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Abstract
Picture fuzzy graph, belonging to fuzzy graphs family, has good capabilities at times when we are faced with problems that 
cannot be expressed by fuzzy graphs and intuitionistic fuzzy graphs. When an element membership is not clear, neutrality is 
a good option that can be well-supported by a picture fuzzy graph. The previous definitions limitations in fuzzy graph energy 
have led us to offer new definitions in picture fuzzy graphs. In this article, we expanded the energy concept on the picture 
fuzzy graph and sought to use this concept in modeling issues related to this graph and solving some problems including the 
neutrality state. We were able to show that neutrality, as part of total energy, is effective in energy-based decisions. This is 
noticeable in some types of energy and is more pronounced. We were looking for a way to rank the available options using 
the picture fuzzy graph and its Laplacian energy/energy in decision making. We studied some types of energy including 
Laplacian and skew Laplacian in both picture fuzzy graphs and picture fuzzy digraphs, and discussed some of its properties. 
We discussed some energy boundaries in this graph, and finally, the applications of energy were presented.
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Abbreviations
Notation	� Meaning
FS	� Fuzzy set
FG	� Fuzzy graph
PFS	� Picture fuzzy set
PFG	� Picture fuzzy graph
PFDG	� Picture fuzzy digraph
AM	� Adjacency matrix
LM	� Laplacian matrix
SAM	� Skew adjacency matrix
LE	� Laplacian energy
SLE	� Skew Laplacian energy

1  Introduction

Graphs have long been used to describe objects and the rela-
tionships between them. Many of the issues and phenomena 
around us are associated with complexities and ambiguities 
that make it difficult to express certainty. These difficulties 
were alleviated by the introduction of fuzzy sets by Zadeh 
[48]. This concept established well-grounded allocation 
membership degree to elements of a set. The existence of a 
single degree for a membership could not resolve the ambi-
guity on uncertain issues, so the need for a degree of mem-
bership was felt. Afterward, to overcome the existing ambi-
guities, Atanassov [7] introduced non-membership degrees 
and defined an intuitionistic fuzzy set as the sum of degrees 
not greater than 1. This set is used in image processing 
[11], robotic system [17], decision making [23], medical 
diagnosis [43] and etc. Fuzzy graphs were presented in dif-
ferent types, and researchers conducted many studies about 
their properties and characteristics [3132, 34, 35, 37, 38, 40, 
44–46]. Liu et al. [24] presented t-spherical fuzzy 2-tuple 
linguistic muirhead mean aggregation operators. Naz 
et al. [26] explained decision analysis under the hesitant 
dual fuzzy environment q-rung orthopair. An extension of 
social network group decision-making based on trust rank 
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and personas was proposed by Cai et al. [10]. Pal et al. [25] 
investigated new concepts in neutrosophic graphs. Certain 
properties of single-valued neutrosophic graph, presented 
by Zeng et al. [49]. Rao et al. [33], studied intuitionistic 
fuzzy tree.

Intuitionistic fuzzy graphs have only two modes of mem-
bership and non-membership, but in some issues such as 
voting, medical diagnosis, and etc., we also face a state 
of neutrality. When it comes to the climate impact on the 
human environment in different climatic conditions, inef-
fectiveness, in addition to being effective or not, can be 
proposed. To resolve this case, Cuong and Kreinevich [14] 
presented the concept of picture fuzzy set (PFS) as a com-
bination of the fuzzy set (FS) and intuitionistic fuzzy set 
(IFS). Any element in this set is inclusive of three degrees 
of being a member, neutral, and non-member, where the 
sum of degrees is not greater than 1. Some PFS proper-
ties were studied by Cuong [13]. Phong et al. [30] investi-
gated some picture fuzzy relations combinations. A fuzzy 
inference system on PFSs was proposed by Son et al. [42]. 
Akram et al. [3] examined the q-Rung PFG. Zuo et al. 
[51] gave some operations on PFG, i.e., union, joint, and 
Cartesian products. Meanwhile, Xiao et al. [47] studied 
regular PFGs and Garg [19] studied some picture fuzzy 
aggregation operations. Khan et al. [22] introduced bipolar 
PFGs. Amanathulla et al. [5] initiated the concept of bal-
anced PFGs. An approach to decision-making via picture 
fuzzy soft graphs was introduced by Chellamani et al. [12]. 
Certain operations on picture fuzzy graph were studied 
by Shoaib et al. [41]. Picture fuzzy incidence graphs were 
introduced by Nazeer and Rashid [28].

On the advent of graph theory over algebraic graph 
theory, algebraic methods were used to study graphs. The 
main branch of algebraic graph theory is the spectral graph 
theory, which studies the characteristics of polynomial 
properties, eigenvalues, and eigenvectors related to graph 
matrices. Conceptual energy is related to the spectrum of a 
graph that plays an important role in recognizing patterns, 
modeling virus spread in computer networks, and secur-
ing personal data in databases. The energy of a graph is 
a useful tool in deciding which option to choose. When 
searching for the best option in decisions, the application 
of energy, because of the expression of the strength of the 
graph obtained from the selected vertices, is a great help in 
determining the desired option. This was a good incentive 
for researchers to study graph energies. Gutman [20] intro-
duced the concept of a graph energy. He found this concept 
in the study of the electrons energy of specific molecules. In 
fact, the energy of a given molecular graph compared to the 
total energy of the electrons of a molecule is of interest to 
chemists. Obviously, the energy of a graph with all isolated 
vertices is zero, but for a complete graph with n vertices, it 
is 2(n − 1) . The energy of a graph is used for entropy [16], 

properties of proteins [18], Alzheimer’s disease [15], etc. 
The Laplacian energy (LE) of a graph is defined by Gutman 
and Zhou [21]. This was obtained from the sum of the abso-
lute values of the differences of the mean degree vertices of 
a graph with its Laplacian eigenvalues. The LE is applied in 
image analysis [50], brain activity [9], etc. Pena and Rada 
analyzed the digraph energy [29]. The digraph skew energy 
was introduced by Adiga and Balakrishnan [2]. The skew 
Laplacian energy (SLE) of a digraph was defined by Adiga 
and Smitha [1]. Other types of energy were later introduced 
by researchers. The energy of pythagorean fuzzy graphs was 
proposed by Akram and Naz [4]. Certain notions of energy 
in single-valued neutrosophic graphs were introduced by 
Naz et al. [27].

The fuzzy graph (FG) energy was introduced by Anjali 
and Mathew [6]. The LE of an FG was defined by Shar-
baf and Fayazi [39]. Basha and Kartheek [8] generalized 
the LE concept of an FG to the Laplacian energy (LE) of 
an IFG. Simultaneously, with the variety of FGs, different 
energies of fuzzy graphs were introduced. The limitation 
of previous definitions of energy in FGs and IFGs led us to 
define energy in a PFG. Since PFG is a good tool in fuzzy 
modeling of uncertain problems, for its degree of neutrality, 
it is a good incentive to examine the energy in it, especially 
in decisions based on the degree of neutrality. This shows 
that neutrality, as part of total energy, is effective in energy-
based decisions.

In this research, with the aim of developing energy on 
a PFG and examining its properties, we sought to use the 
energy applications of this graph to solve real problems. 
We studied the PFG energy, PFG Laplacian energy and 
picture fuzzy digraph (PFDG) Laplacian energy. We also 
introduced the PFDG skew Laplacian energy. We compared 
three types of energy in varying degrees with examples. In 
addition, considering the decision making, a method was 
proposed to rank the available options using the PFG and 
its Laplacian energy/energy. Some of the energy boundaries 
were examined, and finally, the applications of energy were 
presented.

2 � Preliminaries

In this section, we have an overview of the concepts we need 
in this article.

A graph G = (V ,E) is a mathematical model consisting of 
a set of vertices V and a set of edges E, where each is an unor-
dered pair of distinct vertices. If G is a graph with n vertices 
and m edges, Its adjacency matrix (AM) M is the n × n matrix 
whose ij-th entry is the number of edges joining vertices i and 
j. The eigenvalues �i , i = 1, 2,… , n , of the AM of G are the 
eigenvalues of G. The spectrum {�1, �2,… , �n} of the AM of 
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G is the spec(G). The eigenvalues of a graph satisfy the fol-
lowing relations:

The energy of a graph G, denoted by E(G), is defined as 
the sum of the absolute values of the eigenvalues of G, i.e., 
E(G) =

∑n

i=1
∣ �i ∣ . The energy of a digraph D, denoted by 

E(D), is defined as the sum of the absolute values of the 
real part of eigenvalues of D, i.e., E(D) =

∑n

i=1
∣ Re(zi) ∣ . 

A graph with all isolated vertices Kc
n
 has zero energy 

while the complete graph Kn with n vertices has 2(n − 1) 
energy. The LE of a graph G with n vertex and m edge is 
LE(G) =

∑n

i=1
∣ �i −

2m

n
∣ where �i relates to the eigenvalues 

of LM of G. The skew energy of G is some of the absolute 
values [8] of eigenvalues. The skew adjacency matrix (SAM) 
of the digraph G is a matrix so that the (i, j)-entry of the 
SAM is +1 if an edge is directed from the i-th vertex to the 
j-th vertex, vice versa the (j, i)-entry is −1 . If there is no 
directed edge between the nodes i and j, then, the respective 
matrix element is zero.

The SLE of the digraph G is defined as:

where �i refers to the eigenvalues of the LM of the digraph 
G.

Definition 1  [48] An FS � on a set V is defined through its 
membership function � ∶ V → [0, 1] , where �(x) represents 
the degree to which point x ∈ V  belongs to the FS. The 
smallest and largest elements are the functions constantly 
equal to 0 and 1, respectively.

A fuzzy relation on a set V is a mapping � ∶ V × V → [0, 1] 
so that �(x, y) ≤ min{�(x), �(y)} for all x, y ∈ V  . A fuzzy 
relation � is symmetric if �(x, y) = �(y, x) , for all x, y ∈ V .

Definition 2  [36] An FG Z = (V , �, �) is a non-empty set 
V together with a pair of functions � ∶ V → [0, 1] and 
� ∶ V × V → [0, 1] so that �(xy) ≤ min{�(x), �(y)} , for all 
x, y ∈ V  . Here � is a symmetric fuzzy relation on V × V .

Definition 3  [14] A PFS A on X is specified as follow

 so that

n∑
i=1

�i = 0,

n∑
i=1

�2
i
= 2m.

SLE(G) =

n∑
i=1

�2
i
,

A = {(x,�A(x), �A(x), �A(x)) ∣ x ∈ X},

and

where �A(x) , �A(x) and �A(x) are called the degrees of posi-
tive, neutral, and negative membership of x in A.

Definition 4  [51] A picture fuzzy relation B is a PFS of 
X × Y  as shown by

 so that

and

Definition 5  [51] A pair G = (A,B) is called a PFG on 
G∗ = (V , E) where A is a PFS on V and B is a picture fuzzy 
relation on E ⊆ V × V  so that for each xy ∈ E

Definition 6  [51] The degree of a vertex x on PFG G = (A,B) 
is specified as follow:

�A, �A, �A ∶ X → [0, 1],

0 ≤ �A(x) + �A(x) + �A(x) ≤ 1,

B = {(xy,�A(xy), �A(xy), �A(xy)) ∣ xy ∈ X × Y},

�B, �B, �B ∶ X × Y → [0, 1],

0 ≤ �B(xy) + �B(xy) + �B(xy) ≤ 1 xy ∈ X × Y .

�B(xy) ≤ �A(x) ∧ �A(y),

�B(xy) ≤ �A(x) ∧ �A(y),

�B(xy) ≥ �A(x) ∨ �A(y).

d(x) = (d�(x), d�(x), d�(x)),

Fig. 1   A PFG
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where for every xy ∈ E

Example 1  Consider a PFG as shown in Fig. 1. The ver-
tex degree z is (1, 3, 0.2, 0.8) while the vertex degree y is 
(0.8, 0.3, 0.4) .

Some notations are listed in the table of abbreviations.

3 � Energy of Picture Fuzzy Graph

In this section, some of the most important PFG energies 
will be studied and their properties will be examined.

Definition 7  The AM M(G) of a PFG G = (A,B) is specified 
as a square matrix M(G) = [mij] , mij = (�B(xixj), �B(xixj), �B(xixj)) , 
and this can be written as three matrices M(�B(xixj)) , 
M(�B(xixj)) , and M(�B(xixj)) , thus,

Definition 8  The energy of a PFG G = (A,B) is specified as 
the follow:

in other words,

where �i , �i , and �i are eigenvalues of M(�B(xixj)) , 
M(�B(xixj)) , and M(�B(xixj)) , respectively.

Example 2  Consider a PFG G = (A,B) given in Fig. 2. The 
AM M is as follows:

The AMs and eigenvalues of each degree of G are 
obtained as follows:

d�(x) =
∑
x≠y

�B(xy), d�(x) =
∑
x≠y

�B(xy), d�(x) =
∑
x≠y

�B(xy).

M(G) = (M(�B(xixj)),M(�B(xixj)),M(�B(xixj))).

E(G) = (E(�B(xixj)),E(�B(xixj)),E(�B(xixj))),

E(G) =

( n∑
i=1

∣ �i ∣,

n∑
i=1

∣ �i ∣,

n∑
i=1

∣ �i ∣

)
,

M(G) =

⎡
⎢⎢⎢⎢⎢⎣

(0, 0, 0) (0.2, 0.2, 0.5) (0, 0, 0) (0.2, 0.4, 0.3) (0.3, 0.2, 0.3)

(0.2, 0.2, 0.5) (0, 0, 0) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4) (0, 0, 0)

(0, 0, 0) (0.3, 0.2, 0.4) (0, 0, 0) (0.2, 0.3, 0.3) (0, 0, 0)

(0.2, 0.4, 0.3) (0.3, 0.2, 0.4) (0.2, 0.3, 0.3) (0, 0, 0) (0.2, 0.3, 0.4)

(0.3, 0.2, 0.3) (0, 0, 0) (0, 0, 0) (0.2, 0.3, 0.4) (0, 0, 0)

⎤
⎥⎥⎥⎥⎥⎦

.

So, the energy of a PFG G = (A,B) is equal to 
E(G) = (1.852, 1.821, 2.514).

Theorem  1  Let G = (A,B) be a PFG and M(G) be 
its AM. If �1 ≥ �2 ≥ ⋯ ≥ �n , �1 ≥ �2 ≥ ⋯ ≥ �n , and 
�1 ≥ �2 ≥ ⋯ ≥ �n , are the eigenvalues of M(�B(xixj)) , 
M(�B(xixj)) , and M(�B(xixj)) , respectively, then,

M(�B(xixj))

=

⎡
⎢⎢⎢⎢⎢⎣

0 0.2 0 0.2 0.3

0.2 0 0.3 0.3 0

0 0.3 0 0.2 0

0.2 0.3 0.2 0 0.2

0.3 0 0 0.3 0

⎤
⎥⎥⎥⎥⎥⎦

.

Spec(�B(xixj))

= {−0.434,−0.281,−0.211, 0.218, 0.708},

M(�B(xixj)) =

⎡
⎢⎢⎢⎢⎢⎣

0 0.2 0 0.4 0.2

0.2 0 0.2 0.2 0

0 02 0 0.3 0

0.4 0.2 0.3 0 0.3

0.2 0 0 0.3 0

⎤
⎥⎥⎥⎥⎥⎦

.

Spec(�B(xixj))

= {−0.527,−0.287,−0.096, 0.127, 0.784},

M(�B(xixj))

=

⎡⎢⎢⎢⎢⎢⎣

0 0.5 0 0.2 0.3

0.5 0 0.4 0.4 0

0 0.4 0 0.3 0

0.3 0.4 0.3 0 0.4

0.3 0 0 0.4 0

⎤⎥⎥⎥⎥⎥⎦

.

Spec(�B(xixj))

= {−0.716,−0.485,−0.056, 0.182, 1.075}.
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Proof  (i) is held because M(G) is a symmetric matrix with 
zero trace.

(ii) According to the trace properties of a matrix, we have

On the other hand,

(i)

n∑
i=1

𝛼i = 0,

n∑
i=1

𝛽i = 0,

n∑
i=1

𝛾i = 0

(ii)

n∑
i=1

𝛼2

i
= 2

∑
1≤i<j≤n

(𝜇B(xixj))
2,

n∑
i=1

𝛽2
i
= 2

∑
1≤i<j≤n

(𝜂B(xixj))
2,

n∑
i=1

𝛾2
i
= 2

∑
1≤i<j≤n

(𝜈B(xixj))
2.

tr((M(��(xixj)))
2) =

n∑
i=1

�2
i
.

Therefore,

S i m i l a r l y ,  
∑n

i=1
𝛽2
i
= 2

∑
1≤i<j≤n(𝜂B(xixj))

2  ,  a n d ∑n

i=1
𝛾2
i
= 2

∑
1≤i<j≤n(𝜈B(xixj))

2 . 	�  ◻

Theorem 2  If G = (A,B) is a PFG on n vertices with the AM 
M(G), then,

tr((M(𝜇𝛽(xixj)))
2) =

(
0 + (𝜇𝛽(x1x2))

2 +⋯ + (𝜇𝛽(x1xn))
2
)

+
(
(𝜇𝛽(x2x1))

2 + 0 +⋯ + (𝜇𝛽(x2xn))
2
)

⋮

+
(
(𝜇𝛽(xnx1))

2 + (𝜇𝛽(xnx2))
2 +⋯ + 0

)

= 2
∑

1≤i<j≤n

(𝜇𝛽(xixj))
2.

n∑
i=1

𝛼2
i
= 2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2.

(i)

√
2

∑
1≤i<j≤n

(𝜇B(xixj))
2 + n(n − 1) ∣ det(M(𝜇B(xixj))) ∣

2

n ≤ E(𝜇B(xixj))

≤

√
2n

∑
1≤i<j≤n

(𝜇B(xixj))
2,

(ii)

√
2

∑
1≤i<j≤n

(𝜂B(xixj))
2 + n(n − 1) ∣ det(M(𝜂B(xixj))) ∣

2

n ≤ E(𝜂B(xixj))

lesqrt2n
∑

1≤i<j≤n

(𝜂B(xixj))
2,

(iii)

√
2

∑
1≤i<j≤n

(𝜈B(xixj))
2 + n(n − 1) ∣ det(M(𝜈B(xixj))) ∣

2

n ≤ E(𝜈B(xixj))

≤

√
2n

∑
1≤i<j≤n

(𝜈B(xixj))
2.

Fig. 2   PFG G = (A,B)
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Proof  According to the Cauchy–Schwarz inequality to 
the vectors (1, 1,… , 1) and (∣ �1 ∣, ∣ �2 ∣,… , ∣ �n ∣) with n 
entries, we have

By comparing the coefficients of �n−2 in the characteristic

By placing (3) in (2), we have

By placing (4) in (1), we have

Hence,

For lower bound

Since AM{∣ �i�j ∣} ≥ GM{∣ �i�j ∣} , 1 ≤ i < j ≤ n , therefore,

Also,

(1)
n�
i=1

∣ �i ∣≤
√
n

���� n�
i=1

∣ �i ∣
2,

(2)

(
n∑
i=1

𝛼i

)2

=

n∑
i=1

∣ 𝛼i ∣
2 +2

∑
1≤i<j≤n

𝛼i𝛼j.

(3)

n∏
i=1

(𝛼 − 𝛼i) =∣ M(G) − 𝛼I ∣,

∑
1≤i<j≤n

𝛼i𝛼j = −
∑

1≤i<j≤n

(𝜇𝛽(xixj))
2.

(4)
n∑
i=1

∣ 𝛼i ∣
2= 2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2.

n�
i=1

∣ 𝛼i ∣≤
√
n

�
2

�
1≤i<j≤n

(𝜇𝛽(xixj))
2 =

�
2n

�
1≤i<j≤n

(𝜇𝛽(xixj))
2.

E(𝜇𝛽(xi, xj)) ≤

√
2n

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2.

(
E(𝜇𝛽(xixj))

)2
=

(
n∑
i=1

∣ 𝛼i ∣

)2

=

n∑
i=1

∣ 𝛼i ∣
2 +2

∑
1≤i<j≤n

∣ 𝛼i𝛼j ∣

= 2
∑

1≤i<j≤n

(
𝜇𝛽(xixj)

)2
+

2n(n − 1)

2
AM{∣ 𝛼i𝛼j ∣}.

E(𝜇𝛽(xixj))

≥

√
2

∑
1≤i<j≤n

(
𝜇𝛽(xixj)

)2
+ n(n − 1)GM{∣ 𝛼i𝛼j ∣}.

Therefore,

Hence,

Similarly (ii) and (iii) are also established, of course, 
the upper bound is subjected to the following conditions 
n ≤ 2

∑
1≤i<j≤n(𝜇𝛽(xixj))

2 ,  n ≤ 2
∑

1≤i<j≤n(𝜂𝛽(xixj))
2 ,  and 

n ≤ 2
∑

1≤i<j≤n(𝛾𝛽(xixj))
2 . 	�  ◻

Theorem  3  Let G = (A,B) be a PFG on n vertices. If 
n ≤ 2

∑
1≤i<j≤n(𝜇B(xixj))

2 , n ≤ 2
∑

1≤i<j≤n(𝜂B(xixj))
2 , and 

n ≤ 2
∑

1≤i<j≤n(𝜈B(xixj))
2 , then

Proof  If M = [mij]n×n is a symmetric matrix with zero trace, 

then, 𝛼max ≥
2
∑

1≤i<j≤n mij

n
 , where �max is the maximum 

eigenvalue of M(G) and is the AM of a PFG G, then, 

GM{∣ 𝛼i𝛼j ∣} =

( ∏
1≤i<j≤n

∣ 𝛼i𝛼j ∣

) 2

n(n−1)

=

(
n∏
i=1

∣ 𝛼i ∣
n−1

) 2

n(n−1)

=

(
n∏
i=1

∣ 𝛼i ∣

) 2

n

=∣ det(M(𝜇𝛽(xixj))) ∣
2

n .

E(��(xixj)) ≥

√
2
∑

(��(xixj))
2 + n(n − 1) ∣ det(M(��(xixj))) ∣

2

n .

√
2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2 + n(n − 1) ∣ det(M(𝜇𝛽(xixj))) ∣

2

n

≤ E(𝜇𝛽(xixj)) ≤

√
2n

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2.

(i)E(𝜇B(xixj)) ≤
2
∑

1≤i<j≤n(𝜇B(xixj))
2

n

+

����(n − 1)

�
2

�
1≤i<j≤n

(𝜇B(xixj))
2 −

�
2
∑

1≤i<j≤n(𝜇B(xixj))
2

n

�2
�

,

(ii)E(𝜂B(xixj)) ≤
2
∑

1≤i<j≤n(𝜂B(xixj))
2

n

+

����(n − 1)

�
2

�
1≤i<j≤n

(𝜂B(xixj))
2 −

�
2
∑

1≤i<j≤n(𝜂B(xixj))
2

n

�2
�

,

(iii)E(𝜈B(xixj)) ≤
2
∑

1≤i<j≤n(𝜈B(xixj))
2

n

+

����(n − 1)

�
2

�
1≤i<j≤n

(𝜈B(xixj))
2 −

�
2
∑

1≤i<j≤n(𝜈B(xixj))
2

n

�2
�

.
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𝛼1 ≥
2
∑

1≤i<j≤n 𝜇𝛽(xixj)

n
 , where �1 ≥ �2 ≥ ⋯ ≥ �n . On the 

other hand, since

According to the Cauchy–Schwarz inequality to the vectors 
(1, 1,… , 1) and (∣ �1 ∣, ∣ �2 ∣,… , ∣ �n ∣) with n − 1 entries, 
we have

By placing (5) in (6), we get

S i n c e  t h e  l e a s t  v a l u e  o f  t h e  f u n c t i o n 

F(x) = x +

�
(n − 1)

�
2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2 − x2

�
 is in the 

interval 
⎛⎜⎜⎝

�
2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2

n
,

�
2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2

⎞⎟⎟⎠
,

n ≤ 2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2 , 1 ≤

2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2

n
 . So,

Therefore, the inequality (7) holds

(5)

n∑
i=1

𝛼2
i
= 2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2

n∑
i=2

𝛼2
i
= 2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2 − 𝛼2

1
.

(6)E(��(xixj)) − �1 =

n∑
i=2

∣ �i ∣≤

√√√√(n − 1)

n∑
i=2

∣ �i ∣
2.

(7)

E(𝜇𝛽(xixj)) − 𝛼1 ≤

√√√√(n − 1)

(
2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2 − 𝛼2

1

)
,

E(𝜇𝛽(xixj)) ≤ 𝛼1 +

√√√√(n − 1)

(
2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2 − 𝛼2

1

)
.

�
2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2

n
≤

2
∑

1≤i<j≤n(𝜇𝛽(xixj))
2

n

≤
2
∑

1≤i<j≤n 𝜇𝛽(xixj)

n

≤ 𝛼1 ≤

�
2

�
1≤i<j≤n

(𝜇𝛽(xixj))
2.

E(𝜇𝛽(xixj)) ≤
2

∑
1≤i<j≤n(𝜇𝛽(xixj))

2

n

+

�������(n − 1)

⎧⎪⎨⎪⎩
2

�
1≤i<j≤n

(𝜇𝛽(xixj))
2 −

�
2

∑
1≤i<j≤n(𝜇𝛽(xixj))

2

n

�
2
⎫⎪⎬⎪⎭
.

Similarly, we can show (ii) and (iii). 	�  ◻

Theorem  4  If G = (A,B) is a PFG on n vertices, then 
E(G) ≤

n

2
(1 +

√
n).

Proof  Suppose that G = (A,B) is a PFG on n nodes and 
n ≤ 2

∑
1≤i<j≤n(𝜇𝛽(xixj))

2 = 2z . It can be easily shown that 

f (z) =
2z

n
+

√
(n − 1)

(
2z −

(
2z

n

)2
)

 is maximized when 

z =
n2 + n

√
n

4
 . By placing this value of z in Theorem 3; we 

have

Similarly,

Therefore, E(G) ≤ n

2
(1 +

√
n) . 	�  ◻

Definition 9  Let G = (A,B) be a PFG on n nodes. The degree 
matrix K(G) = [kij] of G is a n × n diagonal matrix which is 
defined as:

Definition 10  The LM of a PFG G = (A,B) is defined as 
L(G) = K(G) −M(G) , where K(G) and M(G) are the degrees 
matrix and AM of a PFG, respectively.

Definition 11  The LE of PFG G = (A,B) is specified as the 
following:

where

�∗
i
 , �∗

i
 and �∗

i
 , i = 1, 2,… , n are the eigenvalues of 

L(�B(xixj)) , L(�B(xixj)) and L(�B(xixj)) , respectively.

E(��(xixj)) ≤
n

2
(1 +

√
n).

E(��(xixj)) ≤
n

2
(1 +

√
n),

E(��(xixj)) ≤
n

2
(1 +

√
n).

kij =

{
dG(xi) i = j,

0 i ≠ j.

LE(G) =
(
LE(�B(xixj)),LE(�B(xixj)),LE(�B(xixj))

)
,

LE(G) =
( n∑

i=1

∣ �i ∣,

n∑
i=1

∣ �i ∣,

n∑
i=1

∣ �i ∣
)
,

𝜑i = 𝜑∗
i
−

2
∑

1≤i<j≤n 𝜇B(xixj)

n
,

𝜓i = 𝜓∗
i
−

2
∑

1≤i<j≤n 𝜂B(xixj)

n
,

𝜔i = 𝜔∗
i
−

2
∑

1≤i<j≤n 𝜈B(xixj)

n
.
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Example 3  Consider a PFG G given in Fig. 3.
The AM, degree matrix, and LM are as follows, 

respectively.

Af ter  comput ing  we have  LE(�B(xixj)) = 1.681 , 
LE(�B(xixj)) = 1.516 and LE(�B(xixj)) = 3.806.

So, LE(G) = (1.681, 1.516.3.806).

Theorem 5  Let G = (A,B) be a PFG and L(G) be the LM 
of G. If �∗

1
≥ �∗

2
≥ ⋯ ≥ �∗

n
 , �∗

1
≥ �∗

2
≥ ⋯ ≥ �∗

n
 and 

M(G) =

⎡
⎢⎢⎢⎢⎢⎣

(0, 0, 0) (0.3, 0.1, 0.4) (0, 0, 0) (0.2, 0.2, 0.6) (0.3, 0.2, 0.3)

(0.3, 0.1, 0.4) (0, 0, 0) (0.3, 0.1, 0.5) (0, 0, 0) (0.3, 0.3, 0.4)

(0, 0, 0) (0.3, 0.1, 0.5) (0, 0, 0) (0.2, 0.3, 0.5) (0.2, 0.2, 0.5)

(0.2, 0.2, 0.6) (0, 0, 0) (0.2, 0.3, 0.5) (0, 0, 0) (0.2, 0.1, 0.6)

(0.3, 0.2, 0.3) (0.3, 0.3, 0.4) (0.2, 0.2, 0.5) (0.2, 0.1, 0.6) (0, 0, 0)

⎤
⎥⎥⎥⎥⎥⎦

.

K(G) =

⎡⎢⎢⎢⎢⎢⎣

(1.2, 0.5, 0.9) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0.9, 0.5, 1.3) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0.7, 0.6, 1.5) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.6, 1.7) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0.8, 1.8)

⎤⎥⎥⎥⎥⎥⎦

.

L(G) =

⎡⎢⎢⎢⎢⎢⎣

(1.2, 0.5, 0.9) (−0.3,−0.1,−0.4) (0, 0, 0) (−0.2,−0.2,−0.6) (−0.3,−0.2,−0.3)

(−0.3,−0.1,−0.4) (0.9, 0.5, 1.3) (−0.3,−0.1,−0.5) (0, 0, 0) (−0.3,−0.3,−0.4)

(0, 0, 0) (−0.3,−0.1,−0.5) (0, 7, 0, 6, 1.5) (−0.2,−0.3,−0.5) (−0.2,−0.2,−0.5)

(−0.2,−0.2,−0.6) (0, 0, 0) (−0.2,−0.3,−0.5) (0.6, 0.6, 1.7) (−0.2,−0.1,−0.6)

(−0.3,−0.2,−0.3) (−0.3,−0.3,−0.4) (−0.2,−0.2,−0.5) (−0.2,−0.1,−0.6) (1, 0.8, 1.8)

⎤⎥⎥⎥⎥⎥⎦

.

�∗
1
≥ �∗

2
≥ ⋯ ≥ �∗

n
 are the eigenvalues of L(�B(xixj)) , 

L(�B(xixj)) and L(�B(xixj)) , respectively, then,

Proof  (i) Since L(G) is a symmetric matrix with non-nega-
tive Laplacian eigenvalues, therefore,

 T h e n ,  
∑n

i=1
𝜑∗
i
= 2

∑
1≤i<j≤n 𝜇𝛽(xixj)  .  S i m i -

l a r l y ,  
∑n

i=1
𝜓∗
i
= 2

∑
1≤i<j≤n 𝜂𝛽(xixj)  a n d 

∑n

i=1
𝜔∗
i
= 2

∑
1≤i<j≤n 𝜈𝛽(xixj).

(ii) According to the trace properties of a matrix, we have

(i)

n∑
i=1

𝜑∗
i
= 2

∑
1≤i<j≤n

𝜇B(xixj),

n∑
i=1

𝜓∗
i
= 2

∑
1≤i<j≤n

𝜂B(xixj),

n∑
i=1

𝜔∗
i
= 2

∑
1≤i<j≤n

𝜈B(xixj).

(ii)

n∑
i=1

𝜑∗
i

2
= 2

∑
1≤i<j≤n

(𝜇B(xixj))
2 +

n∑
i=1

d2
𝜇
(xi),

n∑
i=1

𝜓∗
i

2
= 2

∑
1≤i<j≤n

(𝜂B(xixj))
2 +

n∑
i=1

d2
𝜂
(xi),

n∑
i=1

𝜔∗
i

2
= 2

∑
1≤i<j≤n

(𝜈B(xixj))
2 +

n∑
i=1

d2
𝜈
(xi).

n∑
i=1

𝜑∗
i
= tr(L(G)) =

n∑
i=1

d𝜇(xi) = 2
∑

1≤i<j≤n

𝜇𝛽(xixj).

tr((L(��(xixj)))
2) =

n∑
i=1

�∗
i
,

Fig. 3   PFG for LE
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where

Therefore,

Similarly, the other equation are fixed. 	�  ◻

Proposition 6  Let G = (A,B) be a PFG and L(G) be the 
LM of G. If �∗

1
≥ �∗

2
≥ ⋯ ≥ �∗

n
 , �∗

1
≥ �∗

2
≥ ⋯ ≥ �∗

n
 , and 

�∗
1
≥ �∗

2
≥ ⋯ ≥ �∗

n
 are the eigenvalues of L(�B(xixj)) , 

L(�B(xixj)) , and L(�B(xixj)) , respectively, and

 then,

where

Theorem 7  Let G be a PFG on n vertices and L(G) be the 
LM of G, then

tr((L(𝜇𝛽(xixj)))
2) =

(
d2𝜇(x1) + 𝜇2

𝛽
(x1x2) +⋯ + 𝜇2

𝛽
(x1xn)

)

+
(
𝜇2
𝛽
(x2x1) + d2𝜇(x2) +⋯ + 𝜇2

𝛽
(x2xn)

)

+⋯ +
(
𝜇2
𝛽
(xnx1) + 𝜇2

𝛽
(xnx2) +⋯ + d2𝜇(xn)

)

= 2
∑

1≤i<j≤n

(𝜇𝛽(xixj))
2 +

n∑
i=1

d2
𝜇
(xi).

n∑
i=1

𝜑∗
i

2
= 2

∑
1≤i<j≤n

(𝜇𝛽(xixj))
2 +

n∑
i=1

d2
𝜇
(xi).

𝜑i = 𝜑∗
i
−

2
∑

1≤i<j≤n 𝜇B(xixj)

n
,

𝜓i = 𝜓∗
i
−

2
∑

1≤i<j≤n 𝜇B(xixj)

n
,

𝜔i = 𝜔∗
i
−

2
∑

1≤i<j≤n 𝜇B(xixj)

n
,

(i)

n∑
i=1

�i = 0,

n∑
i=1

�i = 0,

n∑
i=1

�i = 0,

(ii)

n∑
i=1

�2
i
= 2M�,

n∑
i=1

�2
i
= 2M� ,

n∑
i=1

�2
i
= 2M� ,

M𝜇 =
�

1≤i<j≤n

�
𝜇B(xixj)

�2
+

1

2

n�
i=1

�
d𝜇(xi) −

2
∑

1≤i<j≤n 𝜇B(xixj)

n

�2

,

M𝜂 =
�

1≤i<j≤n

�
𝜂B(xixj)

�2
+

1

2

n�
i=1

�
d𝜂(xi) −

2
∑

1≤i<j≤n 𝜂B(xixj)

n

�2

,

M𝜈 =
�

1≤i<j≤n

�
𝜈B(xixj)

�2
+

1

2

n�
i=1

�
d𝜈(xi) −

2
∑

1≤i<j≤n 𝜈B(xixj)

n

�2

.

Proof  According to the Cauchy–Schwarz inequality to the n 
numbers 1, 1,… , 1 and ∣ �1 ∣, ∣ �2 ∣,… , ∣ �n ∣ , we have

because

So, we have

Similarly, we can show other inequalities. 	�  ◻

Theorem 8  Let G be a PFG on n vertices and L(G) be the 
LM of G. Then,

(i) LE(𝜇B(xixj))

≤

����
2n

�
1≤i<j≤n

�
𝜇B(xixj)

�
2

+ n

n�
i=1

�
d𝜇(xi) −

2

∑
1≤i<j≤n 𝜇B(xixj)

n

�
2

,

(ii) LE(𝜂B(xixj))

≤

����
2n

�
1≤i<j≤n

�
𝜂B(xixj)

�
2

+ n

n�
i=1

�
d𝜂(xi) −

2

∑
1≤i<j≤n 𝜂B(xixj)

n

�
2

,

(iii) LE(𝜈B(xixj))

≤

����
2n

�
1≤i<j≤n

�
𝜈B(xixj)

�
2

+ n

n�
i=1

�
d𝜈(xi) −

2

∑
1≤i<j≤n 𝜈B(xixj)

n

�
2

.

n�
i=1

∣ �i ∣≤
√
n

���� n�
i=1

∣ �i ∣
2,

LE(�B(xixj)) ≤
√
n

�
2M� =

�
2nM�,

M𝜇 = 2n
�

1≤i<j≤n

�
𝜇B(xixj)

�2
+

1

2

n�
i=1

�
d𝜇(xi) −

2
∑

1≤i<j≤n 𝜇B(xixj)

n

�2

.

LE(𝜇B(xixj))

≤

����2n
�

1≤i<j≤n

�
𝜇B(xixj)

�2
+ n

n�
i=1

�
d𝜇(xi) −

2
∑

1≤i<j≤n 𝜇B(xixj)

n

�2

.

(i) LE(𝜇B(xixj))

≥ 2

���� �
1≤i<j≤n

�
𝜇B(xixj)

�2
+

1

2

n�
i=1

�
d𝜇(xi) −

2
∑

1≤i<j≤n 𝜇B(xixj)

n

�2

,

(ii) LE(𝜂B(xixj))

≥ 2

���� �
1≤i<j≤n

�
𝜂B(xixj)

�2
+

1

2

n�
i=1

�
d𝜂(xi) −

2
∑

1≤i<j≤n 𝜂B(xixj)

n

�2

,

(iii) LE(𝜈B(xixj))

≥ 2

���� �
1≤i<j≤n

�
𝜈B(xixj)

�2
+

1

2

n�
i=1

�
d𝜈(xi) −

2
∑

1≤i<j≤n 𝜈B(xixj)

n

�2

.
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Proof  According to the assumptions we have

 which will be demonstrated with situation (i). Similarly, we 
can prove another inequality. 	�  ◻

Theorem 9  Let G be a PFG on n vertices and L(G) be the 
LM of G. Then,

Proof  Using the Caushy–Schwarz inequality, we get

Since M𝜇 =
∑

1≤i<j≤n(𝜇𝛽 (xixj))
2 +

1

2

∑n

i=1

�
d𝜇(xi) −

2

∑
1≤i<j≤n 𝜇𝛽 (xixj)

n

�
2

 , 

so

( n∑
i=1

∣ 𝜑i ∣
)2

=

n∑
i=1

∣ 𝜑i ∣
2 +2

∑
1≤i<j≤j

∣ 𝜑i𝜑j ∣≥ 4M𝜇,

LE(𝜇B(xixj)) ≥ 2
√

M𝜇,

(i) LE(𝜇𝛽(xixj)) ≤∣ 𝜑i ∣

+

�����(n − 1)

⎛
⎜⎜⎝
2

�
1≤i<j≤n

(𝜇𝛽(xixj))
2 +

n�
i=1

�
d𝜇(xi) −

2
∑

1≤i<j≤n 𝜇𝛽(xixj)

n

�2

− 𝜑2
i

⎞
⎟⎟⎠
,

(ii) LE(𝜂𝛽(xixj)) ≤∣ 𝜓i ∣

+

�����(n − 1)

⎛⎜⎜⎝
2

�
1≤i<j≤n

(𝜂𝛽(xixj))
2 +

n�
i=1

�
d𝜂(xi) −

2
∑

1≤i<j≤n 𝜂𝛽(xixj)

n

�2

− 𝜓2
i

⎞⎟⎟⎠
,

(iii) LE(𝜈𝛽(xixj)) ≤∣ 𝜔i ∣

+

�����(n − 1)

⎛⎜⎜⎝
2

�
1≤i<j≤n

(𝜈𝛽(xixj))
2 +

n�
i=1

�
d𝜈(xi) −

2
∑

1≤i<j≤n 𝜈𝛽(xixj)

n

�2

− 𝜔2
i

⎞⎟⎟⎠
.

n∑
i=1

∣ �i ∣≤

√√√√n

n∑
i=1

∣ �i ∣
2,

n∑
i=2

∣ �i ∣≤

√√√√(n − 1)

n∑
i=2

∣ �i ∣
2,

LE(��(xixj))− ∣ �1 ∣≤

√
(n − 1)(2M� − �2

1
),

LE(��(xixj)) ≤∣ �1 ∣ +

√
(n − 1)(2M� − �2

1
).

LE(𝜇𝛽(xixj)) ≤∣ 𝜑1 ∣

+

�����(n − 1)

⎛⎜⎜⎝
2

�
1≤i<j≤n

(𝜇𝛽(xixj))
2 +

n�
i=1

�
d𝜇(xi) −

2
∑

1≤i<j≤n 𝜇𝛽(xixj)

n

�2

− 𝜑2
1

⎞⎟⎟⎠
.

Similarly, other inequalities are proved. 	�  ◻

Remark  All results from the energy of a PFG are confirmed 
for a PFDG while eigenvalues are complex numbers we spot 
real part therefrom. Herein, suffice it to say the following 
definition.

Definition 12  Let D = (A, �⃗B) be a PFDG. The energy of D 
is defined as follow:

Here, we survey the LE of the PFDGs.

Definition 13  The out-degree matrix of a PFG is shown 
with symbol K+(D) = [kij] and it is a n × n diagonal matrix 
defined as

Definition 14  The LM of PFDG D = (A, �⃗B) is defined as 
follow:

E(D) =

(
E(𝜇

B⃗
(xixj)),E(𝜂B⃗(xixj)),E(𝜈B⃗(xixj))

)

kij =

{
d+
D
(xi) i = j,

0 i ≠ j.

L(D) =

(
L(𝜇

B⃗
(xixj)),L(𝜂B⃗(xixj)),L(𝜈B⃗(xixj))

)

L(D) = K+(D) −M(D)
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where K+(D) and M(D) are the out-degree matrix and AM 
of D, respectively.

Definition 15  The LE of a PFDG D = (A, �⃗B) is specified as 
follow:

where

LE(D) =

(
LE(𝜇

B⃗
(xixj)),LE(𝜂B⃗(xixj)),LE(𝜈B⃗(xixj))

)
,

LE(D) =

( n∑
i=1

∣ ti ∣,

n∑
i=1

∣ wi ∣,

n∑
i=1

∣ zi ∣

)
,

Fig. 4   A PFDG

Fig. 5   A PFDG G = (A,�)
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t∗
i
 , w∗

i
 , and z∗

i
 , are real part the eigenvalues of L

(
𝜇
B⃗
(xixj)

)
 , 

L
(
𝜂
B⃗
(xixj)

)
 and L

(
𝜈
B⃗
(xixj)

)
 , respectively.

Example 4  Consider a PFDG D = (A, �⃗B) which is given in 
Fig. 4.

So, the energy of PFDG is as follow:

 On the other hand,

ti = t∗
i
−

2
∑

1≤i<j≤n 𝜇B⃗
(xixj)

n
,

wi = w∗
i
−

2
∑

1≤i<j≤n 𝜂B⃗(xixj)

n
,

zi = z∗
i
−

2
∑

1≤i<j≤n 𝜈B⃗(xixj)

n
,

M(D) =

⎡
⎢⎢⎢⎢⎢⎣

(0, 0, 0) (0.6, 0.1, 0.3) (0.5, 0.2, 0.3) (0, 0, 0) (0.3, 0.2, 0.4)

(0.5, 0.1, 0.4) (0, 0, 0) (0.4, 0.1, 0.3) (0.6, 0.1, 0.3) (0, 0, 0)

(0, 0, 0) (0.5, 0.1, 0.4) (0, 0, 0) (0.4, 0.1, 0.4) (0.3, 0.2, 0.4)

(0.5, 0.1, 0.4) (0, 0, 0) (0.5, 0.1, 0.3) (0, 0, 0) (0.4, 0.1, 0.5)

(0.4, 0.1, 0.3) (0.4, 0.1, 0.4) (0, 0, 0) (0.3, 0.1, 0.4) (0, 0, 0)

⎤
⎥⎥⎥⎥⎥⎦

.

K+(D) =

⎡⎢⎢⎢⎢⎢⎣

(1.4, 0.5, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (1.5, 0.3, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (1.2, 0.4, 1.2) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (1.4, 0.3, 1.2) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1.1, 0.3, 1.1)

⎤⎥⎥⎥⎥⎥⎦

.

L(D) =

⎡⎢⎢⎢⎢⎢⎣

(1.4, 0.5, 1) (−0.6,−0.1,−0.3) (−0.5,−0.2,−0.3) (0, 0, 0) (−0.3,−0.2,−0.4)

(−0.5,−0.1,−0.4) (1.5, 0.3, 1) (−0.4,−0.1,−0.3) (−0.6,−0.1,−0.3) (0, 0, 0)

(0, 0, 0) (−0.5,−0.1,−0.4) (1.2, 0.4, 1.2) (−0.4,−0.1,−0.4) (−0.3,−0.2,−0.4)

(−0.5,−0.1,−0.4) (0, 0, 0) (−0.5,−0.1,−0.3) (1.4, 0.3, 1.2) (−0.4,−0.1,−0.5)

(−0.4,−0.1,−0.3) (−0.4,−0.1,−0.4) (0, 0, 0) (−0.3,−0.1,−0.4) (1.1, 0.3, 1.1)

⎤⎥⎥⎥⎥⎥⎦

.

spec(𝜇
B⃗
(xixj)) = {1.332,−0.565 + 0.449i,−0.565 − 0.449i,−0.101 + 0.274i,−0.101 − 0.274i},

spec(𝜂
B⃗
(xixj)) = {0.355,−0.138 + 0.142i,−0.138 − 0.1421i,−0.039 + 0.059i,−0.039 − 0.059i},

spec(𝜈
B⃗
(xixj)) = {1.095,−0.487 + 0.354i,−0.487 − 0.354i,−0.610 + 0.188i,−0.610 − 0.188i}.

E(D) =

(
E(𝜇

B⃗
(xixj)),E(𝜂B⃗(xixj)),E(𝜈B⃗(xixj))

)

E(D) = (2.664, 0.709, 4.144).

We have

So, LE(D) = (2.532, 0.754, 2.018).

Laplacian spec(𝜇
B⃗
(xixj))

= {1.933 + 0.446i, 1.933 − 0.446i, 1.367

+ 0.237i, 1.367 − 0.237i},

Laplacian spec(𝜂
B⃗
(xixj))

= {0.528 + 0.123i, 0.528 − 0123i, 0.371

+ 0.048i, 0.371 − 0.048i},

Laplacian spec(𝜈
B⃗
(xixj))

= {1.581 + 0.333i, 1.581 − 0.333i, 1.168

+ 0.175i, 1.168 − 0.175i}.

LE(𝜇
B⃗
(xixj)) = 2.532,

LE(𝜂
B⃗
(xixj)) = 0.754,

LE(𝜈
B⃗
(xixj)) = 2.018.
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One of the energies of a digraph is skew energy. Here, we 
define the SLE of a PFDG.

Definition 16  Let D∗ = (V , �⃗E) be a simple digraph without 
any loop and multiple arcs and D = (A, �⃗B) be a PFDG on D∗

.The SAM of D is the matrix in the form of

where

Definition 17  The SLE of the PFDG D = (A, �⃗B) is specified 
as

where pi , qi and ri are eigenvalues of the LM 
L(D) = K+(D) − S(D) of D.

Example 5  Consider a PFDG which is given in Fig. 5.
The SAM of D is as the follow:

S(D) =

(
S(𝜇

B⃗
(xixj)), S(𝜂B⃗(xixj)), S(𝜈B⃗(xixj)

)

S(D) = [sij] =

⎧
⎪⎨⎪⎩

�
𝜇
B⃗
(xixj), 𝜂B⃗(xixj), 𝜈B⃗(xixj)

�
xixj ∈

�⃗E,�
− 𝜇

B⃗
(xixj),−𝜂B⃗(xixj),−𝜈B⃗(xixj)

�
xjxi ∈

�⃗E,

(0, 0, 0) otherwise.

SLE(D) =

( n∑
i=1

p2
i
,

n∑
i=1

q2
i
,

n∑
i=1

r2
i

)

S(D) =

⎡
⎢⎢⎢⎢⎢⎣

(0, 0, 0) (−0.3,−0.3,−0.2) (−0.4,−0.1,−0.4) (0, 0, 0) (0.3, 0.2, 0.4)

(0.3, 0.3, 0.2) (0, 0, 0) (−0.3,−0.2,−0.4) (0.4, 0.2, 0.3) (0.3, 0.2, 0.5)

(0.4, 0.1, 0.4) (0.3, 0.2, 0.4) (0, 0, 0) (−0.4,−0.1,−0.5) (−0.3,−0.2,−0.4)

(0, 0, 0) (−0.4,−0.2,−0.3) (0.4, 0.1, 0.5) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (−0.3,−0.2,−0.5) (0.3, 0.2, 0.4) (0, 0, 0) (0, 0, 0)

⎤
⎥⎥⎥⎥⎥⎦

.

K+(D) =

⎡⎢⎢⎢⎢⎢⎣

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (1, 0.7, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0.7, 0.3, 0.8) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.1, 0.5) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.3, 0.2, 0.4)

⎤⎥⎥⎥⎥⎥⎦

.

L(D) =

⎡⎢⎢⎢⎢⎢⎣

(0, 0, 0) (0.3, 0.3, 0.2) (0.4, 0.1, 0.4) (0, 0, 0) (0, 0, 0)

(−0.3,−0.3,−0.2) (1, 0.7, 1) (0.3, 0.2, 0.4) (−0.4,−0.2,−0.3) (−0.3,−0.2,−0.5)

(−0.4,−0.1,−0.4) (−0.3,−0.2,−0.4) (0.7, 0.3, 0.8) (0.4, 0.1, 0.5) (0.3, 0.2, 0.4)

(0, 0, 0) (0.4, 0.2, 0.3) (−0.4,−0.1,−0.5) (0.4, 0.1, 0.5) (0, 0, 0)

(0, 0, 0) (0.3, 0.2, 0.5) (−0.3,−0.2,−0.4) (0, 0, 0) (0.3, 0.2, 0.4)

⎤⎥⎥⎥⎥⎥⎦

.

The skew Laplacian spectrum of a PFDG D, given in Fig. 5, 
is

So, the SLE of D is

Theorem 10  If D is a simple PFDG with vertex degrees of 
d(x1), d(x2),… , d(xn) where d(xi) = (d�(xi), d�(xi), d�(xi)) , 
then,

skewLaplacian spec(𝜇
B⃗
(xixj))

= {0.625 + 0.726i, 0.625 − 0.726i, 0.408

+ 0.234i, 0.408 − 0.234i, 0.334},

skewLaplacian spec(𝜂
B⃗
(xixj))

= {0.396 + 0.377i, 0.396 − 0.377i, 0.197

+ 0.123i, 0.197 − 0123i, 0.112},

skewLaplacian spec(𝜈
B⃗
(xixj))

= {0.694 + 0.929i, 0.694 − 0929i, 0.541

+ 0.147i, 0.541 − 0.147i, 0.229}.

SLE(D) = (1.225, 0.405, 1.602).
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Fig. 6   PFDG D
1

Fig. 7   PFDG D
2

Fig. 8   PFDG D
3

Proof  Let p1, p2,… , pn be the eigenvalues of the LM 
L(𝜇

B⃗
(xixj)) = K+(𝜇

B⃗
(xixj)) − S(𝜇

B⃗
(xixj)) where K+(𝜇

B⃗
(xixj)) 

and S(𝜇
B⃗
(xixj)) are out-degree matrix and SAM of member-

ship element of D. We have

SLE(D) =

( n∑
i=1

d�(xi)(d�(xi) − 1),

n∑
i=1

d�(xi)(d�(xi) − 1),

×

n∑
i=1

d�(xi)(d�(xi) − 1)

)
.

n∑
i=1

pi = sum of determinants of all 1

× 1 principal submatrices of L(𝜇
B⃗
(xixj))

= trace of L(𝜇
B⃗
(xixj))

=

n∑
i=1

d𝜇(xi)

∑
i<j

pipj =sum of determinants of all 2

× 2 principal submtrices of L(𝜇
B⃗
(xixj))

=
∑
i<j

∣
d𝜇(xi) − 𝜇ij

−𝜇ji d𝜇(xj)
∣=

∑
i<j

d𝜇(xi)d𝜇(xj) − 𝜇ij𝜇ji

=
∑
i<j

(
d𝜇(xi)d𝜇(xj) + 𝜇2

ij

)
.
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Since �2

ij
=∣ �ij ∣ for i < j , so,

Thus,

Similarly, we can show that

This completes the proof. 	� ◻

∑
i≠j

pipj =2
∑
i<j

pipj =
∑
i≠j

d𝜇(xi)d𝜇(xj) +
∑
i≠j

∣ aij ∣

=
∑
i≠j

d𝜇(xi)d𝜇(xj) +

n∑
i=1

d𝜇(xi).

SLE(𝜇
B⃗
(xixj)) =

n∑
i=1

p2
i
=

( n∑
i=1

pi

)2

−
∑
i≠j

pipj

=

( n∑
i=1

d𝜇(xi)

)2

−

[∑
i≠j

d𝜇(xi)d𝜇(xj) +

n∑
i=1

d𝜇(xi)

]

=

n∑
i=1

(
d𝜇(xi)

)2
−

n∑
i=1

d𝜇(xi)

=

n∑
i=1

d𝜇(xi)
(
d𝜇(xi) − 1

)
.

SLE(𝜂
B⃗
(xixj)) =

n∑
i=1

d𝜂(xi)
(
d𝜂(xi) − 1

)
,

SLE(𝜈
B⃗
(xixj)) =

n∑
i=1

d𝜈(xi)
(
d𝜈(xi) − 1

)
.

4 � Applications

4.1 � Selecting a Suitable Construction Plan 
in Different Climatic Zone

In studying the characteristics of housing and architecture, 
not only historical and economic factors should be carefully 
studied, but also the impact of natural geographical factors 
on housing architecture in different climatic regions should 
be considered. Architects have traditionally paid attention 
to nature and the surrounding environment and have main-
tained a peaceful relationship with nature in the traditional 
way, and in architecture, they have always paid attention to 
the environment and nature around them. The house in the 
warm and dry climate had dense, introverted plans facing 
the central courtyard. These houses showed all their beau-
ties to the family. Traditional houses in the cold climate 
were also built as a central courtyard and had dense and 
compact plans. In temperate and humid climates, due to the 
high humidity in traditional houses, the roofs are sloping 
and the porches around the building have been considered as 
an important space in the house. The shape of the building 
is also unlike the hot and dry climate houses which have a 
central courtyard. This area has been designed extroverted 
and the view of the windows of the house and the yard has 
been around it. A construction holding company is consid-
ering new plans for housing based on advisers’ opinions. 
These plans include: 

(1)	 Access to public services.
(2)	 Architectural style.
(3)	 Infrastructure networks.
(4)	 Auxiliary facilities.
(5)	 Smart systems.

Fig. 9   Comparison of the 
energy of PFDGs
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These plans and relations are more important for housing 
and employment in climate regions. In relation to different 
climatic regions, carrying out the above plans for the con-
struction company is associated with avail, loss, or neutral 
states. Doing any of the above projects is directly or indi-
rectly related to other projects. We showed the interactions 
of the above designs in terms of their location in different 
climatic points in the form of a PFDG. Therefore, we con-
sider a PFDG at three climate regions of cold, temperate, 
and warm. Afterward, the energy, LE, and SLE of a PFDG 
are calculated for each of these regions.

The above plans are considered for the cold regions as a 
PFDG D1 shown in Fig. 6. The picture fuzzy numbers for 
the vertices are the percentage of the impact of each of the 

Fig. 10   Comparison of LEs of 
PFDGs

Fig. 11   Comparison of SLE of 
PFDGs

construction company’s plans for construction in different 
climatic zones. These percentages are determined by the 
opinion of consultants and based on the experiences and sta-
tistics available in the company. The relationships between 
the vertices are the edges that represent the most connection 
between the plans of the company, and therefore the edges are 
all strong.

In this digraph, the plan degree x3 is (0.5, 0.2, 0.1). i.e. 
in cold regions in which for applying this plan 50% is avail, 
20% is neutral and 10% is loss, too, and the degree of impact 
of infrastructure networks on intelligent systems (x3x5) is 
(0.3, 0.2, 0.3). i.e. 30% is avail, 20% is neutral and 40% is loss.

We calculated energy, LE, and SLE.
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So, E(D1) = (0.6603, 0.4, 0.7113) . Also,

spec(𝜇
B⃗
(xixj))

= {−0.1651 + 0.2859i,−0.1651 − 0.2859i, 0.3301, 0, 0},

spec(𝜂
B⃗
(xixj))

= {0.2,−0.1 + 0.1732i,−0.1 − 1732i, 0, 0},

spec(𝜈
B⃗
(xixj))

= {−0.1778 + 0.3080i,−0.1778 − 0.3080i, 0.3557, 0, 0}.

So, LE(D1) = (1.8, 0.72, 1.18).

Laplacian spec(𝜇
B⃗
(xixj))

= {1.4, 0.5 + 0.28282i, 0.5 − 0.2828i, 0.4, 0},

Laplacian spec(𝜂
B⃗
(xixj))

= {0.5, 0.3 + 0.1732i, 0.3 − 0.1732i, 0.1, 0},

Laplacian spec(𝜈
B⃗
(xixj))

= {1, 0.55 + 0.2958i, 0.55 − 0.2958i, 0.4, 0}.

Fig. 12   PFDGs

(a) D1 (b) D2

(c) D3 (d) D4
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So, the SLE D1 is equal to

The PFDG D2 shown in Fig. 7 is considered for temperate 
regions.

After calculation, we have

skew LapLaplacian lacian spec(𝜇
B⃗
(xixj))

= {0.8239 + 0.6484i, 0.8239 − 0.6434i, 0.3829 + 0.6706i,

0.3829 − 0.6706i, 0.3862},

skewLaplacian spec(𝜂
B⃗
(xixj))

= {0.2378 + 0.3792i, 0.2378 − 0.3792i, 0.2853 + 0.2145i,

0.2853 − 0.2145i, 0.1534},

skewLaplacian spec(𝜈
B⃗
(xixj))

= {0.4378 + 0.7807i, 0.4378 − 0.7807i, 0.5729 + 0.3604i,

0.5729 − 0.3604i, 0.4786}.

SLE(D1) = (1.7990, 0.2994, 1.2688).

So, E(D2) = (0.7258, 0.2, 0.6604).

So, LE(D2) = (2.04, 0.72, 1.14).

So, the SLE D2 is equal to

 For warm regions, a PFDG D3 shown in Fig. 8 is considered.
After calculation, we have

So, E(D3) = (0.8617, 0.2518, 0.6349).

spec(𝜇
B⃗
(xixj))

= {−0.1817 + 0.3147i,−0.1817 − 0.3147i, 0.3624, 0, 0},

spec(𝜂
B⃗
(xixj))

= {0.1,−0.05 + 0.0866i,−0.05 − 0.0866i, 0, 0},

spec(𝜈
B⃗
(xixj))

= {0.3302,−0.1651 + 0.2859i,−0.1651 − 0.2859i, 0, 0}.

Laplacian spec(𝜇
B⃗
(xixj))

= {1.5, 0.55 + 0.3122i, 1.5 − 0.3122i, 0.4, 0},

Laplacian spec(𝜂
B⃗
(xixj))

= {0.5, 0.2, 0.15 + 0.0866i, 0.15 − 0.0866i, 0},

Laplacian spec(𝜈
B⃗
(xixj))

= {0.7, 0.5 + 0.2828i, 0.5 − 0.2828i, 0.2, 0}.

skewLaplacian spec(𝜇
B⃗
(xixj))

= {0.8636 + 0.6533i, 0.8636 − 0.6533i, 0.4128 + 0.7207i,

0.4128 − 0.7207i, 0.4470}

skewLaplacian spec(𝜂
B⃗
(xixj))

= {0.2888 + 0.2496i, 0.2888 − 0.2496i, 0.1371 + 2285i,

0.1371 − 2285i, 0.1483}

skewLaplacian spec(𝜈
B⃗
(xixj))

= {0.3445 + 0.6250i, 0.3445 − 0.6250i, 0.4612 + 0.2595i,

0.4612 − 0.2595i, 0.2885}.

SLE(D2) = (2.0322, 0.2263, 0.7460).

spec(𝜇
B⃗
(xixj))

= {0.4309,−0.2154 + 0.3731i,−0.2154 − 0.3731i, 0, 0},

spec(𝜂
B⃗
(xixj))

= {−0.0629 + 0.1091i,−0.0629 − 0.1091i, 0.1260, 0, 0},

spec(𝜈
B⃗
(xixj))

= {0.3175,−0.1587 + 0.2749i,−0.1587 − 0.2749i, 0, 0}.

Fig. 13   PFDG corresponding to PFPRA
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So, LE(D3) = (2.154, 0.4, 1.16).

So, the SLE D3 is equal to

The figures  9, 10 and 11 represent a comparison 
between the energy, LE, and SLE of applied plans in 
three regions corresponding to the avail, neutral, and loss 
memberships, respectively. From the above bar graphs, 
the energy, LE and SLE of avail membership for warm 
regions is high as compared to other regions. This shows 
that the above designs are more efficient in hot areas and 
more coherence between the designs can be considered. 
The energy, LE, and SLE of neutral membership for cold 
regions is high and the energy, LE, and SLE of loss mem-
bership for cold regions is high.

4.2 � Choosing the Best Place to Start a Business

Everyone who works in business has heard that one of the 
most important factors in ensuring the profitability of a busi-
ness is its location. Basic decision making in this field can 
transform a startup and lead to growing success. The size, 
layout, physical location and appearance of the workplace 
should all serve to develop your operations. The deeper you 
go into your business plan, the more realistic and tangible 
your budget for your property and business expenses will be, 
given the infrastructure, tax laws, facilities, regional laws, 

Laplacian spec(𝜇
B⃗
(xixj))

= {1.4, 0.8670, 0.2165 + 0.3710i, 0.2165 − 0.3710i, 0.4},

Laplacian spec(𝜂
B⃗
(xixj))

= {0.3, 0.2 + 0.1i, 0.2 − 0.1i, 0.1, 0},

Laplacian spec(𝜈
B⃗
(xixj))

= {1, 0.5 + 0.2646i, 0.5 − 0.2646i, 0.4, 0}.

skewLaplacian spec(𝜇
B⃗
(xixj))

= {0.9801 + 2.1042i, 0.9801 − 2.1042i, 0.3650 + 0.6963i,

0.3650 − 0.6963i, 0.4097},

Laplacian = {0.1540 + 0.2661i, 0.1540 − 0.2661i, 0.1649 + 0.1151i

0.1649 − 0.1151i, 0.1621},

skewLaplacian spec(𝜈
B⃗
(xixj))

= {0.3842 + 0.7014i, 0.3842 − 0.7014i, 0.6001 + 0.4569i,

0.6001 − 0.4569i, 0.4313}.

SLE(D3) = (2.3555, 0.1281, 1.2015).

environmental regulations, and growth potential. In addition 
to physical businesses, this also affects Internet businesses.

Four different locations were considered for starting a 
new business, and a group of four consultants in finance, 
business, real estate and law were invited to decide on the 
appropriate location. Each expert made separate judgments 
based on their experiences and comparisons between the 
two different locations. These views were based on three 
factors: appropriate, neutral and inappropriate. The AMs 

related to picture fuzzy relations to each of the experts are 
as follows:

The PFDGs Di corresponding to picture fuzzy preference 
relation (PFPR) given in matrices Mi are shown in Fig. 12 
(i = 1, 2, 3, 4) . The energy of each PFDG is calculated as:

Then, the weight of each expert can be calculated as:

M1 =

⎡⎢⎢⎢⎣

(0, 0, 0) (0.4, 0.1, 0.3) (0.4, 0.1, 0.3) (0.3, 0.1, 0.4)

(0.3, 0.1, 0.4) (0, 0, 0) (0.5, 0.1, 0.2) (0.5, 0.1, 0.3)

(0.3, 0.1, 0.3) (0.4, 0.1, 0.4) (0, 0, 0) (0.6, 0.1, 0.2)

(0.4, 0.1, 0.3) (0.4, 0.1, 0.2) (0.5, 0.1, 0.3) (0, 0, 0)

⎤⎥⎥⎥⎦
,

M2 =

⎡⎢⎢⎢⎣

(0, 0, 0) (0.4, 0.1, 0.3) (0.4, 0.1, 0.3) (0.5, 0.1, 0.2)

(0.6, 0.1, 0.2) (0, 0, 0) (0.5, 0.1, 0.3) (0.5, 0.1, 0.3)

(0.5, 0.2, 0.3) (0.5, 0.1, 0.3) (0, 0, 0) (0.5, 0.1, 0.4)

(0.4, 0.1, 0.3) (0.7, 0.1, 0.2) (0.4, 0.1, 0.4) (0, 0, 0)

⎤⎥⎥⎥⎦
,

M3 =

⎡⎢⎢⎢⎣

(0, 0, 0) (0.4, 0.1, 0.2) (0.3, 0.1, 0.2) (0.5, 0.2, 0.3)

(0.5, 0.1, 0.3) (0, 0, 0) (0.3, 0, 0.2) (0.5, 0.1, 0.3)

(0.4, 0.1, 0.3) (0.4, 0.1, 0.3) (0, 0, 0) (0.4, 0.1, 0.3)

(0.4, 0.1, 0.3) (0.5, 0.1, 0.4) (0.3, 0.1, 0.4) (0, 0, 0)

⎤⎥⎥⎥⎦
,

M4 =

⎡
⎢⎢⎢⎣

(0, 0, 0) (0.6, 0.1, 0.3) (0.5, 0.1, 0.3) (0.6, 0, 0.3)

(0.5, 0.1, 0.3) (0, 0, 0) (0.5, 0.1, 0.3) (0.6, 0, 0.3)

(0.4, 0.2, 0.4) (0.3, 0.1, 0.4) (0, 0, 0) (0.5, 0, 0.4)

(0.5, 0, 0.4) (0.5, 0, 0.4) (0.4, 0, 0.3) (0, 0, 0)

⎤
⎥⎥⎥⎦
.

E(D1) = (0.001, 0.2, 0.3), E(D2) = (0.001, 0.1, 0),

E(D3) = (0, 0.2, 0.001), E(D4) = (0, 0.1,−0.001).
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The collective picture fuzzy preference relation (PFPR), 
aggregated from the four PFPRs, is determined as:

A PFDG corresponding to a collective PFPRA 
above is drawn, as shown in Fig. 13. Then, under the 

wi = ((w�)i, (w�)i, (wr)i)

=

⎛
⎜⎜⎜⎜⎝

E(M�)i

4∑
j=1

E(M�)j

,
E(M�)i

4∑
j=1

E(M�)j

,
E(Mr)i
4∑
j=1

E(Mr)j

⎞
⎟⎟⎟⎟⎠

w1 = (0.5, 0.33, 1), w2 = (0.5, 0.16, 0)

w3 = (0, 0.33, 0.0033), w4 = (0, 0.16,−0.0033).

M =

4�
i=1

wiMi

=

⎡
⎢⎢⎢⎣

(0, 0, 0) (0.4, 0.098, 0.2) (0.35, 0.098, 0.2) (0.5, 0.115, 0.3003)

(0.55, 0.098, 0.3003) (0, 0, 0) (0.4, 0.065, 0.1997) (0.5, 0.066, 0.3)

(0.45, 0.13, 0.2997) (0.45, 0.098, 0.3) (0, 0, 0) (0.45, 0.082, 0.2993)

(0.4, 0.082, 0.2997) (0.6, 0.082, 0.3993) (0.15, 0.082, 0.4) (0, 0, 0)

⎤
⎥⎥⎥⎦
.

�jk
≥ 0.5 (j, k = 1, 2, 3, 4) condition, a partial diagram is 

drawn, as shown in Fig. 14.
Calculate the out-degrees d+(xi) (i = 1, 2, 3, 4) of all 

criteria in a partial PFDG as follow:

According to membership degrees of d+(xi) (i = 1, 2, 3, 4) , 
we get the ranking of the places xi as:

Therefore, the best choice is x1.
The flowchart for the selection of the best choice in 

business is as follow: 

d+(x1) = (1, 05, 0.213, 0.6006), d+(x2) = (0.5, 0.066, 0.3)

d+(x3) = (0, 0, 0), d+(x4) = (0.6, 0.082, 0.3993).

x1 ≻ x4 ≻ x2 ≻ x3.

Fig. 14   Partial PFDG of PFPRA
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5 � Conclusions

The PFG can amplify flexibility and precision to model com-
plex real-time problems better than an FG and IFG. They 
have several applications in many decision-making pro-
cesses among solution choice, weather forecasting, progno-
sis risks in business, etc. In recent years, graph energy has 
been used in many fields. It is clear that the neutrality degree 

is associated with more flexibility for the graph energy. In 
this research, aiming at expanding the concept of energy on 
the PFG and using its results in modeling and solving the 
problems ahead, we studied some types of energy and their 
results in the PFG. We were able to show that neutrality, as 
part of total energy, is effective in energy-based decisions. 
Neutral energy is more pronounced in some types of energy 
and is not always very small compared to membership and 
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non-membership degrees. We have obtained some proper-
ties and relations of lower and upper bounds of energy, LE, 
and SLE of PFG. Despite the energy fluctuations in dif-
ferent degrees of the PFG, no significant relationship was 
found between the degrees of energy. Finally, we presented 
applications of energy in decision-making based on supe-
rior choice. Examining the energy in the interval-valued 
intuitionistic fuzzy graph is an interval of the amount of our 
future work plans.
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