Many people are susceptible 
to ocular symptoms such as dry eye triggered by computer 
use as a byproduct of recent technological advancements and 
the fact that computers have become a part of our daily life 
[7]. Computer vision syndromes (CVS) are a group of symp-
toms produced by people’s inability to adjust their eye state 
(e.g., blinking) while also staring at digital screens for long 
periods of time. Eye state recognition plays a crucial role in 
recognizing a person’s blinking state in front of the screen 
for this purpose. On a digital screen, having a minimal 
number of blinks has both beneficial and bad implications. 
While the advantageous consequences of blinking correlate 
to attention diversion and perception on screens, the detri-
mental repercussions are associated with human health and 
are concerning since they amount to an increase in the num-
ber of people affected by CVS [8]. Eye state recognition has 
grown extremely influential in the field of computer vision. 
It makes a significant contribution to the advancement of 
human–computer interaction [9] technology by allowing for 
accurate eye state and blink recognition. In addition, there 
has been a surge in interest in eye state studies since the 
recognition of eye state boosts awareness in many domains.

The state of one’s eyes can also be utilized to determine 
driver fatigue. Driver fatigue is detected using a variety of 
approaches, including the monitoring of controlled equip-
ment, physiological indicators, and actions. Because of the 
high reliance on driver skills and road quality, monitoring 
programmable equipment is a non-invasive method with 
limited reliability. Screening controllable equipment neces-
sitates the driver attaching signal measuring devices to his 
body, making it almost impossible to observe these physi-
ological indications. Eye characteristics such as the degree 
of eye opening and the number of blinks are used in behav-
ioral and computer vision measures to diagnose fatigue [10].

Among the most frequent causes of catastrophic car 
accidents is the driver drowsiness (insomnia, fatigue, inat-
tention, and so on). Detecting driver drowsiness could be 

a major component of driverless vehicles in the future. 
Drowsiness in drivers may be identified using a number of 
methods, and might be divided into three categories: physi-
ological, vehicle-based, and behavioral [10]. Physiological 
parameters such as the electrocardiogram (ECG), electroen-
cephalogram (EEG), and electrooculogram (EOG) obtained 
from sensitive electrodes or electronic devices put on the 
driver are instances of physiological measurements. Physi-
ological measurements, on the other hand, are not gener-
ally employed because they impede the driver. Monitor-
ing the vehicle’s operated equipment (steering wheel, lane 
monitoring, and brake regulations) entails a high reliance 
on driver abilities and road conditions. This is another non-
invasive drowsiness detection method with a low level of 
accuracy. Since behavioral perspectives emphasize on the 
person rather than the resource, they are more trustworthy 
than physiological and tool-based methods. They rely on 
computer vision systems that assess the driver’s movement, 
facial expression, eye state, and blink status using video-
recorded visual cues to identify fatigue. Behavioral tech-
niques have recently gained popularity due to their lack of 
invasiveness and concentration on the driver [11].

Thanks to recent breakthroughs in fields including face 
and eye recognition and tracking [12, 13], machine learning 
[14, 15], feature extraction [16], and deep learning [17], sub-
stantial progress has been achieved in eye state recognition. 
Notwithstanding, it is still evolving on a daily basis because 
eye state recognition encompasses so many characteris-
tics. Early literature on eye state recognition relied on three 
scenarios: feature-based [18, 19], motion-based [20], and 
appearance-based [21]. Geometric features and gray-level 
patterns are used in feature-based methodologies. The prop-
erties of eyelid movement are the focus of movement-based 
approaches. Tissue aspects of the eye area are addressed 
in appearance-based techniques. The results of experiments 
suggest that view-based strategies outperform alternative 
methods [22]. Nonetheless, environmental considerations 
have a vital effect in accurately defining the eye condition. 
Many challenges and external elements, such as lighting, 
light angle, head posture, and image quality, may generate a 
considerable impact in the appearance and shape of the eyes, 
making it difficult to accurately quantify the eye state [12]. 
Since the real world is noisy and new environments are sur-
prisingly uncontrollable. Machine learning algorithms such 
as AdaBoost [13] and support vector machine (SVM) [15] 
have been proposed in previous publications on eye state rec-
ognition to enhance the efficiency of recognition systems in 
unpredictable (uncertain) contexts. However, in addition to 
these machine learning methods, manual feature extraction 
methods must be used to retrieve the features. Furthermore, 
because hand-crafted feature extraction approaches require 
a lot of computing, the produced systems are not only slow, 
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but they also necessitate a lot of expertise and experience 
[22].

Artificial intelligence techniques, particularly the deep 
learning method, have shown superior performance in solv-
ing problems in many areas as computing, storage, and 
human–computer interaction technologies have acceler-
ated in the past few years, and it has been demonstrated that 
the deep learning method has learning algorithms that can 
effectively distinguish specific (unique) scenarios [17]. Deep 
learning is a machine learning technology that incorporates 
neural networks with multiple layers in their structure to 
approximate the properties of the human brain's nervous sys-
tem. After extracting the representative characteristics of the 
raw data, this method integrates all low-level features and 
may automatically assemble a high abstract representation. 
In consequence, in light of current breakthroughs, there is 
no need to manually extract representative characteristics 
from raw data. But even so, because eye state recognition 
is used in a wide range of contexts and hardware, including 
computers for eyestrain detection, vehicles for driver drowsi-
ness detection, and devices encompassing human–computer 
interaction for eye blink or facial expression detection, sev-
eral strategies to specifying eye state recognition have been 
proposed in the last decade.

Dong et al. [11] adopted Random Forest, Random Ferns, 
and SVM approaches to categorize the feature sets gener-
ated from various feature extraction methods for eye state 
definition. They claimed that the histogram-oriented gradi-
ent (HOG) was less influenced by the noise effect for clas-
sification purposes on grounds of these classifications and 
that their approach had a success rate of up to 93% [11]. 
To detect blinking in low-resolution eye images, Pauly and 
Sankar [18] applied multiple features (mean intensity, Fisher 
faces, and HOG feature) and classifiers such as SVM and 
artificial neural network (ANN). The features acquired by 
the HOG outperformed all other approaches in the study 
when utilized with the SVM classifier, according to the 
comparative results of the five distinct methods used in the 
study [18]. Pauly and Sankar [23] proposed a method for 
eye tracking and blink detection in video frames obtained 
from webcams. This method includes a haar-cascade clas-
sifier for eye tracking and a combination of SVM classi-
fier and HOG features for blink detection. The investigators 
evaluated the proposed blink detection algorithms on images 
from two available to public datasets (ZJU and CEW) and 
found that they were 92.5% accurate on average. For blink 
detection or eye tracking on smartphone platforms, Han et al. 
[24] suggested a hybrid strategy integrating two machine 
learning algorithms (SVM and CNN). They also employed 
multi-class SVM as an alternative to the proposed hybrid 
technique and evaluated it by comparing it to the hybrid 
method. They discovered that the LeNet-5 CNN model out-
performed the multi-class SVM approach and other methods 

in a comparison of the presented methods for characterizing 
blinks. They also made a point of saying that the linear SVM 
classifier and the LeNet-5 CNN model with HOG features 
may be utilized to capture blinks in mobile environments 
efficiently and reliably [24]. Lee et al. [19] used both the 
AdaBoost face detector and the Lucas–Kanade–Tomasi 
(LKT) method to detect the face and eye regions. They 
introduced a feature-based strategy employing the width and 
height properties of the eye regions to ascertain whether the 
eye is open or closed in the SVM classifier after calculat-
ing the regions with these methods [19]. For the definition 
of eye state recognition, Zhao et al. [22] presented a deep 
integrated neural network based on classification accord-
ing to actionable information in the eye region. They have 
attempted several configurations by adjusting the training 
types in this integrated neural network and alleged that it 
makes the highest performance, allowing them to boost the 
ability to categorize in small datasets combining the trans-
fer learning and the data augmentation. Song et al. [12] 
proposed a feature-based method for detecting eye close-
ness and extracted the features of eye patches using HOG, 
Local Ternary Patterns (LTP) and Gabor wavelets methods. 
In order to boost resilience against image disturbances and 
scale variations, they suggested the novel feature descriptive 
multi-scale histograms of principal oriented gradients (Mul-
tiHPOG) approach. The SVM classifier was used to clas-
sify diverse feature fusion schemes in this investigation, and 
the feature-based SVM classifier with the combination of 
MultiHOPG, LTP, and Gabor features produced the desired 
results. To detect driver drowsiness, Wu et al. [1] employed 
the local binary pattern (LBP) approach and suggested the 
feature-based SVM classifier method. They concluded that 
this method might productively distinguish eye state recog-
nition and driver drowsiness after analyzing the testing find-
ings. Liu et al. [25] used appearance-based detection (LBP, 
Gabor wavelets and HOG) methods for eye closeness detec-
tion to extract major components of the eye. Nearest Neigh-
bor, SVM, and Adaboost algorithms were used to designate 
the constituents obtained by these approaches. The feature 
set that incorporates the usage of LBP, HOG, and Gabor 
wavelets combined was identified by SVM technique as 
the most effective and satisfactory performance among the 
numerous feature combination schemes given in the study. 
Eddine et al. [21] used a plethora of feature sets for feature 
extraction from the eye region in eye localization and state 
recognition, with the multi-three-patch local binary pattern 
histogram (Multi-TPLBP) technique of feature extraction 
with the radial basis function-based SVM classifier attain-
ing the optimal accuracy. Huang et al. [10] presented a deep 
learning-based convolutional neural network-based drowsi-
ness detection method. The Weight Binarization Convolu-
tion Neural Network and Transfer Learning (WBCNNTL) 
methods were proposed by Liu et  al. [26] for eye state 
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definition, with the intention of helping to improve both the 
learning time and the accuracy of the system. Wang et al. 
[27] tried to determine the most robust classifier using differ-
ent classifiers (Ridge regression, SVM, AdaBoost, Stacked 
Autoencoders, and CNN) to detect the open and closed-eye 
state. They applied feature descriptors (projections, LBP, 
HOG) for feature extraction for closed-eye detection. As a 
result, they performed these operations on the ZJU dataset 
and stated that among the classification models the auto-
matic encoder model based on the HOG feature achieved the 
best performance. Saurav et al. [28] proposed a vision-based 
system for real-time eye state recognition on an embedded 
platform. In this proposed system, to overcome the overfit-
ting problem created by deep neural networks in small data-
sets, a dual convolution neural network ensemble (DCNNE) 
model is developed by combining two lightweight CNNs 
based on transfer learning-based fine-tuning. This method 
was validated on three eye condition datasets (ZJU, CEW, 
and MRL) and experimental results indicated that the pro-
posed DCNNE method showed remarkable success in CEW 
and ZJU dataset compared to the state-of-the-art methods in 
the literature. Liang et al. [29] used the deep-fusion neural 
network (DFNN) model, which is formed by combining the 
deep neural network, which extracts the vector features of 
the eye, and the deep convolutional neural network, which 
extracts the tissue features, to increase the detection effi-
ciency and accuracy in the detection of eye fatigue in con-
trollers. The proposed method was evaluated in ZJU, CEW 
and ATCE eye state datasets, and the comparative results 
showed that DFNN outperformed the early technologies 
used in eye state recognition.

The evolution of deep learning methods, as well as con-
temporary achievements in artificial intelligence, has ena-
bled the development of new methods and ideas in image 
categorization. Because of the superior performance of CNN 
in image classification, one of the sub-branches of machine 
learning has displayed a considerable effect in many image-
based applications [17]. As a consequence, in research by 
Liu et al. [26], Huang et al. [10], Saurav et al. [28] and Liang 
et al. [29], deep learning-based CNN approaches, have got-
ten started to be preferred in eye state recognition. Unlike 
other machine learning approaches, CNN’s multi-layered 
structure does not demand meticulous engineering or knowl-
edge because it yields representational learning from its raw 
data. This is because CNNs have outperformed traditional 
machine methods in studies such as estimating the activity of 
potential drug molecules and predicting the effects of DNA 
mutations in raw data comprising high-dimensional capacity 
image and feature vectors, notably in image recognition and 
speech recognition. They have also outperformed traditional 
machine methods in research findings, such as predicting the 
activity of potential drug molecules and inferring the effects 
of mutations in DNA [17]. It receives the raw data given to 

its input as input and autonomously uncovers representative 
features required for classification by filtering in a similar 
way to pixel processing using the representation learning 
structure it contains in the CNN structure. The features 
extracted from the raw data are mirrored in the network’s 
output, culminating in a representation of the intended clas-
sifications. The representative features of CNN can be more 
thorough than those produced manually by conventional 
machine learning approaches due to the automatic gather-
ing of each piece of raw data. On account of that, rather than 
the hand-crafted feature extraction approaches performed in 
prior studies, the application of deep learning-based, par-
ticularly transfer learning-based methods in eye state detec-
tion, has emerged as a promising capability in terms of both 
speed and utility [10, 26]. Transfer learning is an approach to 
dealing with modest changes between datasets by applying 
the knowledge learnt by a neural network from one task to 
another independent learning assignment [30]. In countless 
fields, such as medical image analysis, transfer learning is 
favored when there is inadequate data in the datasets during 
the learning process [30, 31]. ImageNet [32], a large image 
database dedicated for use in visual object recognition soft-
ware research, hosted a competition in 2012, and since then, 
the outstanding success of CNN methods has substantially 
extended its application in the field of computer vision. CNN 
models have been developed on ImageNet with step-by-step 
advances in recent decades, and also many pre-trained mod-
els have been constructed, including AlexNet [33], Goog-
leNet [34] and ResNet [35].

The appearance-based technique was employed to define 
the ocular state in this investigation. Deep learning algo-
rithms automatically extract features from images to estab-
lish and maintain representative features for a task, can dis-
close intricate details that are imperceptible to the naked eye, 
and can learn eye features according to different settings. As 
a result, deep learning has shown to be a viable method for 
recognizing eye states. Furthermore, unlike other machine 
learning methods, it delivers the system a favorable position 
in terms of speed and ease of use. Due to a paucity of data 
to reflect the status of the eyes under diverse environmental 
situations, CNN approaches based on the transfer learning 
have been devised.

In CEW [12] and ZJU [36] datasets, which are widely 
used in the literature for eye state recognition, classifica-
tions of previously widely used and pre-trained CNN models 
on the eye state recognition task were generated through 
transfer learning, and their results obtained were compared. 
On the both datasets, the most robust and high-performance 
pre-trained CNN model was handpicked in virtue of these 
comparisons. Modifying AlexNet, one of these pre-trained 
CNN networks, revealed the effectiveness and usefulness of 
the suggested new deep learning-based CNN model named 
DCNN on eye state recognition.
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The main objectives of this work are as follows:

(1) Performing fine-tuning and evaluation of pre-trained 
CNN architectures on both eye state datasets.

(2) Building a new CNN architecture from AlexNet archi-
tecture, which is easy to use on many hardware and has 
a smaller depth compared to other pre-trained CNN 
architectures for eye state detection applications.

(3) Proposing a DCNN architecture based on AlexNet to 
increase eye state recognition accuracy.

(4) Evaluation of the proposed DCNN in CEW and ZJU 
eye state datasets, which are widely used in the litera-
ture, and comparison with state-of-art methods.

(5) Evaluation of the proposed method in a real-world sce-
nario to demonstrate the reliability and robustness of 
eye state recognition in human–machine interaction.

The hereunder is how the rest of the article is organized. 
The flowchart, pre-trained CNN models, the suggested new 
CNN model, and the public blink dataset are all introduced 
in Sect. 2. The experiments used to validate the suggested 
method’s performance are presented in Sect. 3. Section 4 
is the discussion section that includes the comparison of 
the performance of the proposed method from the datasets 
with the state-of-art methods. The results and future research 
directions are covered in Sect. 5.

2  Materials and Methods

Considering a eye state dataset, a method based on DCNN 
was envisioned for automatic recognition of eye state (open 
or closed) in this research. The proposed approach is made 
up of four steps: (1) resizing the training and test images 
in the eye state dataset to make them acceptable for CNN 
model input, (2) training the pre-trained CNN models on the 
eye state dataset by adjusting hyperparameters, (3) meas-
uring the performance of CNN models by evaluating the 

section reserved for testing on the eye state dataset on the 
created CNN models, and (4) then comparing the CNN mod-
els generated on eye state recognition to decide the most 
successful model. Figure 1 depicts the flow chart for the 
proposed scheme.

The images describing the eye state in this suggested 
method were retrieved from a eye state dataset. The full eye 
state dataset was first resized to make it appropriate for the 
input of pre-trained CNN architectures during the image 
preprocessing phase. Following that, the frequently used 
pre-trained CNN models (GoogleNet, ResNet18, Mobile-
Netv2, ShuffleNet, AlexNet, and DarkNet19) were trained 
on the eye state dataset at varied intervals to seek the most 
successful CNN model in eye state recognition. All these 
trained CNN models were evaluated on test data separated 
from the dataset, and their conclusions were calculated and 
compared. In the last round, AlexNet, one of the pre-trained 
CNN models was modified, and a new AlexNet-based CNN 
model was constructed. This CNN model was trained on the 
both eye state datasets before being evaluated and compared 
to earlier eye state recognition research.

2.1  Convolutional Neural Network

Artificial intelligence empowers machines to learn from 
their experiences, adapt to new inputs, and execute human-
like activities with minimum human interaction. Artificial 
intelligence, in reality, is a branch of computer science that 
seeks to promote computers smarter. Artificial intelligence 
was first proposed in the 1950s, but due to the lack of pro-
cessing power and machine storage at the time, it did not gar-
ner enough attention. However, due to the massive amount 
of data and breakthroughs in storage techniques, computer 
technology has recently made a comeback in the modern 
world [37]. Artificial intelligence involves sub-branches 
such as machine learning and deep learning. While machine 
learning functions in a single layer, deep learning operates 
in diverse layers at the same time. In order to construct 

Fig. 1  Flow chart of the pro-
posed method
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machine learning, the feature vector must also be retrieved. 
Feature vector extraction necessitates the use of experts in 
the domain. As a result, machine learning approaches cannot 
process raw data without the help of experts and preprocess-
ing. By overcoming this challenge in machine learning, deep 
learning has made major progress. Deep learning was pri-
marily employed in image analysis, sound analysis, robotics, 
autonomous vehicles, gene analysis, cancer diagnoses, and 
virtual reality after its inception [38]. Of the deep learning 
methods, CNN is the most well known and commonly uti-
lized deep learning algorithm [33]. The fundamental advan-
tage of CNN over machine learning methodologies is that it 
detects meaningful features from input without the need for 
human intervention [39]. CNNs have been used extensively 
and with excellent results in a variety of domains, including 
computer vision, speech processing, and face recognition, 
all of which entail exceedingly complex categorization prob-
lems [40]. You may need a lot of training data and a lot of 
skill to create a CNN from the ground up. For this reason, 
several researchers prefer to fine-tune CNN designs that have 
already been trained.

Numerous pre-trained CNN architectures have been 
designed and built on the ImageNet dataset by differ-
ent researchers for multiple purposes: AlexNet, VGG16, 
GoogleNet, and so on [41]. Pre-trained CNN architectures 
respond differently depending on the dataset used for train-
ing and the creator’s intended usage. The ImageNet dataset 
is commonly used to produce an architecture from scratch to 
tackle a problem since it is large enough to generate a good, 
generalized model. The parameters learned from the Ima-
geNet dataset are transferred to the new architecture being 
built using the transfer learning method. Transfer learning 
optimizes the network’s parameter training and tends to help 
to eliminate different sampling shortcomings in the dataset. 
In this study, GoogleNet, ResNet18, MobileNetv2, Shuf-
fleNet, AlexNet, and DarkNet19 architectures pre-trained 
from the ImageNet dataset were fine-tuned and utilized on 
the eye state dataset according to whether the eye is open 
or closed, and the guideline used to train these architectures 
could be seen in Fig. 2.

In eye state recognition, CNN models that have been 
pre-trained to execute a specific task may be converted to 
accomplish a new task using the transfer learning method 
(for example, as shown in Fig. 2). It is not always practicable 
to develop a CNN model from scratch because acquiring a 
large enough dataset can be troublesome. It is customary to 
employ pre-trained CNN models for specific applications 
under these circumstances (for example, the ImageNet data-
set with 1.2 million images and 1000 categories) [32]. To 
begin, as illustrated in Fig. 2, the weights from the previ-
ously trained CNN architecture on the ImageNet dataset 
were transported to the newly built architecture via transfer 

learning, and the design was then fine-tuned to complement 
the eye state dataset.

One of the pre-trained CNN models utilized in the detec-
tion of eye state recognition, AlexNet was submitted by 
Krizhevsky et al. for the image classification task in the 
ImageNet Large-Scale Image Recognition Competition 
(ILSVRC-2012) [33]. This network has demonstrated that 
learning-based features may outperform hand-crafted fea-
tures and disrupt previous computer vision trends. In terms 
of layers executed, the AlexNet structure encompasses a 
total of eight learnable layers, including five convolutional 
layers and three fully connected layers [41].

ResNet achieved first place in the classification assign-
ment at the ILSVRC 2015 competition, which took place 
after AlexNet’s triumph, with a 3.57% error rate on the Ima-
geNet test set. Resnet is more comprehensive than AlexNet 
and VGG networks. Although ResNet possesses the deepest 
layers (152), it is less sophisticated than other pre-trained 
networks [35]. The ResNet architecture is available in 18, 
34, 50, 101, and 152 layer versions. ResNet’s 18-layer model 
is made use of to mitigate overfitting when the training data-
set is not particularly large.

GoogleNet is a classic deep learning model offered by 
Szegedy et al. [34]. GoogleNet is a convolutional neural 
network with a depth of 22 layers. Unlike deeper networks, 
GoogleNet extracts more features and improves training 
results to achieve better training performance [34].

Sandler et al. [42] established MobileNetv2, a CNN archi-
tecture that strives to function well on mobile devices [42]. 
MobileNetv2 is founded on an inverted residual structure 
with residual connections between the bottleneck layers, 
unlike conventional CNN systems. In addition, as a non-
linear source, this structure seems to have an intermediary 
expansion layer that features somewhat deep curves to filter 
the derived features. There is an initial fully convolutional 
layer with 32 filters in the MobileNetv2 architecture, fol-
lowed by 19 residual bottleneck layers [42].

Zhang et al. [43] developed ShuffleNet, a computationally 
cost-effective convolutional neural network designed exclu-
sively for mobile devices. This novel architecture needs to 
employ two new processes as to substantially help lower 
computational cost while retaining accuracy: pointwise 
group convolution and channel shuffle [43].

DarkNet is a convolutional neural network that was cre-
ated with the goal of being minimal and convenient. Diverse 
philosophies, including Network in Network, Inception, 
and Batch Normalization, are implemented to form this 
network [44]. In its structure, DarkNet19 emphasizes con-
volutional layers over fully connected layers. As a result, 
DarkNet19’s structure comprises of 19 convolutional and 
five max pooling layers [45]. To cut down on the number of 
parameters, only (3 × 3) and (1 × 1) convolutional kernels are 
applied during training. Table 1 shows a comparison of the 
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pre-trained CNN architectures employed in this work based 
on their characteristics.

According to Table 1, AlexNet seems to have the small-
est depth, MobileNetv2 provides the smallest footprint on 
disk and main memory for the size of the network, and the 

AlexNet architecture offers the highest feature extraction 
(i.e., parameter) capability. If the network is saved to disk 
media, AlexNet uses a lot of space because it extracts rela-
tively significantly more parameters. The image input size 
for GoogleNet, ResNet18, MobileNetv2, and ShuffleNet 
architectures is 224 × 224 pixels, while AlexNet performs 
slightly larger and DarkNet19 requires the largest image 
input size.

CNNs are optimized to continue operating with images, 
which distinguishes them from other methodologies. As 
a result, a 2D or 3D image is automatically considered to 
deliver the input of CNNs. Another distinction of CNN is 
that convolutional procedures are substantially deployed 
in its structure, as evidenced by the “convolutional” acro-
nym of its name. The convolution layer, the pooling layer, 
and the fully connected layer are the three layers that make 
up a basic CNN structure. Subsampling layers such as 

Fig. 2  Transfer learning framework for eye state recognition [26]

Table 1  Comparison of the characteristics of pre-trained networks

Network Depth Size (MB) Parameters 
(millions)

Image input size

GoogleNet 22 27 7.0 224 × 224
ResNet18 18 44 11.7 224 × 224
MobileNetv2 53 13 3.5 224 × 224
ShuffleNet 50 5.4 1.4 224 × 224
AlexNet 8 227 61 227 × 227
DarkNet19 19 78 20.8 256 × 256
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normalization, activation, and pooling are utilized after the 
convolution layer.

The convolution layer is comprised of square number 
grids (kernels). To build and maintain the feature map, 
these cores conduct convolution with the layer’s input. In 
other words, when extracting the feature map, the kernel 
runs the layer’s input from left to right and bottom to top. 
The mathematical expression of the convolution operation, 
the convolution of a continuous function x and w (x ∗ w) (a) 
is defined in the following equation in all dimensions:

Here, a is  Rn for any n ≥ 1. In addition, integral is replaced 
by the higher dimensional variant. However, the parameter t 
is assumed to be discrete, in practice, so discrete convolution 
is defined as seen in the following equation:

where x is the input, w is the kernel, and the output is the 
feature map when a goes overall values in the input space. 
After the convolution layer, the pooling layer is essentially 
exploited. This layer’s main objective is to try to reduce the 
image’s size by combining particular areas of the image into 
a single value, and it also highlights the image’s proper-
ties. Maximum and average pooling are two common pool-
ing types in CNNs. Maximum pooling reports the maxi-
mum value, while average pooling estimates the average of 
nearby pixels. The activation function is another technique 
performed after the convolution layer. This function is used 
to incorporate non-linearity into deep learning models by 
teaching the non-linear prediction limits. The rectified linear 
unit (ReLU) is the most often utilized activation function 
in CNNs. The normalizing layer is one of the layers used 
after the convolution layer in CNN. This layer normalizes 
activations and gradients as they propagate through a net-
work. Subsampling layers typically involve the ReLU, pool-
ing, and normalization layers. One or more fully connected 
layers accompany the convolution and subsampling layers. 
Feature maps can now be entered into the ReLU or Softmax 

(1)(x ∗ w)(a) = ∫ x(t)w(a − t)da

(2)(x ∗ w)(a) =
∑

a

x(t)w(t − a)

functions thanks to the completely connected layer. The soft-
max function then normalizes the fully connected layer’s 
output. The categorization layer is the next and final layer. 
This layer allocates the class using the softmax function’s 
outcome and also leverages the loss function to quantify 
the loss.

2.2  The Proposed AlexNet‑Based DCNN

AlexNet is made up of five convolutional layers and three 
fully connected layers (FC6:4096, FC7:4096 and FC8:1000 
neurons). AlexNet architecture was elected above other net-
works because it contains the smallest depth in the creation 
of the proposed new architecture. To do this, all layers were 
shifted to the newly constructed architecture using the trans-
fer learning approach, with the exception of the FC8 fully 
connected layer, which AlexNet learnt from the ImageNet 
dataset. Then, according to the eye state dataset, a new ran-
domly weighted fully connected layer with 1000 neurons 
was added to this design, followed by a fine-tuned fully con-
nected layer to the two outputs (open or closed-eye state). 
AlexNet-based DCNN architecture was the term given to 
the newly constructed architecture. Figure 3 shows a repre-
sentative implementation of the DCNN architecture. In the 
eye state recognition method, the proposed architecture was 
suggested as an alternative to pre-trained designs, and its 
performance was tested using two eye state datasets.

2.3  Image Processing

The image processing part shown in Fig. 1 allows the images 
in the dataset to be made in accordance with the entrance 
to the training of pre-trained CNN architectures. Resiz-
ing was applied according to the input layer size of these 
architectures. Considering the input dimensions of the pre-
trained CNN architectures (Table 1), the training and test 
images in the eye state dataset were resized for GoogleNet 
[34], ResNet18 [35], MobileNetv2 [42] and ShuffleNet [43] 
(224 × 224), AlexNet [33] (227 × 227) and DarkNet19 [45] 
(256 × 256). The prepared eye state dataset was ready for the 

Fig. 3  DCNN architecture
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training and testing phase as a result of this process. This 
process was used in two datasets according to the input of 
each trained CNN model.

2.4  Dataset

Pan et al. obtained the images from the ZJU dataset utilized 
in this investigation and they were under normal lighting 
and resolution conditions so that they were equivalent to 
real-world situations [36]. This dataset was used to detect 
eye state or differentiate between openness and closure of the 
eye, or to recognize blinking. The ZJU dataset was separated 

into two groups (training and testing) based on two catego-
ries (open and closed-eye images). The open and closed-
eye images in this dataset are low-resolution, 24 × 24 pixels 
in size, and are also publicly available. Figure 4a exhibits 
examples of ocular images from the ZJU blink database, and 
Table 2 lists the database’s specifications.

Another dataset used in this study for the performance 
evaluation of the proposed method in eye condition detec-
tion is the Closed Eyes in the Wild (CEW) [12] dataset. 
The CEW dataset has been collected in difficult variations 
caused by individual differences and different environmental 
changes such as light, blur and dark, known in real-world 

Fig. 4  Open and closed sample eye images in datasets: a ZJU and b CEW
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application scenarios for eye state detection. This dataset 
contains a set of human eye state images with a total of 
2423 subjects selected from the Labeled Faces in the Wild 
database [46] of 1192 subjects with both eyes closed directly 
from the Internet and 1231 subjects with open eyes. Face 
detector and eye localization algorithm were applied to the 
images collected from the subjects, and finally, two 24 × 24 
images of the eye region were obtained from each subject. 
Totally, the CEW dataset contains 2384 closed and 2462 
open eye images. Details of this dataset are given in Table 2 
and sample eye images are given in Fig. 4b.

One reason for choosing the ZJU dataset for the method 
proposed in this study is that it contains a good mix of low-
resolution eye images. The CEW dataset, on the other hand, 
was chosen because it contains higher quality eye images 
obtained from various real-world environments. Therefore, 
the success of the proposed method on the task of eye state 
recognition was clearly demonstrated with this study, in 
which the training and verification of the method was car-
ried out on two datasets with different characteristics. The 
dataset represented in the flowchart in Fig. 1 corresponds to 
the ZJU and CEW datasets used in this investigation.

2.5  Eye state Recognition Application

The issue of eye recognition detection, which is covered in 
this study, is likely to face real-world scenarios of various 
difficulties. For this reason, in addition to testing the pro-
posed method on ZJU and CEW datasets, it has also been 
tested in a real-world scenario. For testing in real-world 

scenario, a video of a person in front of a digital screen was 
taken. In order for the proposed method to classify the eye 
state on the video, a flowchart given in Fig. 5 was created.

As seen in this flow chart, first, the face and eye regions 
must be determined. In this study, Viola-Jones detector [47] 
was used as the detection algorithm for real-time detection 
of face and eye regions, due to its high detection rate and 
real-time operation. This detector has been used in two dif-
ferent ways for detecting both face and eye regions. First, 
the image is taken via the web camera and then this image 
is fed to the face detector. The face detector detects the cor-
responding face area and provides it as an output. In the next 
step, the output is given to the eye detector. By way of the 
eye detector, two eye regions, right and left, are extracted 
from face region and then, the extracted eye regions are 
given as input to the DCNN architecture for eye state detec-
tion. The two eye regions are classified separately in the 
DCNN architecture. The two outputs obtained as a result 
of the classification are reported for evaluation. All these 
processes are continued until the images extracted from the 
video are finished.

3  Experiments and Results

On the ZJU and CEW eye state datasets, a strategy based on 
DCNN was presented for eye state recognition in this study 
(open or closed eye). The success of the proposed DCNN 
was first evaluated in the ZJU dataset, and then it was tested 
in another eye state recognition dataset, the CEW dataset. 
In the proposed scheme, first, pre-trained CNN architectures 
using the ImageNet dataset were exploited in the first stage 
to recognize eye states using the transfer learning method. 
The output of these architectures was scaled down to fit 
the ZJU dataset’s number of classes, making it appropri-
ate for training. The dimensions of the images used in the 
study were adjusted. The pre-trained CNN architectures 
were then trained and tested in a range of circumstances, 
and their results were measured. As a result, comparisons 

Table 2  Details of the ZJU and CEW datasets

ZJU dataset CEW dataset

Class Training Test Image

Number of open eye images 5770 1230 2462
Number of close eye images 1574 410 2384
Total 7348 1640 4846

Fig. 5  Flowchart of eye state recognition application in real-world scenario
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of pre-trained CNN and DCNN architectures on the ZJU 
dataset were carried out and the most successful and effec-
tive CNN model was determined in this study. AlexNet and 
DCNN, which achieved significant success in the ZJU data-
set, were also retrained and evaluated in the CEW dataset. 
In addition, a video was taken from a real-world scenario to 
demonstrate the effectiveness of the proposed DCNN. On 
this video, the eye area of the person was extracted by the 
detection algorithm and the obtained right and left eye areas 
were classified in DCNN. The validation in this video was 
performed separately for DCNN trained on two datasets and 
the most reliable eye state recognition method was revealed 
by comparing the obtained findings.

Pre-trained CNN and DCNN architectures used in the 
proposed system flow were implemented on a computer with 
Windows 10 operating system and 16 GB RAM, Nvidia 
GTX 1650Ti and Intel Core i7 & 2.6 GHz in MATLAB 
2020a environment. All used architectures were trained on 
the GPU (graphic processing unit) and their performances 
were evaluated.

3.1  Comparison of Traditional Pre‑trained CNN 
Architectures on ZJU Dataset

In the MATLAB environment, the weights of the Goog-
leNet, ResNet18, MobileNetv2, ShuffleNet, AlexNet, and 
DarkNet19 architectures learnt on the ImageNet dataset 
were registered. As a result, the weights of these architec-
tures for eye state recognition were fine-tuned through the 
ZJU dataset and then imported using the transfer learning 
method (as seen in Fig. 2). After the weights of the pre-
trained CNN architectures were transferred by transfer learn-
ing, the dimensions of the eye images in the ZJU dataset 
were resized for GoogleNet, ResNet18, MobileNetv2 and 
ShuffleNet (224 × 224), AlexNet (227 × 227) and DarkNet19 
(256 × 256) and were made suitable for the input layer of the 
architectures.

One of the most crucial aspects of training CNNs is the 
hyper-parameter optimization. The same hyperparameters 
were utilized for all the designs in this research after transfer 
learning was applied to GoogleNet, ResNet18, MobileNetv2, 
ShuffleNet, AlexNet, and DarkNet19, and the training was 
started. Details of the hyperparameters picked for these 
architectures are given in Table 3.

The weights of GoogleNet, ResNet18, MobileNetv2, 
ShuffleNet, AlexNet and DarkNet19 architectures transferred 
by the transfer learning were updated with the backpropa-
gation algorithm to the new weight and bias values during 
training in the ZJU dataset. Later, the Softmax function was 
deployed to apply the fully connected layer’s input data to 
the network output. The Softmax function made the input 
data normalized so that the sum of the values equaled 1. 
The weights of the network were also modified during the 

training of pre-trained CNN architectures, and the cross-
entropy loss function was utilized to endeavor to bring the 
margin of error closer to 0. The loss function ensures that the 
network’s output is as close to the desired output as possi-
ble (accuracy values). The mathematical expression of cross 
entropies used in the classification layer of all CNN archi-
tectures used in this study is given in the following equation:

In Eq. (3), x is the number of classes; q is the output of the 
softmax function; p represents the categorical class output. 
The functions utilized in CNN architectures’ structures may 
cause non-linear values during training on the ZJU dataset. 
Thus, the Adam [48] optimizer was adopted in CNN archi-
tectures to decrease the discrepancy between the original and 
output values. Adam is an optimization technique that com-
bines the best elements of the AdaGrad and RMSProp algo-
rithms to produce a solution that can handle sparse gradients 
in noisy applications. It is a prominent method in the field of 
deep learning since it yields successful outcomes speedily. 
The optimization technique is also a hyper-parameter and 
Adam optimizer was used in all trained CNN architectures 
in this study.

GoogleNet, ResNet18, MobileNetv2, ShuffleNet, AlexNet 
and DarkNet19 architectures were tested with images in the 
section dedicated to testing of the ZJU dataset to determine 
their performance after the training was completed. Next, a 
confusion matrix was created according to the test results 
of each architecture in order to measure the performance 
of these architectures. This matrix was used to compute the 
most popular performance criteria accuracy (Eq. 4), speci-
ficity (Eq. 5), sensitivity (Eq. 6), precision (Eq. 7) and F1 
score (Eq. 8) metrics:

(3)H(p, q) = −
∑

x

p(x) log q(x)

(4)Accuracy =
TP + TN

TP + TN + FP + FN

Table 3  Details of the hyperparameters

Parameter Value/type

Loss criterion Crossentropyex
Optimizer Adam
Learning rate 0.0001
L2 regularization 0.0001
Batch size 32
Gradient decay factor 0.9
Epoch 20
Network output Open

Close
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The TP (true positive) amount indicates that an eye state 
is recognized as closed when it is closed, whereas the TN 
(true negative) value indicates that an eye state is clearly 
recognized as open when it is open. FP (false positive) refers 
to the recognition of an open eye state as closed, while FN 
(false negative) refers to the perception of a closed eye state 
as open. The area under the receiver-operating characteristic 
(ROC) curve is one of the most critical performance indica-
tors used in classifier performance evaluation as AUC. The 
stronger the classifier, the greater the AUC score. The AUC 
value is a graph that summarizes the classifier’s performance 
across all conceivable values. The performance criteria and 
AUC values gained from the confusion matrices formed 
with the help of testing GoogleNet, ResNet18, MobileNetv2, 
ShuffleNet, AlexNet and DarkNet19 architectures on the 
ZJU dataset are given in Table 4.

In the comparison of architectures on the ZJU dataset in 
Table 4, AlexNet performed best in the accuracy measure, 
whereas ResNet18 performed best in the sensitivity. The 
specificity metric, on the other hand, was best performed by 
AlexNet and MobileNetv2. ShuffleNet also outperformed in 

(5)Specificity =
TN

TN + FP

(6)Sensitivity =
TP

TP + FN

(7)Precision =
TP

TP + FP

(8)F1score = 2 ×
Precision × Sensitivity

Precision + Sensitivity

the precision metric, AlexNet outperformed on the F1 score 
metric, and MobileNetv2 outperformed in the AUC met-
ric. In the performance metrics mentioned in the confusion 
matrix calculation, AlexNet scored the best performance on 
three of the six metrics, according to the comparative results 
(accuracy, specificity, and F1 score). Despite falling behind 
in sensitivity, precision, and AUC, AlexNet outperformed 
other methodologies.

3.2  Proposed Method vs. AlexNet on ZJU Dataset

Certain adjustments were introduced to the last fully con-
nected layer structure of the AlexNet architecture, which 
is the finest performing of the pre-trained CNN architec-
tures, so as to maximize the accuracy of eye state recog-
nition on the ZJU dataset, and a new DCNN architecture 
was constructed. The weights of the other layers were trans-
ported through using the transfer learning approach after 
the FC8 fully connected layer of AlexNet was extracted to 
the DCNN architecture. A new fully connected layer with 
random weight was implemented in place of the extracted 
FC8 layer, and then a DCNN architecture was established 
by modifying the network’s output according to the ZJU 
dataset. Based on DCNN’s input layer size, the images in 
the ZJU dataset are resized to 227 × 227. Next, DCNN was 
trained by adjusting the hyperparameters in Table 3. The 
confusion matrix was established to quantify the DCNN 
architecture’s performance. The performance metrics of the 
DCNN architecture were calculated using the information 
gathered from the confusion matrix and their comparison 
with AlexNet is given in Table 5.

Compared to AlexNet, DCNN showed superior per-
formance in all metrics except for the sensitivity in the 

Table 4  Performance 
comparison of pre-trained CNN 
architectures on ZJU dataset

The values indicated in bold in the columns represent the highest results

Method Accuracy Sensitivity Specificity Precision F1 score AUC 

GoogleNet 0.9055 0.9756 0.8821 0.7339 0.8377 0.98668
ResNet18 0.9024 0.9780 0.8772 0.7264 0.8337 0.98867
MobileNetv2 0.9537 0.9415 0.9577 0.8813 0.9104 0.99033
ShuffleNet 0.9573 0.9220 0.9691 0.9087 0.9153 0.98440
AlexNet 0.9579 0.9585 0.9577 0.8831 0.9193 0.98783
DarkNet19 0.8439 0.6171 0.9195 0.7188 0.6640 0.91843
Average 0.9201 0.8988 0.9272 0.8087 0.8467 0.97606

Table 5  Performance 
comparison of DCNN and 
AlexNet architectures on ZJU 
dataset

The values indicated in bold in the columns represent the highest results

Method Accuracy Sensitivity Specificity Precision F1 score AUC 

AlexNet 0.9579 0.9585 0.9577 0.8831 0.9193 0.98783
DCNN 0.9732 0.9537 0.9797 0.9399 0.9467 0.99365
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calculated performance metrics. The ROC curve has been 
generated and shown in Fig. 6 for a summary representation 
of performance comparisons with DCNN compared to pre-
trained CNN architectures.

As seen in the ROC curve in Fig. 6, DCNN performed 
the best distinguishing between the two classes in eye state 
recognition and achieved the best classification ability com-
pared to other CNN architectures.

3.3  Proposed Method vs. AlexNet on CEW Dataset

As seen in Table 5, DCNN and AlexNet architectures are 
the two architectures with the highest success in the ZJU 
dataset. CEW dataset was used to test the performance of 
these two architectures. The eye state images in the CEW 
dataset are split by 90% for training and 10% for testing. 
Afterwards, image preprocessing was applied on the CEW 
dataset and it was made suitable for DCNN and AlexNet 
architectures inputs. In the following step, the hyperparam-
eters given in Table 3 were adjusted for training DCNN and 
AlexNet on the CEW dataset. Of these hyperparameters, 

only the epoch hyperparameter was set at 40 by increasing 
the epoch number to solve the overfitting problem, since 

Fig. 6  ROC curves of CNN 
architectures

Table 6  Performance 
comparison of DCNN and 
AlexNet architectures on CEW 
dataset

The values indicated in bold in the columns represent the highest results

Method Accuracy Sensitivity Specificity Precision F1 score AUC 

AlexNet 97.11 98.74 95.53 95.53 97.11 99.42
DCNN 97.93 98.74 97.15 97.11 97.92 99.69

Fig. 7  ROC curves of DCNN and AlexNet architectures
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CEW has approximately 2 times less data than ZJU. Then, 
AlexNet and DCNN architectures were trained using the 
training data in the CEW dataset. The performance metrics 
obtained after performing the test operation on the test data 
are given in Table 6. The ROC curve representing the per-
formance summary of AlexNet and DCNN architectures in 
the CEW dataset is also given in Fig. 7.

3.4  Real‑World Scenario Testing of the Proposed 
Method

In this study, the proposed method was also tested in a 
real-world scenario. To test the proposed method in a real-
world scenario, a 1-min video of a person looking at a digi-
tal screen was taken. This video has been analyzed in the 
eye state detection application detailed in Sect. 2.5. In this 

Fig. 8  Confusion matrices from real scenario for DCNN: a trained in CEW dataset, b trained in ZJU dataset

Table 7  Performance 
comparison of DCNN (trained 
ZJU and CEW datasets)

The values indicated in bold in the columns represent the highest results

Method Accuracy Sensitivity Specificity Precision F1 score

DCNN (trained ZJU) 95.30 45.12 99.58 90.24 60.16
DCNN (trained CEW) 99.62 97.56 99.79 97.56 97.56

Table 8  Comparison of DCNN 
architecture and previous 
studies on ZJU dataset

The values indicated in bold in the columns represent the highest results

Source Method Accuracy AUC 

Pauly and Sankar [18] HOG + SVM 85.62 –
Pauly and Sankar [23] HOG + SVM 85 –
Lee et al. [19] SVM 95.14 –
Zhao et al. [22] TRL + DA 97.19 99.29
Song et al. [12] MultiHPOG + LTP + Gabor + SVM 96.83 99.27
Wu et al. [1] LBP + SVM 90.37 –
Liu et al. [25] Gabor + LBP + HOG + SVM 95.42 98.02
Eddine et al. [21] Multi-TPLBP + SVM 95.18 97.83
Dong et al. [11] HOG + Random Ferns 94.76 98.89
Liu et al. [26] WBCNNTL 97.20 –
Saurav et al. [28] DCNNE 97.99 –
Liang et al. [29] DFNN 96.96 99.03
Wang et al. [27] HOG + Autoencoder 94.75 98,20
Proposed method DCNN 97.32 99.37
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application, first, images were extracted from the video and 
the extracted images were given to the face detector. The 
face detector obtained 521 images in which it detected the 
presence of the face from the images in the video. Then, by 
applying the eye detector to 521 images, 1042 eye regions 
were extracted and were classified in the proposed DCNN 
architecture. In addition, the eye state recognition application 

was run twice for both DCNN trained on ZJU dataset and 
DCNN trained on CEW dataset. Confusion matrices created 
by DCNNs result from these two evaluations and are pre-
sented in Fig. 8. The performance metrics calculated from 
the confusion matrices are also given in Table 7.

Fig. 9  Comparison of performance metrics by previous studies on the ZJU dataset: a accuracy and b AUC 
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4  Discussion

Eye state recognition directs developments in many fields, 
especially HMI. Recently, interest in deep learning-based 
CNN, which is widely used in many different tasks, has also 
increased in eye state recognition. In this study, performance 
metrics of the proposed DCNN architecture were compared 
with previous studies on the ZJU dataset and are given in 
Table 8.

It is worth noting that the performance metrics like accu-
racy and AUC were usually shared in the earlier studies 
when evaluating the methods on the ZJU dataset. Therefore, 
DCNN architecture was compared in Table 8, considering 
accuracy and AUC values. In the compared performance 
metrics, the DCNN method has shown that it is one of the 
most successful methods in AUC performance metric for 
eye state recognition compared to previous studies. As for 
the accuracy metric, the DCNNE suggested by Sauraw et al. 
[28] has the highest accuracy, but the AUC metric was not 
presented. Therefore, it has been observed that the proposed 
method has the highest success in comparing the state-of-
the-art methods in the literature with both AUC and accu-
racy metrics presented together. The closest success to the 
proposed method in both parameters is Zhao et al. [22].

The studies with the closest accuracy value to the pro-
posed DCNN architecture were the studies of Liu et al. [26], 
Zhao et al. [22] and Liang et al. [29], as seen in Table 8. 
CNN based on deep learning, as in the proposed DCNN 
architecture, was one of the strategies used in these inves-
tigations. Machine learning algorithms were commonly 
utilized on the ZJU dataset till 2018, as shown in Table 8. 
However, it has lately been observed that CNN-based tech-
nologies, including deep learning, are being applied. A 
comparative graph of the accuracy and AUC values of the 
DCNN method with previous studies on the ZJU dataset has 
been given in Fig. 9.

When the studies with the ZJU dataset are examined, it is 
seen that machine learning classifiers such as SVM are used 
mostly after algorithms that extract handmade features in 
eye state detection. Eye state recognition leads to advances 
in many areas, especially HMI. When the studies with the 
ZJU dataset are examined, it is seen that machine learning 
classifiers, such as SVM, have been used after algorithms 
that extract handmade features in eye state detection.

The performance of DCNN is also evaluated on the CEW 
dataset. The comparison of the accuracy and AUC values 
obtained on the CEW dataset of the proposed method with 
the state-of-art methods is given in Table 9. A comparative 
graph of the accuracy and AUC values of the DCNN method 
with previous studies on the CEW dataset is also given in 
Fig. 10.

As seen in Table 9 and Fig. 10, DCNN achieved the best 
performance in the accuracy metric. In the AUC value of the 
proposed method, it took the second place after Liang et al. 
[29] with a slight difference. The DFNN method proposed 
by Liang et al. evaluated in both CEW and ZJU datasets as 
given in Tables 8 and 9. In the performance comparison 
of DFNN with the proposed method on the ZJU dataset, 
the proposed method outperformed DFNN in both accuracy 
and AUC metric. In CEW dataset, Saurav et al. [28] and 
Liu et al. [26] are the closest to the accuracy of the pro-
posed method. As a result of the comparative analysis of 
the proposed method on the CEW dataset, it is seen that it 
has achieved superior performance than in previous studies.

When the results obtained from the ZJU dataset and the 
CEW dataset are examined, it is seen that the proposed 
DCNN architecture can be used successfully for eye state 
detection. Due to this, the use of CNNs in eye state recog-
nition has become remarkable in terms of both ease of use 
and improved success thanks to automatic feature extraction. 
Therefore, the use of CNN-based approaches has become 
an important tool in tasks where eye state recognition is 
important.

Eye state recognition is not easy, as many real-world 
scenarios are faced. Accordingly, the proposed method was 
tested by taking a video from a real-world environment. Test 
results of the proposed method trained on CEW and ZJU 
datasets are presented in Table 7 and Fig. 8. Of the proposed 
method, the one trained with ZJU achieved over 95% per-
formance and the one trained with CEW achieved over 99% 
performance. In the confusion matrices created as a result 
of these tests, it was seen that the proposed method trained 
with CEW showed the best performance in all performance 
metrics compared to the one trained with ZJU. Comparative 
analyzes have shown that the proposed method has effective 
and reliable performance in real-world scenarios and is an 

Table 9  Comparison of DCNN and AlexNet architectures and previ-
ous studies on CEW dataset

The values indicated in bold in the columns represent the highest 
results

Source Method Accuracy AUC 

Zhao et al. [22] DINN 97.19 99.57
Sauraw et al. [28] DCNNE 97.50 –
Liang et al. [29] DFNN 97.37 99.71
Song et al. [12] Projection 70.10 –
Song et al. [12] MultiHPOG-

LTP + Gabor + SVM
94.72 95.19

Liu et al. [26] WBCNNTL 97.40 –
Our study AlexNet 97.11 99.42

DCNN 97.93 99.69
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alternative method that can be used in applications devel-
oped for eye state detection.

5  Conclusion

Eye state recognition has a broad array of applications, 
from HMI systems to monitoring driver fatigue, dry eye, 
and computer vision syndrome associated with continuous 
use of digital screens. Recognition of eye state, whether 
sensitively on or off, can pave the path for the creation of 
innumerable technologies in this area. Using the ZJU and 
CEW datasets, a strategy based on DCNN was presented for 
eye state recognition in this study. In light of the findings, 
the performances of pre-trained CNN architectures trained 
on the ZJU dataset were compared, and AlexNet was proven 
to cause the best performance. Modifications were imple-
mented to the AlexNet structure in order to maximize the 
likelihood of success on the ZJU dataset. The performance 
of the developed DCNN architecture was measured on both 
the ZJU and CEW datasets. The developed DCNN archi-
tecture outperformed the CNN architectures utilized in the 
study and demonstrated the greatest performance, according 
to the comparative data in ZJU and CEW datasets (Tables 5 
and 6). The obtained results from the DCNN architecture 
were compared to those of prior studies on the both data-
sets. When comparing the accuracy and AUC performance 
metrics given in prior studies, the DCNN architecture was 
showcased to be the most efficient strategy for eye state rec-
ognition in the literature. The fact that DCNN outperforms 
machine learning techniques in prior experiments has piqued 
interest in deep learning, particularly CNN, for recognizing 
eye states. In addition, in this study, the proposed method 
has also been tested in a real-world scenario, and the results 
have shown that this method has effective performance even 

in various scenarios. Future studies should incorporate data 
augmentation approaches or combine datasets to expand the 
number of open or closed eye images in order to improve the 
performance of the approaches. In addition, we think that 
the data augmentation-based CNN method can give more 
successful results in eye state recognition.
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