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Abstract
In this paper, a curve approximation approach using bio-inspired polar coordinate bald eagle search algorithm (PBES) is 
proposed. PBES algorithm is inspired by the spiral mechanism of bald eagle during predation. By introducing polar coor-
dinate, the spiral predation process of the bald eagle will become more intuitive, which is more conducive for the algorithm 
to polar coordinate optimization problems. The initialization stage of PBES algorithm is modified to make the distribution 
of initialized individuals more uniform and some parameters are introduced to strengthen the exploration and exploitation 
capabilities of algorithm. The performance of the PBES algorithm is tested in three aspects: polar coordinate transcendental 
equation, curve approximation and robotic manipulator. The experimental results show that the PBES algorithm is superior 
to the well-known metaheuristic algorithms as it is effectively applicable for curve approximation problem.

Keywords Polar bald eagle search algorithm · Polar coordinate · Polar transcendental equations · Curve approximation · 
Robotic manipulator · Metaheuristic algorithm
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1 Introduction

The polar coordinate systems have applications in many 
fields such as mathematics, physics, and engineering. In 
the scene where the angle and distance between two points 
can be easily expressed, the polar coordinates can have a 
good representations effect, this kind of scene can only be 
obtained by trigonometric formula in Cartesian coordi-
nate system. Polar equations are the simplest and easiest 
representation methods for a great deal of curves [1]. For 
the solution of some complex mathematical problems, the 
expression of polar coordinate equation is the most time-
saving and labor-saving, such as spirals [2, 3]. In physics, 
for some special physical phenomena, for instance, objects 
in a plane physical system moving around a center point, 
or trajectory motion at a certain point, the use of polar 
coordinate modeling often simplifies complex problems 
and is more conducive to understand and solve, and even 
get unexpected results. Some geometric trajectory prob-
lems are simpler to be solved by polar coordinate method 
than by Cartesian coordinate method. For the expressions 
of some curves, it is difficult to express in the Cartesian 
coordinate system, but the use of polar coordinate equa-
tions will make the expressions of the curves more intui-
tive and clearer [4]. Now, the polar coordinate system is 
widely used in a number of science computation and engi-
neering fields [5–7].

Metaheuristic algorithms are methods to derive the 
optimal and satisfactory solution of complex problems 
based on the bio-inspired mechanism [8]. Bio-inspired 
optimization explains the basic principle of optimization 
algorithm through the understanding of related behaviors, 
experiences, rules and action mechanisms in biological, 
physical, chemical, social and artistic systems, extracts 
corresponding feature models under the guidance of 
specific problem characteristics, and designs intelligent 
iterative search optimization algorithm [9]. Meta heuris-
tic algorithm can solve NP hard problems effectively and 
search the optimal solution of the problem accurately [10, 
11]. In general, the metaheuristic optimization methods 
are divided into the following four types according to 
different division criteria: evolution-based [12], swarm 
intelligence-based [13], physics and chemistry-based [14], 
and other methods. The first is based on evolutionary algo-
rithms, such as genetic algorithm (GA) [15], differential 
evolution algorithm (DE) [16], evolutionary deduction 
algorithm (ED) [17]. The second is based on swarm intel-
ligence and is generally based on the behavior of fauna in 
nature, such as particle swarm optimization (PSO) [18], 
ant colony optimization (ACO) [19], artificial bee colony 

(ABC) [20], firefly algorithm(FA) [21], bat algorithm(BA) 
[22], cuckoo search (CS) [23], dragonfly algorithm (DA) 
[24], moth-flame optimization (MFO) [25], salp swarm 
algorithm (SSA) [26], marine predators algorithm (MPA) 
[27] and slime mould algorithm (SMA) [28]. The third 
type is based on physics and chemistry, such as gravity 
search algorithm (GSA) [29], artificial electric field algo-
rithm (AEFA) [30], equilibrium optimizer (EO) [31], arti-
ficial chemical reaction optimization algorithm (ACROA) 
[32] and henry gas solubility optimization (HGSO) [33]. 
The last category is based on some other classical algo-
rithms, such as sine cosine algorithm (SCA) [34], harmony 
search (HS) [35], teaching–learning-based optimization 
(TLBO) [36], etc.

In many industrial and practical application fields, curve 
approximation is a crucial research object [37]. Recently, 
many scholars are also studying the problem of curve 
approximation. Li [38] presented an adaptive knot placement 
algorithm for B-spline curve approximation to dense and 
noisy data points. The algorithm can be used for initial knot 
vector estimation for error-bounded curve approximation. 
The convergence speed of curve approximation iteration is 
faster than that of traditional methods. However, this method 
is not easy to understand, and the operation is troublesome. 
Carlos [37] used the simulated annealing algorithm to solve 
Bezier curve approximation problem. This study combined 
the advantages of traditional methods and heuristic algo-
rithms, used Bezier curves to approximate the fitting data, 
and obtained better experimental results. But, no single 
simulated annealing pattern generates optimal values for all 
examples of benchmark. Moreover, different configurations 
show different effects in different applications, depending 
on the complexity and noise of the model. In [39], Laube 
presented a method using deep learning to compute para-
metrizations for B-spline curve approximation. This paper 
demonstrated that neural networks can successfully predict 
the parameters of B-spline curve approximation problems, 
but are constrained by the training set and limited by seg-
mentation and sampling. Bureick [40] proposed an elitist 
genetic algorithm that solved the nodal adjustment prob-
lem in b-spline curve approximation in a faster and more 
accurate way than existing methods. However, outliers will 
appear in this study.

Due to the traditional methods still have problems such 
as insufficient precision, cumbersome operation, and long 
time in the curve approximation, the advantages of the 
metaheuristic algorithms are that it is more efficient than the 
blind search method, and a search problem can be obtained 
in a very short time. The optimal solution, for NP problems, 
can also get a better solution in a shorter time. Therefore, 
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it is necessary to solve the curve approximation problem 
through a metaheuristic algorithm. The bald eagle search 
(BES) algorithm is a novel bio-inspired metaheuristic algo-
rithm proposed by Alsattar et al. [41]. The BES algorithm 
imitates the hunting strategies and smart social behavior of 
bald eagles during fishing. Bald eagles achieve their pre-
dation through three stages. The three stages are selecting 
stage, searching stage, and swooping. Taking salmon as an 
example, bald eagles will first select the search space based 
on the concentration of individual and population to salmon 
and fly towards a specific area; second, search the water sur-
face in the selected search space until suitable prey is found, 
and finally, the bald eagles will gradually change their flight 
altitude, swoop quickly, and successfully catch salmon and 
other prey from the water [42]. BES algorithm simulates this 
hunting method of bald eagles. Moreover, this method has 
been proved to be an excellent nature-inspired solution [43]. 
Recently, some improved BES has been proposed as fol-
lows: Angayarkanni [43] proposed a new hybrid algorithm, 
which mixed the grey wolf optimization (GWO) and bald 
eagle search (BES) algorithm and optimized the parameters 
of the support vector regression for the prediction of traf-
fic flow. Ramadan applied an improved bald eagle search 
(IBES) algorithm to PV model parameters [44]. Karthik 
[45] adopted BES to solve the practical application problem 
of dual-combustion reactivity control combustion ignition 
based on engine characteristics by changing low-activity 
fuel. Sarkar [46] introduced a hybrid salp swarm algorithm 
(HSSA) and bald eagle search (BES) algorithm to optimize 
the phase factor of OFDM system by using the PTS method. 
In [47], Zhou utilized the bald eagle search (BES) algorithm 
to improve the ELM in predicting carbon price which was 
used for optimizing and adjusting the values in the experi-
ment. And Palanivel proposed the hybrid deep belief net-
work (DBN) based BES algorithm to optimize and predict 
the pulsating heat pipe compound in parabolic solar collec-
tors [48]. The bald eagle search algorithm was improved by 
using levy flight strategy and simulated annealing mecha-
nism to solve simultaneous feature selection optimization 
problem [42]. Kang [49] proposed a transformer winding 
fault classification method based on BES algorithm to opti-
mize the kernel parameter g and the penalty coefficient C 
in the SVM model, denoted as BES-SVM. In biomedicine, 
Sayed [50] came up with a prediction model for melanoma 
with imbalanced data based on optimized squeeze net by 
the BES and so on.

In order to strengthen the population diversity of the algo-
rithm, some of improving the coding methods of algorithm 
have been proposed [51, 52]. Xiang proposed the polar coor-
dinate salp swarm algorithm (PSSA) [53], which omitted 

the transformation process of coordinate system. Different 
from the traditional coding methods proposed before, PSSA 
updates position directly in polar coordinate space. How-
ever, the convergence speed and optimization accuracy of 
PSSA need to be improved and it gets easily to fall into 
local optimization. To solve these problems, the polar coor-
dinate bald eagle search algorithm (PBES) is proposed; its 
initialization stage is modified to make the distribution of 
initialized individuals more uniform, and some parameters 
are introduced to strengthen the exploration and exploitation 
capabilities of PBES. PBES improves the performance of the 
algorithm by increasing population diversity and enhanc-
ing the exploration ability. This paper introduces a modified 
PBES algorithm and applied it to three aspects as follows: 
polar coordinate transcendental equation, curve approxima-
tion, and robotic manipulator.

The rest of this paper is structured as follows: Sect. 2 is 
the preparation of related work: methods of polar coordinate 
coding and introduction of the BES algorithm. Section 3 
will introduce the PBES algorithm. The results and discus-
sion that combine polar transcendental equations and curve 
approximate design are given in Sect. 4. Section 5 is the 
inverse kinematics solution of a 7-DOF manipulator. We 
introduce the conclusion and future work in Sect. 6.

2  Related Work

2.1  Polar Coordinate Coding

Nowadays, there are various coding versions of 
metaheuristic algorithms have been proposed, such as 
binary conversion, four-element encoding, complex 
encoding, quantum coding, polar encoding, etc. They will 
strengthen the population diversity of the algorithm and 
enhance the search space by changing the coding modes. 
Matthysen [51] modified the particle swarm optimization 
(PSO) algorithm through the appropriate mapping func-
tion so that it can search and optimize in the polar coordi-
nate space and put forward the polar coordinate version of 
PSO algorithm. For some evolutionary algorithms (EAs), 
corresponding scholars have continuously proposed polar 
coordinate versions. For instance, the polar evolutionary 
strategy (Polar ES) [52]. Yang [54] proposed a novel style 
particle swarm optimization (SPSO) algorithm based on 
polar coordination system, polar coordinate system and 
complex number operation, the design of the overlap space 
searching method and parameter of w. Shan [55] proposed 
a new selecting strategy in polar coordinates for multi-
objective particle swarm optimization; some scholars [56] 
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designed an improved NSGA-II algorithm based on polar 
coordinates transform that made pareto optimal solutions 
distribution more uniform. Al-Sayyed [57] proposed a 
new optimization algorithm named POLARPSO, which 
can search more points by using the polar coordinate func-
tion, which not only enhanced the performance of PSO 
algorithm, but also avoided local optimal traps. Recently, 
some researchers put forward an improved polar-coded 
version of the artificial fish swarm algorithm (PC-AFSA) 
[58]. And Wu came up with a polar coordinate coding of 
fruit fly optimization algorithm (PCFOA) [59]. Lin [60] 
adopted a local clustering mode based on high-order his-
togram in polar coordinate; some achievements have been 
made in face recognition and retrieval problems.

Polar coordinate coding can further enrich the application 
range of the algorithm and achieve good results. However, 
the polar coordinate coding all use mapping functions to 
transform between polar coordinate space and Cartesian 
space, that is, the encoding and decoding process, which 
greatly increases the workload and brings distortion in the 
conversion process. In order to solve this problem, Xiang 
et al. proposed the PSSA [53]. The proposed PSSA can omit 
the coordinate system transformation process. PSSA does 
not need to use the mapping function to convert between 
the Cartesian system and the polar coordinate system, but 
directly initializes the individual in the polar coordinate sys-
tem, and PSSA updates the position of the individual by 
renewing the polar angles and polar diameters, respectively. 
Owing to the population initialization, search process and 
position update are carried out in polar coordinate system 
directly, so PSSA reduces the computational complexity of 
the algorithm [53]. But, in PSSA, uneven initialization dis-
tribution gets easily to occur in the initialization stage, and 
the exploration ability of the algorithm needs to be strength-
ened. Moreover, the convergence speed and search accuracy 
of PSSA need to be improved as it can easily get stuck in 
local optimization. So, in this paper, the coding method of 
PSSA is improved, and its initialization stage is modified to 
make the distribution of initialized individuals more uni-
form, and some parameters are introduced to strengthen the 
exploration and exploitation capabilities of the BES algo-
rithm. During calculating fitness function values, PBES does 
not need to be converted to Cartesian coordinates. On the 
contrary, the polar angle and the polar diameter are regarded 
as two variables, and the individual is judged by calculating 
the fitness function value. PBES increases the population 
diversity so that the algorithm can perform better under the 
same conditions. Accordingly, this makes the exploration 
ability of the algorithm greatly strengthened.

2.2  Bald Eagle Search Algorithm (BES)

The bald eagle search algorithm (BES) imitates the hunt-
ing strategies and smart social behavior of bald eagles dur-
ing fishing [41]. BES has three stages during predation, as 
shown in Fig. 1. In the select stage, bald eagles will select 
the space with the largest number of prey for search. Then, 
in the search stage, bald eagles search for prey by moving 
within the select space in the previous stage. Finally, in the 
swooping stage, bald eagles move and dive from the best 
position identified in the search stage and decide the best 
position for hunting. The swooping stage starts at the best 
point, to which all other movements are directed.

2.2.1  Select Stage

In the selection stage, bald eagles will first select the search 
space and then identify and select the best predation area, 
which is determined based on the number and concentration 
of prey. And then the bald eagles will prey in this area, as 
shown in Eq. (1).

where � is the parameter that controls the position change, 
the value range is 1.5–2, and r is a random number between 
0 and 1. Pbest represents the determined best location for the 
bald eagles to pick an area in the previous search. Mean-
while, Pmean is the position of the average distribution of 
bald eagles after the previous search. Pi denotes the position 
of the ith bald eagles. Pi,new is the new location of the bald 
eagles.

(1)Pi,new = Pbest + � ∗ r(Pmean − Pi),

Fig. 1  The three main stages of hunting by BES [41]
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2.2.2  Search Stage

During the search stage, the bald eagles constantly search for 
prey in the search space selected in the previous phase, fly-
ing in a spiral shape and moving in different directions. The 
mathematical formula for the location update is as follows:

where �(i) is the polar angle and r(i) is the polar diameter. 
a and R are the parameters that control the spiral trajectory, 
and their variation ranges are 5–10 and 0.5–2, respectively. 
And rand is a random number between 0 and 1. x(i) and y(i) 
represent the position of the bald eagle in polar coordinates, 
both ranging from −1 to 1. Pi+1 is the next updated position 
of the ith bald eagles.|xr| is the absolute value of xr. |yr| 
means the same as |xr|.

2.2.3  Swooping Stage

During the swooping stage, the bald eagles are constantly 
moving, swooping towards the prey from the best location in 
the previous search, while other individuals also swoop from 
the best position to hunt the prey. Equation (6) simulates this 
behavior of bald eagles as follows:

where c1 and c2 increase the movement intensity of bald 
eagles towards the best and center points; they all take val-
ues between 1 and 2.

The pseudo-code of BES is shown in Algorithm 1 [41].

(2)Pi,new = Pi + y(i) ∗ (Pi − Pi+1) + x(i) ∗ (Pi − Pmean),

(3)x(i) =
xr(i)

max(|xr|) ,y(i) =
yr(i)

max(|yr|) ,

(4)xr(i) = r(i) ∗ sin (�(i)),yr(i) = r(i) ∗ cos (�(i)),

(5)�(i) = a ∗ � ∗ rand and r(i) = �(i) + R ∗ rand,

(6)

Pi,new = rand ∗ Pbest + x1(i) ∗ (Pi − c1 ∗ Pmean)

+ y1(i) ∗ (Pi − c2 ∗ Pbest),

(7)x1(i) =
xr(i)

max(|xr|) ,y1(i) =
yr(i)

max(|yr|)

(8)xr(i) = r(i) ∗ sinh (�(i)),yr(i) = r(i) ∗ cosh (�(i)),

(9)�(i) = a ∗ � ∗ rand and r(i) = �(i),

Algorithm 1 BES algorithm.

Pseudo-code of the BES algorithm

1.Random initialization Point Pi

2.Calculate the fitness values of initial Point: f (Pi)

3.While (the termination conditions are not met)
Select space
4.For (each point i in the population)
5.Pi,new = Pbest + � ∗ rand(Pmean − Pi)

6.If f (Pnew) < f (Pi)

7.Pi = Pnew

8.End If
9.If f (Pnew) < f (Pbest)

10.Pbest = Pnew

11.End If
12.End For
Search in space
13.For (each point i in the population)
14.Pi,new = Pi + y(i) ∗ (Pi − Pi+1) + x(i) ∗ (Pi − Pmean)

15.If f (Pnew) < f (Pi)

16.Pi = Pnew

17.End If
18.If f (Pnew) < f (Pbest)

19.Pbest = Pnew

20.End If
21.End For
Swoop
22.For (each point i in the population)
23.Pi,new = rand ∗ Pbest + x1(i) ∗ (Pi − c1 ∗ Pmean) + y1(i) ∗ (Pi − c2 ∗ Pbest)

24.If f (Pnew) < f (Pi)

25.Pi = Pnew

26.End If
27.If f (Pnew) < f (Pbest)

28.Pbest = Pnew

29.End If
30.End For
31.Set k = k + 1

32.End While

3  Our Proposed PBES Algorithm

3.1  Inspiration

Inspired by Fig. 2, in view of the fact that the trajec-
tory shape of bald eagle searching for preys is spiral and 
bald eagle dives spirally to capture the preys during the 
predation phase. Therefore, the BES algorithm can be 
applied to polar coordinate space. Therefore, the PBES 
algorithm is proposed. In the polar coordinate system, 
for each individual can be defined and initialized. In the 
initialization phase, each individual is defined as a binary 
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array (�n, �n) . This amounts to increasing the population 
diversity during initialization process. In this way, when 
calculating the fitness function, PBES omits the trans-
formation process of coordinate system. In polar coordi-
nates, the PBES algorithm updates the polar angle and 
polar diameter, respectively, and calculates the fitness 
value directly.

3.2  PBES Mathematical Model

In the polar coordinate system, for the initialization phase 
of the PBES algorithm, the parameters of the individual, 
that is, the polar angle and the polar diameter are directly 
initialized and stored as an array. Furthermore, when the 
initial points are transformed between polar coordinate 
space and Cartesian space, they will produce a phenom-
enon of non-uniform distribution. To avoid the distortion 
happened in the transformation, we introduce the Archime-
des theorem and cumulative density function (CDF) [61]. 
The CDF is inversed to obtain the initialization formula 
as follows:

where ub is the upper bound, lb is the lower bound in PBES, 
rand is a random number in the range of 0–1. � is the dis-
turbance coefficient which takes a value between 0 and 2. 
The PBES algorithm also needs to control the boundary 
during initialization, and all individuals can be distributed 
in the whole search space. Therefore, the value range of 
polar angle � is (0, 2π). At the same time, polar diameter � 
also needs to be defined using boundaries so that the PBES 
algorithm does not exceed the boundary in the optimization 
process.

Next step, the location of each individual is updated. In 
PBES, the individual position is updated by renewing � and 
� , respectively. Since BES has three stages, in PBES, the � 
is updated three times, respectively. The update formula of 
polar diameter � is given below as follows:

(1) Select stage

where � is called position change parameter, it is a parameter 
that controls the position change, the value range is (1.5, 
2) and r is a random number with a value between 0 and 1. 
�i,new is the updated polar diameter. �best is the current best 
polar diameter. �mean is the average polar diameter after the 
previous search. �i denotes the ith polar diameter.

(2) Search stage

(10)� = rand ∗ (ub − lb) + lb,

(11)� = � ∗ cos−1(2 ∗ rand − 1),

(12)�i,new = �best + � ∗ r(�mean − �i),

where a is a parameter that controls the spiral trajectory, 
and its variation range is 5 to 10. rand is a random number 
with a value between 0 and 1. r1 is a control parameter that 
can control the update range of the polar diameter. m1 and n1 
represent the normalization of �1 and �1.

(3) Swooping stage

where c1 , c2 is the enhancement coefficient, and they all take 
the value of 2. The pole diameter � is updated in three stages, 
after each iteration update, the updated polar diameter � 
requires to be contrasted with each other, if it is smaller 
than the current best polar diameter, the � will be changed. 
The mathematical formula for polar angle � is expressed as 
follows:

where � is the disturbance coefficient which takes a value 
between 0 and 2. After each iteration update, the updated 
polar angle � requires to be contrasted with each other. If it 
is superior to the current optimal angle, the plus sign opera-
tion is performed; otherwise, the minus sign operation is 
performed.

After updating the values of � and � respectively, the 
new individual position is determined, and then the fitness 
function values of all individuals are calculated to find out 
the current best fitness function value, after that, contrast 
it with the global optimal fitness value F. There are two 
situations: one is replacement and the other is retention. 
If the new fitness function value is found to be superior 
to the current fitness value, perform the first operation; 
otherwise perform the second operation [53]. In the PBES, 
individual positions are updated in the polar coordinate 
system rather than in the Cartesian coordinate system; by 
updating � and � respectively, the position of the individual 
is obtained. This will greatly improve the updating speed 
of individuals and improve the convergence efficiency. 

(13)�i,new = �i + m1 ∗ (�i − �mean) + n1 ∗ (�i − �i+1),

(14)m1 =
�1

max(||�1
||)
, n1 =

�1

max(�1)
,

(15)�1 = r1 ∗ sin(�), �2 = r1 ∗ cos(�),

(16)r1 = a ∗ � ∗ rand,

(17)
�inew = rand ∗ �best + m2 ∗ (�i − c1 ∗ �mean) + n2 ∗ (�i − c2 ∗ �best)

(18)m2 =
�2

max
(||�2

||
) n2 =

�2

max
(||�2||

)

(19)�2 = r1 ∗ sinh(�) �2 = r1 ∗ cosh(�),

(20)�i+1 = � ∗ �i ± 2 ∗ cos−1(2 ∗ rand − 1),
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Through the pseudo code of the PBES algorithm (Algo-
rithm 2) and the flowchart of the PBES algorithm (Fig. 3), 
the PBES algorithm can be more easily to understand.

Algorithm 2 PBES algorithm.

Pseudo-code of the PBES algorithm

Input population size N, maximum iteration number
Maxiter, dimension dim, upper up and lower bounds lb
Output the optimal solution
1.Initialization and load PBES parameters
2.Let N = population size
3.Each individual i = 1 to N
4.Calculate the fitness values of all the individuals
5.While (the termination conditions are not met)
6.for i = 1: dim do
7.for j = 1: Searchagents do
8.Initialize the S(�n, �n) using the Eqs. (10) and (11)
9.Evaluate fitness value of each S
10.Find the best fitness value and set it as best search agent F
11.For (each Eagle ( xi ) do
12.Update polar diameter through three stages
Select space
13.Update polar diameter using Eq. (12)
14.If f (𝜌new) < f (𝜌i)

15.�i = �new
16.If f (𝜌new) < f (𝜌best)

17.�best = �new
18.End If
19.End If
Search in space
20.Update polar diameter using Eq. (13)
21.If f (𝜌new) < f (𝜌i)

22.�i = �new
23.If f (𝜌new) < f (𝜌best)

24.�best = �new
25.End If
26.End If
Swoop
27.Update polar diameter using Eq. (17)
28.If f (𝜌new) < f (𝜌i)

29.�i = �new
30.If f (𝜌new) < f (𝜌best)

31.�best = �new
32.End If
33.End If
34.Update polar angle using Eq. (20)
35.Each particle i = 1 to N
36.Evaluate fitness
37.Eagle’ = x1

j

38.Compare the values of Eagle’ and F
If F < Eagle’, replace the value of F with Eagle’
39.Update the Eagles position based on
the upper and lower bounds of variables
40.Termination conditions are met
41.Ultimately, the Eagle’ is the optimal solution
42.End While

3.3  PBES Complexity Analysis

In PBES, the population size is N, the dimension of problem 
is d, and the amount of iterations is t. For time complexity, 
first, during population initialization and parameter setting, 
time complexity is O (N*d); then, when updating the polar 
diameters, since BES has three stages, the algorithm has a 
three-layer loop, therefore, the time complexity is O (N*d*t); 
For termination criteria, the relevant time complexity is O 
(1). Finally, the time complexity of PBES is O (N*d*t). For 
the space complexity, the search agents of the proposed 
PBES are N and the problem’s dimension is d. Thus, the 
space complexity of PBES is ultimately obtained: O (N*d).

4  Results and Discussion

4.1  Experiment Settings

So as to verify the effectiveness of the PBES algorithm, 
PBES was tested in polar transcendental equations, curve 
approximation design. All algorithms are run under the 
environment of MATLAB R2017b and the experiment 
was performed on an Inter(R) Core (TM) i7-97000 CPU@ 
3.00 GHz 64-bit operating system with a 16 GB RAM 
PC. PBES is compared with the polar teaching–learning-
based optimization algorithm (PTLBO), polar coordinate 
salp swarm algorithm (PSSA) [53], polar marine preda-
tors algorithm (PMPA) in the best value, mean value, and 
standard deviation. The parameter settings of each algo-
rithm are shown in Table 1. In order to avoid accidental 
results during the experiment, each function is run ten 

( )

(
)

+1

+2

Fig. 2  Bald eagles searching within a spiral space
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Initialize parameters: N,  Dim, 
Maxiter, lb, up, α, a, c1, c2, β

The position of each individual is 
initialized as (ρ,θ) according to 

Eqs.(10) and (11)

Calculate the fitness values 
and check the bound

t=1 to Maxiter?

Start

Update polar diameter ρ
according to Eq.(12)

If F < Eagle’

Termination 
criteria?

If fitness value of 
current ρ is better 

than the best
ρ fitness?

Evaluate the current best ρ

The best ρ will remain the same

Update polar angle θ
according to Eq.(20)

Get the individual best position Eagle’  

The value of F will remain the same

Replace the value of F with Eagle’

Update the Eagles position (ρ,θ) and 
produce the best fitness value

End

Select stage

Search  stage

Swooping stage

Yes

Yes

Yes

No

No

No

Update polar diameter ρ
according to Eq.(13)

If fitness value of 
current ρ is better 

than the best
ρ fitness?

No

Update polar diameter ρ
according to Eq.(17)

If fitness value of 
current ρ is better 

than the best
ρ fitness?

No Yes

Yes

Yes

No

Fig. 3  Flowchart of the PBES
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times independently. Furthermore, in this simulation exper-
iment, the population size is set to 200 and the amount of 
iterations is 500.

4.2  Testing Complex Polar Equations

Transcendental equations are equations that contain tran-
scendental functions, that is, functions that cannot be 
expressed by polynomials or square roots of independent 
variables, as opposed to algebraic equations [62]. Transcen-
dental equations cannot be solved by algebraic geometry. 
There is no general formula for solving most transcendental 
equations and it is difficult to get analytical solutions [63]. 
In order to verify the performance of the PBES algorithm, 
PBES was tested in polar transcendental equations and the 
transcendental equations are shown in Table 2, where � 
denotes the polar diameter, and � denotes the polar angle. 
The data results of the four transcendental equations tested 
by all algorithms are shown in Table 3, including the best 
value, the mean value and the standard deviation.

In Table 3, we tested four transcendental equations F1, 
F2, F3 and F4. For equations F1 and F3, the best value 
of PBES is 1–2 orders of magnitude better than other 
algorithms, especially the PTLBO algorithm. For the 
mean value, PBES also outperforms other comparison 
algorithms. This shows that PBES is more accurate than 
other algorithms and can obtain better solutions. The per-
formance of PBES standard deviation is also excellent. 
So PBES can not only obtain optimal solutions but also 
be more stable when solving transcendental equations 
F1 and F3. Towards equation F2, PBES is smaller than 
other comparison algorithms in the best value and mean 
value. There is little difference between PBES and PMPA 
in mean value. But, the standard deviation of PTLBO is 
better than other algorithms, including PBES. For F4, the 
performance of PBES is superior to other algorithms, but 
in the mean value, it is not much different from other algo-
rithms and is inferior to PMPA.

The convergence curve of F1, F2, F3 and F4, is shown in 
Fig. 4. The first picture of Fig. 4 shows that PBES has bet-
ter convergence accuracy for F1. The fluctuation of PTLBO 
and PSSA is relatively large before the F1 converges. Before 
the convergence of PMPA and PBES, the fluctuations are 
relatively small, but PBES can find more excellent solution. 
While, the convergence time of PBES and PSSA is almost 
the same. They all begin to converge at about 200 genera-
tions. For F2, the situation of the PSSA and PBES is basi-
cally consistent with that of F1. For the four algorithms, 
PBES has a slow convergence speed and low accuracy in the 
early stage, but in the later stage, PBES finds the smallest 
optimal solution. In the system of equations F3, the conver-
gence effect of PBES is the best, both in terms of conver-
gence speed and accuracy. This is the same as the data in 

Table 3. Look at F4; the convergence speed of PBES is the 
slowest, and it only converges when it is close to 300 genera-
tions. Like other equations, the best value obtained by PBES 
is also better than other algorithms.

To sum up, these results show that PBES is superior to 
PTLBO, PSSA and PMPA both in convergence precision, 
average value and standard deviation. These results verify 
that PBES has better performance in solving polar transcen-
dental equation problems. The exploration capability and 
exploitation capability of the PBES algorithm is better than 
other comparison algorithms. Conventional methods are not 
suitable for solving polar transcendental problems. Although 
PSSA can also solve polar transcendental problems [53], 
PBES performs better than PSSA. Compared with other 
algorithms that can solve transcendental equations, PBES 
can get better solutions in most aspects.

4.3  Testing of Curve Approximation

4.3.1  The Curve Approximation Design Problem

Intuitively, the curve can be seen as the trace left by the 
movement of a certain point [64]. This definition of a curve 
is formalized in modern mathematics as: a curve is a graph 
of an interval from a continuous function to a topological 
space [65]. Generally speaking, a curve often refers to a set 
of consecutive points in Euclidean space. Any continuous 
line can be called a curve, including straight lines, polylines, 
line segments, arcs, etc.

The curve approximation design is very similar to curve 
fitting, but there are some theoretical differences. The math-
ematical definition of Curve Fitting [66, 67] refers to the 
use of continuous curves to approximately and it is the pro-
cess of constructing a simulation curve or mathematical 
function expression, by fitting a series of data points that 
may be constrained, and requiring the final effect to achieve 
the best. Finally, an approximately smooth function curve 
is constructed to approximate these fitted data [68]. Also, 
another related topic is regression analysis, but it focuses 
more on statistical inference problems.

In engineering analysis and scientific research, it is often 
necessary to obtain approximate function relations between 
independent variables and dependent variables based on 
some test data to complete other design calculations [69]. 
For the function F(x) given in function class A, denoted as 
F(x) ∈ A , it is required to find the function in another class 
of simple and calculable functions B so that the error of 
P(x) and F(x) is minimized in some metric sense. Function 
class A is usually a continuous function on the interval [a, b] , 
denoted by C[a, b] , called function approximation space. 
And the function B is usually n-degree polynomial, rational 
function or piecewise low-degree polynomial, etc. [70]. In 
short, it is to replace the function F(x) with a simple function 
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P(x) approximately. This approximate substitution is called 
function approximation design, which is one of the most 
basic concepts and methods in computational mathematics 
and is widely used in image processing, reverse engineer-
ing and test data processing [71]. The traditional methods 
of function approximation include Lagrange interpolation 

polynomial, Spline interpolation, Ordinary least squares and 
Chebyshev approximation; the calculation process is com-
plicated. Nowadays, the latest approximation is the neural 
network approximation.

4.3.2  Curve Approximation Design

In this section, the PBES algorithm proposed above is 
applied to the curve approximation design to verify the supe-
riority of the PBES algorithm.

Table 4 tests some familiar polar equations of different 
types of curves, including Conic section, Pascal spiral, Spiral 
line and Special curve. Table 4 shows the polar coordinate 
equations of different curves and some necessary parameter 
settings. Table 5 shows the optimization results and com-
parison for curves in terms of best value, mean value and 
standard deviation. From Table 5, we can see that compared 
with other algorithms, PBES had achieved higher accuracy 
in most equations. For most curves, PBES shows an excel-
lent effect in terms of maximum accuracy (best value). This 
indicates that PBES has strong exploitation ability. For the 
mean value and standard deviation, the four algorithms have 
their own advantages and disadvantages, but overall, PBES 
can achieve the best results in the three indicators. Standard 
deviation can reflect the degree of dispersion of a data set. In 

Table 1  Parameter setting of the 
comparison algorithm

Algorithms Parameter settings

PTLBO Teaching factor TF ∈ {1, 2} , learning step ri ∈ [0, 1]

PSSA Convergence factor c1 , random number r1 ∈ [0, 1] , integer ran-
dom number r2 ∈ [0, 50] , random number r3 ∈ [0, 1] , random 
number r4 ∈ [0, 1]

PMPA Constant P = 0.5 , constant FADs = 0.2 , random number 
r ∈ [0, 1]

PBES Position change parameter � = 1.5 , disturbance coefficient 
� = 1.2 , random number r ∈ [0, 1] , spiral parameter a = 10 , 
enhancement coefficient c1, c2 = 2 , control parameter r1 ∈ [0, 1]

,

Table 2  Set of diverse polar 
equation

Equations [53]

F1(�, �) = log
�2×sin(�)+ecot(�)

5
×�

1

2
× sec(2 × �) + 3 × �4×e

2

× cot(�) − �
−
2

5 × esin(2×�)+e
cos(�)

× csc(�) + 1

F2(�, �) =
sin(cos(2×�))

1+(�×tan

1

2 (�))2

+ e1+sin
2(�×�) × csc(ln(cos(

1

7
× �)) × �) − �

2

3 × (4 − cot2(�))

F3(�, �) =

{
log

�2×cot2(�)+sin �

2
× sec(2 × �) + 2

e�
8×sin3(�)+�

2
5 ×cos

1
2 (2×�) + �

1

3 × sin(�) × tan(�) − 2

F4(�, �) =

⎧⎪⎪⎨⎪⎪⎩

sec3(
�

1+�
) × e�

2−sin(�) + 2

log
�2×cot2 (�)

3

1−sin2 �

1

2

− 1

�

3

2 × tan(�) + cot5(2 × �)

Table 3  Experimental results with comparison algorithms

Optimal values are given in bold

Algo-
rithms

PTLBO PSSA PMPA PBES

F1 Best 6.32E−06 9.25 E−07 4.91 E−07 3.07 E−08
Mean 4.80 E−05 4.23 E−05 4.51 E−06 1.34 E−06
Std 1.81 E−04 2.85 E−04 4.60 E−05 8.01 E−06

F2 Best 1.34 E−06 4.16 E−06 2.40 E−07 3.84 E−08
Mean 3.20 E−06 3.24 E−05 2.10 E−06 1.12 E−06
Std 7.22 E−06 2.37 E−04 7.38 E−06 4.82 E−05

F3 Best 2.05 E−06 1.32 E−07 3.41 E−07 1.50 E−08
Mean 3.79 E−05 9.14 E−07 3.47 E−05 6.89 E−07
Std 1.17 E−04 1.11 E−05 9.87 E−05 4.67 E−06

F4 Best 1.65 E−06 8.11 E−08 1.20 E−07 1.86 E−08
Mean 1.24 E−05 3.12 E−06 1.42 E−06 2.31 E−06
Std 6.32 E−05 4.27 E−05 8.78 E−06 7.30 E−06
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Table 5, PBES has the best performance in terms of standard 
deviation, which shows that the PBES algorithm has less 
fluctuation and strong stability in solving the curve approx-
imation problem and has the best fitting approximation 
effect. And PBES can easily solve various curve problems. 
In Table 6, the original image of the function is obtained by 
selecting 500 points between 0 and 2π on the equation of the 
function curve. These uniform points obtained between 0 
and 2π constitute the data set of curve approximation. After 
the iterative approximation of the algorithm, the image of 
the curve is preserved.

4.3.3  Results and Analysis

Table 6 shows the results of the curve approximation test, 
including curve approximation diagrams of PTLBO, PSSA, 
PMPA, PBES and curve’s original image. For conic section, 
PBES is obviously better than other comparison algorithms 
in curve approximation of Parabola. For these algorithms, 
the tails of the Parabola curve cannot fit and approximate 
well, there are many missing pieces. PSSA and PMPA 
approximate the upper or lower half of the Ellipse well; 
correspondingly they lose a lot of detail in the other half. 

PTLBO and PBES can approximate the upper and lower 
parts of the Ellipse greatly. But PTLBO is still lacking in 
the accuracy of curve approximation. This shows that PSSA 
and PMPA can easily fall into local optima, while PBES 
can jump out of local optimum. The points approximated by 
PBES are more uniform. On the Cardioid, the approxima-
tion effect of PBES is more obvious. Like Ellipse, PSSA and 
PMPA also lost some points on the curve approximation. 
And PTLBO has the worst performance. For some spiral 
lines, such as Archimedes spiral, the curve approximation 
effect of PBES is more competitive than other algorithms 
and PBES can be far away from the local optimum, so it 
can better approximate the curve. However, according to the 
NFL theorem, no single algorithm can be perfectly applied 
to all problems. For Logarithmic spiral, the approximation 
effects of PBES and PSSA are almost the same. This indi-
cates that both PBES and PSSA have good approximation 
effects. For example, in Hyperbolic spiral curve, the effect of 
PMPA and PBES is similar. On the vast majority of curves, 
PBES can achieve good results. For Fermat spiral, the accu-
racy of PTLBO and PMPA still needs to be improved, and 
there are many noise points around the curve that were not 
successfully fitted. This situation also exists on other curves. 
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Fig. 4  The convergence curves of F1–F4
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For most curves, these curves fitted by the PBES algorithm 
are basically consistent with the original curve image and the 
effect of PBES is much better than other algorithms. In some 
special curves like the Water droplets curve, the approxima-
tion effects of the PSSA and PBES made no difference. Their 
fitting effects are better than PTLBO and PMPA. PBES also 
achieved good results on Lemniscate, Plum blossom curve 
and Moppet curve. However, in some complex graphs, for 
instance, Rose curve and Butterfly curve, the approximation 
graphs of those four algorithms are partially missing, and the 
pattern of the graphic cannot be fully displayed. The effect 
of PBES is still superior to others.

In summary, from the curve approximation diagram, 
we can see that PBES has achieved very effective results 
in curve approximation. For most of the curves, PBES can 
approach the curves very well and gets the results with high 
fit to the original curve. However, like other algorithms, 
PBES cannot achieve very efficient results on complex 
curves; they will have the phenomenon of missing graphs 
in some curve parts. Despite this, the PBES still performs 
better than others in curve approximation design problem.

4.3.4  Error Analysis

Figures 5 and 6, respectively, show the absolute error dia-
gram and relative error diagram for solving each test curve. 
Absolute error represents the absolute value of the differ-
ence between the measured value and the real value. Rela-
tive error refers to the ratio of the absolute error caused 
by measurement to the measured true value and the value 
obtained by multiplying by 100%, expressed as a percentage. 

In general, relative error is a better indicator of the reliabil-
ity of the measurement. From Fig. 5, the absolute errors of 
four algorithm curves are compared, where the yellow circle 
represents the curve approximation points obtained by the 
algorithm, and the blue point represents 500 points gener-
ated from 0 to 2π on the function curve. When the yellow 
circle and the blue point are denser and uniform, the error is 
smaller, and when the algorithm matches the original curve 
better, the approximation effect of algorithm is better. For 
relative error, it means the error between the approximation 
point obtained by the algorithm and the point on the origi-
nal curve during the iterative process. The relative error is 
smaller means the approximation effect of algorithm is bet-
ter, more stable of the algorithm, and the accompanied by 
smaller fluctuations.

From the absolute error diagram, we can see that PTLBO 
performs poorly; there are some points that are not fitted, 
and the error is large. PMPA performs well on some curves, 
such as Parabola, Logarithmic spiral, Lemniscate, Rose 
curve. But there is still some gap compared with PBES. 
The absolute error diagram of PSSA is relatively clean, and 
there is no large area of noise, which shows that the fitting 
accuracy of PSSA is high, but the effect is general. For most 
curves, the relative error of PBES is smaller than others and 
absolute error performs better, especially in conic section, 
Lituus, KeNu spiral, Round involute, Water droplet curve, 
Lemniscate. For the Parabola and Logarithmic spiral, Plum 
blossom curve, the relative error of PBES is not the best, 
but the gap with them is very small. And the relative errors 
of these algorithms are not very different in Butterfly curve. 
For the Plum blossom curve and Moppet curve, PTLBO, 

Table 4  Set of classic spirals Curve name Polar equations Parameters

Parabola � =
a×b

1−a×cos(�)
a = 1, b = 1.5

Ellipse � =
a×b

1−a×cos(�)
a = 0.5, b = 1.1

Cardioid � = a × cos(�) + b a = 1, b = 1
Archimedes spiral � = a × � a = 0.3
Fermat spiral �2 = a2 × � a = 0.3
Logarithmic spiral � = a × eb×� a = 0.4, b = 0.3
Lituus �2 × � = a2 a = 3
Hyperbolic spiral � × � = a a = 0.2
KeNu spiral �b×� = a a = 1.2, b = 2
Round involute � = �+a a = 1.2
Water droplets curve �2 = −1 − a × cos(b × �) − sin(�) a = 2, b = 2
Lemniscate �2 = 2 × a2 × cos(b × �) a = 1, b = 2
Rose curve � = a × cos(b × �) a = 2, b = 2
Plum blossom curve � = a + (b × cos(c × �))2 a = 10, b = 3, c = 2.5
Moppet curve � = a × |sin(b × �)| + |sin(c × �)| a = 2, b = 2, c = 5
Butterfly curve � = esin � − a × cos(b × �) + sin

5(
2×�−�

24
) a = 2, b = 4
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Table 6  Curve approximation design effect diagram

Curve
name

PTLBO PSSA PMPA PBES
Original
image

Parabola

Ellipse

Cardioid

Archimedes spiral

Fermat spiral

Logarithmic spiral

Lituus

Hyperbolic spiral
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Table 6  (continued)

Curve
name

PTLBO PSSA PMPA PBES
Original
image

KeNu 

spiral

Round 

involute

Water 

droplets 

curve

Lemniscat

e

Rose 

curve

Plum 

blossom 

curve

Moppet 

curve

Butterfly 

curve
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PSSA and PMPA show poor performance. Furthermore, for 
some complex curves, such as Rose curve, Butterfly curve, 
the relative error difference is small, but PBES still performs 
better in absolute error.

Through testing the absolute error and relative error, it 
can be proved that PBES has better performance in curve 
approximation problem, and it can have strong stability while 
approximating the curve. In this section, by solving the curve 
approximation problem, it is proved that the PBES algorithm 
has excellent performance and strong exploration and exploi-
tation capabilities. This is due to the introduction of polar 
coordinates and the adjustment of some parameters. In addi-
tion, polar angle and polar diameter are updated directly in 
polar coordinate space, which simplifies the position updating 
formula and reduces the calculation process of the algorithm.

4.3.5  Wilcoxon Rank Sum Test

To verify the effect of PBES on statistical test, we per-
formed nonparametric Wilcoxon rank sum test analysis. 
On account of the heuristic algorithms have great con-
tingency and randomness, similar statistical tests are 
needed to ensure the reliability and effectiveness of the 
experimental data. This will facilitate meaningful com-
parison between the proposed PBES and PTLBO, PSSA 
and PMPA. Generally, Wilcoxon's p-value test [72] is a 
method to verify whether there are significant differences 
between the two groups of data and it is widely used in 
statistical hypothesis testing. The smaller the p value, the 
greater the difference between the data. When p < 0.05, it 
indicates that there is a significant difference between the 
data considered within the 95% confidence interval.

Figure 7 shows the p-value comparison results among 
PBES and PTLBO, PSSA and PMPA. It records the com-
parison results of 16 curves between PBES and other three 
algorithms. It can be seen that the p value of each curve 
is much lower than 0.05, and all are below 10E−10. This 
indicates that there are significant differences between 
PBES and other three algorithms in all curves. Especially 
for the Archimedes spiral, between PBES and PSSA, the 
p value is the smallest of the 16 curves and it reached 
10E−46, indicating that the difference between PBES and 
PSSA is the largest for the Archimedes spiral. For PMPA, 
the p value of Butterfly curve spiral is the highest, but it is 
much lower than 0.05. This indicates that there are signifi-
cant differences in Butterfly curve. Therefore, the p-value 
test proved that in all curves there were significant differ-
ences between PBES and PTLBO, PSSA and PMPA. As 
well as, the performance of the PBES algorithm is more 
excellent than other algorithms.

4.3.6  Friedman Rank Test

Friedman's test is tested with SPSS software, and the follow-
ing three parts are obtained: variables, average ranking size, 
and average ranking size [73]. The smaller the average rank-
ing, the better the results obtained by the algorithm. We use 
Friedman rank test to further verify the performance of the 
PBES algorithm. Figure 8 presents the mean ranks obtained 
by Friedman rank test from the mean performances of the 
algorithms for each curve. The value obtained by PBES is 
the smallest, which proves that the PBES algorithm has bet-
ter performance in solving curve approximation problems.

5  Inverse Kinematics Solution of a 7‑DOF 
Robotic Manipulator

5.1  Background of the Inverse Kinematics

Inverse kinematics (IK) is a fundamental discipline of robot-
ics and is applied to many practical problems; it plays a vital 
role in some scenarios such as trajectory planning, dynamics 
analysis, and motion control [74]. Inverse kinematics is used 
for solving the angle of each joint when the end position of 
the manipulator is known. The IK problem requires moving 
the end effector to the desired location, and our job is to move 
the end of the robotic manipulator to the desired location 
as precisely as possible and take the least time. When the 
joint arrangement of the manipulator meets Pieper’s crite-
rion: the adjacent three axes are parallel or intersect at one 
point, the IK problem has an analytical solution [74]. The 
equations of inverse kinematics are complex, highly non-
linear, and coupled, so it is difficult to solve them quickly 
and accurately by general methods [74]. For the IK problem, 
there are some traditional solutions including analytical algo-
rithms and numerical iterative algorithms. It is difficult for 
traditional algorithms to obtain accurate solutions, and it is 
time-consuming, with unsatisfactory stability and real-time 
performance. In contrast, intelligent algorithms have great 
advantages. First, there is no need to establish a complex kin-
ematic model. Second, the use of random or meta-heuristic 
search strategies can effectively solve the global optimization 
problem and obtain the optimal solution in a shorter time 
[74]. Owing to that the intelligent algorithms can solve the 
inverse kinematics problem effectively, it is necessary to use 
the intelligent algorithms, for example, the PBES algorithm.

5.2  Mathematical Model of the Robotic Manipulator

At present, the most popular ones in the field of robotics are 
the 6-DOF and 7-DOF robotic manipulators, which arouse 
the interest of related researchers and scholars [75]. This 
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Fig. 5  (continued)
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Fig. 5  (continued)
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kind of manipulator has many characteristics, such as flex-
ible movement, easy to avoid obstacles, large working space, 
and low latency. In general, the higher the degree of free-
dom of the manipulator, the more complex the structure, and 
these manipulators also have the problem of complex struc-
ture and difficult operation [76]. We use a 7-DOF robotic 
manipulator to conduct experimental simulations to verify 
the performance of the PBES algorithm. As shown in Fig. 9, 
the manipulator has seven revolute joints.

In this subsection, the PBES algorithm presented in this 
paper is applied to the computational simulation experiment 
of inverse kinematics is carried out on the 7-DOF robot 

manipulator to verify its accuracy and efficiency. In the 
inverse kinematics problem, DH parameters [77] are indis-
pensable in the inverse kinematics calculation and analysis 
process of 7-DOF robot manipulator. They use four param-
eters to represent the relationship between the two joints as 
shown in Table 7.

(21)
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where i
i−1

T  is the transformation matrix from joint i − 1 to 
joint i as found by using Eq. (21) and the position of the 
robot manipulator end controller can be calculated using 
formula in Eq. (22). In Eq. (22)Px,Py,Pz denote the spe-
cific components of the position vector of the end-effector. 
nx, ny, nz, sx, sy, sz, ax, ay, az , represents the rotation compo-
nents of the transformation matrix AEnd - Effector represents 
the homogeneous transformation matrix of the end-effec-
tor. The transformation matrices Eq. (23) of the 7-DOF 

(24)
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)
(
c�5c�6l7c�7 − c�5s�6l7s�7 − s�5d7 + c�5l6c�6 + l5c�5

)
(
−c�1c�2s�3 − s�1c�3

)(
s�5c�6l7c�7 − s�5s�6l7s�7 + c�5d7 + s�5c�6l6 + l5s�5

)
(
c�1c�2c�3s�4s�1s�3s�4c�1c�4s�2

)(
−s�6l7c�7 − c�6l7s�7 − l6s�6

)
+c�1c�2

(
c�3c�4l4 + l3c�3

)
− s�1

(
s�3c�4l4 + l3s�3

)
− c�1s�2l4s�4 + c�1c�2l2

Py = �1c�2c�3c�4 + c�1s�3c�4 − s�1s�2s�4)(
c�5c�6l7c�7 − c�5s�6l7s�7 − s�5d7 + c�5c�6l6 + l5c�5

)
+
(
−s�1c�2s�3 + c�1c�3

)(
s�5c�6l7c�7 − s�5s�6l7s�7 + c�5d7 + s�5c�6l6 + l5s�5

)
+
(
s�1c�2c�3s�4 + c�1s�3s�4 + s�1s�2c�4

)
(
−s�6l7c�7 − c�6l7s�7 − l6s�6

)
+ s�1c�2

(
c�3c�4l4 + l3c�3

)
+c�1

(
s�3c�4l4 + l3s�3

)
− s�1s�2s�4l4 + s�1c�2l2

Pz =
(
−s�2c�3c�4 − c�2s�4

)(
c�5c�6l7c�7 − c�5s�6l7s�7 − s�5d7 + c�5c�6l6 + l5c�5

)
+s�2s�3

(
s�5c�6l7c�7 − s�5s�6l7s�7 + c�5d7 + s�5c�6l6 + s�5l5

)
+
(
−s�2c�3s�4 + c�2c�4

)(
−s�6l7c�7 − c�6l7s�7 − s�6l6

)
−s�2

(
c�3c�4l4 + l3c�3

)
− c�2s�4l4 − s�2l2 + l1

robot manipulator are continuously multiplied to obtain 
AEnd - Effector . s represents the sine function, and c is the 
cosine function.

5.3  Fitness Function for 7‑Dof Robot Manipulator

The FK formula is used to calculate the position of joint 
angle and the corresponding pose. In the experiment, the 
position of the robotic manipulator is obtained by using 
PBES, that is, the predicted position. By using PBES, 
making the predicted position is as close as possible to the 
desired position. For a desired position, the mathematical 
formula of the fitness function is as follows:

Suppose P1 = (x1, y1, z1) is the predicted point calcu-
lated by PBES, P2 = (x2, y2, z2) is the desired point derived 
from forward kinematics formula. The position error is the 
Euclidean distance between P1 and P2 , which is obtained 
by Euclidean equation (Eq. 25). The smaller of the position 
error, the algorithm’s effect will be better. Our goal is to 
obtain each joint angle and optimize the position error under 
the condition of minimum time-consuming.

5.4  Simulation Results and Analysis

In this experiment, PBES algorithm is compared with other 
four intelligent algorithms: PSO, ABC, FA and PSSA, by 
solving the inverse kinematics problem. Each algorithm runs 
independently for 10 times with 150 individual populations 
and 500 iterations. The comparison results of end effector 
position points and position errors are shown in Table 8. 
PSO, ABC, FA and PSSA have been produced effective 

(25)Error =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2

Fig. 9  The 7-DOF robotic manipulator [76]

Table 7  DH parameters for 7-DOF robot manipulator [78]

i a
i
(m) �

i
(◦) d

i
(m) �

i
(◦) range

1 0 −90 l1 = 0.5 −180 < 𝜃1 < 180

2 l2 = 0.2 90 0 −90 < 𝜃2 < 30

3 l3 = 0.25 −90 0 −90 < 𝜃3 < 120

4 l4 = 0.3 90 0 −90 < 𝜃4 < 90

5 l5 = 0.2 −90 0 −90 < 𝜃5 < 90

6 l6 = 0.2 0 0 −90 < 𝜃6 < 90

7 l7 = 0.1 0 d7 = 0.05 −30 < 𝜃7 < 90
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results in the IK problem, but PBES produced better results 
in the positions of end effector and error.

As shown in Table 9, the population size of PSO, ABC and 
FA are 300, 100 and 50, respectively, the population size of 
PSSA and PBES is set to 150. The maximum number of itera-
tions of each algorithm is 500. Solution time is also a standard 
factor for comparison of robotic manipulator. It is critical for 
robotic manipulator. Only when the manipulator reaches the 
target position in the shortest time, can the algorithm have 
good competitiveness in solving the IK problem. In Fig. 10, 
they were all able to reach their positions of end effector in a 
relatively short time. But, compared with PBES, the perfor-
mance of PSO, ABC and FA is not very good. There are still 
differences between PBES and PSSA, PBES took less time 
than PSSA, whereas, under the same conditions, it took the 
least time for PBES to reach the target position among these 
algorithms.

In fact, each algorithm has a certain accuracy and short 
solution time in solving the IK problem, but the PBES per-
forms best. And the desired point is almost the same as the 
target position by using PBES. Compared with PSO, ABC, 
FA and PSSA, its position error is several orders of magnitude 
smaller. In addition, the PBES took the shortest solution time 
in solving the IK problem. From the above results, it is proved 
that the PBES algorithm can be applied to the IK problem of 
a 7-DOF robotic manipulator successfully.

6  Conclusions and Future Work

This paper presents a bio-inspired PBES algorithm to solve 
the different problems of polar coordinate. Firstly, the polar 
transcendental equations of four different types of polar 
coordinates are tested. PBES is superior to PSSA in both 
the convergence speed and accuracy, which reflects the 
excellent performance of the PBES algorithm. Then, PBES 
is applied to the curve approximation design problem. The 
results show that PBES can approach the curve well and the 
approximation effect is satisfactory. It is superior to PSSA 
in both precision and stability of curve design problem. In 
addition, the error of PBES is kept small while good effect 
is achieved. Furthermore, Wilcoxon rank sum test was per-
formed on PBES, the statistical results showed that PBES 
and PSSA were significantly different, besides, PBES has 

better performance. Finally, PBES is used to solve the 
robotic manipulator problem. Compared with other algo-
rithms, PBES performs best and has strong competitiveness. 
At present, PBES has only been applied in polar transcen-
dental equations, curve approximation inverse kinematic 
manipulator problems. In the future, PBES can be used to 
solve some more complex curve approximation problems. Of 
course, we can also try to use the PBES algorithm for target 
detection [79], face recognition [80] and the current popular 
auto-driving [81] problems. In addition, we can establish 
different polar coordinate mathematical models according 
to different practical application problems, improve PBES 

Table 8  Comparison of PBES 
with positions of end effector

Optimal values are given in bold

Target position PSO [78] ABC [78] FA [78] PSSA PBES

PX (cm)  −24.7487  −24.6665  −24.7149  −24.7402  −24.7488  −24.7487
PY (cm) 100.9619 100.3896 101.0105 100.9723 100.9619 100.9620
PZ (cm) 50 49.6557 50.0104 49.9989 49.9999 50
Error (cm) NA 6.72E−03 5.45E−04 6.53E−05 1.01E−07 3.64E−10

Table 9  Comparison of PBES with other techniques

Optimal values are given in bold

Particle size Max_iteration Solution time (s)

PSO [78] 300 500 0.4498
ABC [78] 100 500 0.4441
FA [78] 50 500 0.9204
PSSA 150 500 0.3467
PBES 150 500 0.2653
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Fig. 10  The histogram of solution time
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more effectively, and make PBES more widely used in polar 
coordinate problems.
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