
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2022) 15:21
https://doi.org/10.1007/s44196-022-00074-9

RESEARCH ARTICLE

Efficient Discrete Particle Swarm Optimization Algorithm for Process
Mining from Event Logs

Gong‑Liang Li1,2 · Si‑Yuan Jing3 · Yan Shen4 · Bing Guo1

Received: 17 August 2021 / Accepted: 1 March 2022
© The Author(s) 2022

Abstract
Process mining, which aims to mine a high-quality process model from event log, provides a powerful tool to support the
design, enactment, management, and analysis of operational business processes. However, the task is not easy because the
algorithm needs to discover various complex process structures, handle noisy and incomplete event logs and balance multiple
performance indicators. In this paper, a novel algorithm (called PSOMiner) for process mining is proposed, which consists of
a discrete particle swarm optimization algorithm and guided local mutation. The former is in charge of searching the solution
space of causal matrix and the latter is used to help the algorithm skip out the local optimum when it suffers from premature.
A fine-grained scoring strategy which used to assign a score to each position of a particle (i.e. causal matrix) is presented
to direct the mutation. The experiments were performed on 28 synthetic event logs with/without noise and 4 real-life event
logs, and three classical algorithms of process mining (ETM, Hybrid ILP Miner, HM) were chosen for comparison. The
results show that (1) PSOMiner achieved the best f-score on 25 synthetic event logs; (2) The average f-score of PSOMiner
is 0.825 on 4 real-life event logs, which is superior to ETM whose average f-score is 0.703.

Keywords Process mining · Discrete particle swarm optimization · Event log · Causal matrix · Guided local mutation

Abbreviations
ETM Evolutionary Tree Miner
Hybrid ILP Miner Hybrid Integer Linear Programming

Miner
HM Heuristic Miner
BPM Business process management
PSO Particle swarm optimization
SWF-net Structural workflow net
CI Computational intelligence
GM Guided local mutation
GA Genetic algorithm

BP Behavior precision
BR Behavior recall
SP Structural precision
SR Structural recall

1 Introduction

In the last decade, process mining, also known as work-
flow mining, has emerged as a hot topic in the field of busi-
ness process management (BPM) and it provides a bridge
between data mining and BPM. The starting point of pro-
cess mining is a collection of historical information which is
known as event log recorded by information systems. Based
on event logs, the goal of process mining is to output a pro-
cess model observed by the algorithm which reflects the real
execution path of business process in an information system.
The mined process model can be applied to many fields in
BPM, including process model design, analysis of bottleneck
of business process, etc. [1, 2].

Recently, the explosive growth of block-chain technology
brings new challenges to BPM. Block-chain can make the
traditional inter-organizational business process more secure
and trustable. BPM can be promoted by the block-chain

 * Gong-Liang Li
 ligongliang1982@126.com

 * Bing Guo
 guobin@scu.edu.cn

1 College of Computer Science, Sichuan University,
Chengdu 610000, China

2 Institute of Computing Applications, China Academy
of Engineering Physics, Mianyang 621000, China

3 School of Artificial Intelligence, Leshan Normal University,
Leshan 614000, China

4 School of Computer Science, Chengdu University
of Information Technology, Chengdu 610000, China

http://orcid.org/0000-0003-1312-6246
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00074-9&domain=pdf

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 2 of 16

technology to applied in many fields, such as international
finance, security data exchange (e.g. bank account informa-
tion, personal health information), and so on. Weber et al. [3]
firstly described a proposal to support inter-organizational
process through block-chain. Mendling et al. [4] pointed
out that how to collect event logs on trusted nodes in the
chain and how to discover the real business process among
organizations are big challenges in the field of block-chain-
based BPM. In this work, we do not consider the collection
of event logs and assume that (1) all the required process
information have been collected and recorded in an event
log; (2) The process information from different organiza-
tions has been converted to a unified format. Thus, we only
focus on how to mining a high-quality process model from
an event log.

Mining a high-quality process model from event logs is
not an easy task. On the one hand, besides common process
structures (e.g. sequence structure, parallel structure, choice
structure, etc.), the process mining algorithm needs to han-
dle lots of special structures, such as duplicated activity,
invisible activity, non-free-choice structure, long-distance
dependence structure, and so on [5]. On the other hand,
event logs are always noisy or incomplete in the real life
that may greatly affect the mining results. There are many
reasons for the appearance of noisy data in an event log, such
as server outage, network congestion, etc. In addition, for a
complicated process model, it is possible to get an event log
that cannot contain all possible execution paths, thus the
event log is often incomplete (or unbalanced).

To evaluate the quality of a process model, researchers
have proposed many effective indicators. The most com-
monly used indicators include replay fitness, precision and
simplicity [6]. Replay fitness quantifies the extent to which
the discovered model can accurately reproduce the traces
recorded in the event log (a trace is described as a sequence
of events and it represents a complete path of activity execu-
tion). However, only the replay fitness cannot prove the qual-
ity of the process model. For instance, the flower model is an
extreme case which is able to replay arbitrary sequence of
events. To handle this problem, researchers usually employ
precision to quantify the fraction of the behavior allowed
by the model but not observed in the event log. Simplic-
ity is used to capture the complexity of the process model.
A complex model is not required because it is hard to be
understood. How to balance these competing indicators to
discover an optimal process model is an important task in
the design of the algorithm.

Computational intelligence (CI) is an efficient technique to
handle such complex task. However, current CI-based process
mining algorithms, including GeneticMiner [7], evolutionary
tree miner [8, 9], ProDiGen et al. [10], suffer from slow con-
vergence and premature. The reason behind the low efficiency
of these algorithms is that all of them are based on genetic

algorithm and their genetic operators are very simple. This
paper proposes a new CI-based process mining algorithm,
named PSOMiner, which is based on the discrete particle
swarm optimization technique. There are three major inno-
vations in the work. Firstly, a series of arithmetic operators
are proposed for velocity updating and position updating on
causal matrix. Secondly, a local mutation operator is designed
to help PSOMiner skip out the local optimum if the premature
is detected. Thirdly, each position in a particle (i.e. a candidate
process model) is assigned a score during the calculation of
fitness value. Then, the score is employed to guide the local
mutation to improve the efficiency of the algorithm.

The remainder of this paper is structured as follows.
Section 2 reviews some works related to this paper. Sec-
tion 3 gives some background knowledge of process mining
and particle swarm optimization (PSO). Then, the details
of PSOMiner are given in Sect. 4. Section 5 explains the
experiments and analyzes the experimental results in depth.
The last section give conclusions.

2 Related Work

The basic idea of process mining is proposed by Cook and
Wolf in 1995 [11]. Their aim is to automatically discover pro-
cess models from event logs of the software process. Later,
Agrawal et al. [12] applied the technique to workflow manage-
ment and officially named it as process mining. So far, a large
amount of achievements have emerged in this field. Generally,
these works can be categorized into four groups.

(1) The α algorithm and its extensions
A milestone in the field of process mining is the

α-algorithm proposed by van der Aalst et al. [13]. The algo-
rithm can discover a structural workflow net (SWF-net)
from event logs under the assumption of that the event log
is complete. It models the business process by petri net and
focuses on discovery of four classical relations (i.e. sequence
relation, causal relation, parallel relation and choice relation)
among activities from event logs. Based on the α algorithm,
de Medeiros et al. proposed α + algorithm [14] which can
discover length-one loops and length-two loops from event
logs. Wen et al. proposed α# algorithm [15] and α + + [16]
which are able to handle invisible activity and non-free-
choice structure respectively. The common characteristic of
α series algorithms are that they extract the basic relation-
ship among activities by scanning traces in event logs to
construct the process model. The process model mined by α
series algorithms has low structural complexity thus is easy
to be understood. However, these algorithms do not consider
replay fitness and precision, thus the quality of the obtained
process model is low.

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 3 of 16 21

(2) Heuristics algorithm.
Weijters et al. proposed a heuristic algorithm for process

mining, named as Heuristic Miner (HM) [17]. The HM algo-
rithm quantifies the dependency among activities by count-
ing the occurrence frequency of some patterns in an event
log. Since the observed patterns with low frequency in an
event log are considered to be noises, the HM algorithm
has strong ability of anti-noise. Unfortunately, some correct
but low frequency patterns are easy to be wrongly handled,
thus the HM algorithm is unable to get a perfect process
model. Later, they proposed an improved algorithm, called
Flexible Heuristic Miner [18], which significantly improves
the performance of the HM algorithm. Besides that, Greco
et al. proposed CNMiner algorithm [19] which considers
precedence constraint in the heuristic method. The disad-
vantage of the heuristic algorithm is that the performance
of the algorithm mainly depends on the number of structure
patterns. The more the patterns are, the higher the time com-
plexity of the algorithm is.

(3) Region-based algorithm.
Bergenthum et al. firstly proposed a process mining algo-

rithm based on language-based region [20]. However, the
algorithm does not consider precision of the process model,
moreover its time complexity increases exponentially with
the size of event log. Werf et al. proposed ILP Miner which
is also based on language-based region [21]. The ILP Miner
employs integer linear programming technique to construct
the process model. van Zelst et al. proposed Hybrid ILP
Miner [22] which changes the objective function of ILP
Miner and considers a method to handle the behavior with
low frequency in an event log. Leemans et al. proposed
Inductive Miner [23] which employs a strategy of divide-
and-conquer. The Inductive Miner algorithm starts from a
single node and it uses the recursive method to combine the
adjacent local process models into a larger process model.

(4) CI-based algorithm.
CI is a powerful tool to solve problems in data mining,

nonlinear optimization and other fields. This kind of meth-
ods simulate the biological evolution process, and has very
strong search ability and robustness. Medeiros et al. firstly

applied genetic algorithm in process mining (named as
Genetic Miner) [7]. Through well-defined fitness function
and crossover/mutation operators, the Genetic Miner is able
to obtain a process model which is very consistent with the
event log. Moreover, many problems, including non-free-
choice structure, invisible activity, duplicated activity etc.,
are solved in a unified framework. Vázquez-Barreiros et al.
proposed another algorithm ProDiGen [10] which is also
based on genetic algorithm. However, the hierarchical objec-
tive function used in ProDiGen often obtains an unsatis-
factory process model which has perfect replay fitness but
very poor precision. Buijs et al. proposed Evolutionary Tree
Miner (ETM) [8] which employs process tree to represent
a process model. Moreover, the objective function of ETM
considers replay fitness, precision and simplicity, therefore
it can find high-quality process model.

3 Preliminaries

3.1 Process Mining

Process mining aims to extract knowledge from an event log
and produce a process model which is required to be consist-
ent with real business process. A process model is usually
represented by petri net.

Definition 1 A petri net over a set of activities A is denoted
by a tuple N = (P, T ,F,�) , where:

1. P is a finite set of places;
2. T is a finite set of transitions, and P ∩ T = �;
3. F = (P × T) ∪ (T × P) is a finite set of directed arcs con-

necting places and transitions;
4. � ∶ T → A ∪ � is a function mapping transitions to either

activities or � , such that ∀a∈A∃t∈T�(t) = a.

The symbol � denotes the invisible activity in a process
model. Let N = (P, T ,F,�) be a petri net, a, b ∈ P ∪ T are
two nodes in N , if < a, b >∈ F , we say that a is an input
node of b , meanwhile b is the output node of a . We use
the symbol ∙a = {b|< b, a >∈ F ∧ y ∈ P ∪ T } to denote the

Fig. 1 An illustrating example
of process model

A P1

D

B EP3
Start

F

P3

P4

G

H

P6

P7

J

P5 I P8 K

End

C

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 4 of 16

input nodes of a . Similarly, the symbol a∙ represents the
output nodes of a.

Figure 1 gives an illustrating example of process model
represented by petri net, in which the circles denote places
and the squares denote transitions. For a business process,
the activities are modeled by transitions and the causal
dependency among activities are modeled by places and
arcs. It is easy to find that there are eleven transitions and
ten places in Fig. 1. Two nodes that named “start” and “end”
denote the beginning place and the ending place respectively.

Petri net is a token-based system. The token is represented
by a block dot (see the “start” place). If all the input nodes
(a.k.a. places) of a transition have one token, the transition
is enabled to be fired. A firing transition will remove a token
from each input place, and then put a token to each output
place. For example, in Fig. 1, it can be seen that the input
place of transition “A” contains a token, thus the transition
“A” is enabled to be fired. It would remove a token from the
“start” place and put a token to place “P1”. Then, transition
“B” is enabled to be fired. It should be noted that “P3” is an
OR-Split structure, that is to say, one of the four following
transitions (i.e. “C”, “D”, “E” and “F”) would be able to be
fired if “P3” has a token. Besides, “P1” and “P5” are OR-
join structure, transitions “D” and “J” represent AND-split
and AND-join structure respectively. More details can be
found in [13].

Although petri net provides a powerful tool for process
modeling, it is hard for us to directly apply a CI-based
method on a petri net. To solve this problem, Medeiros et al.
[7] proposed causal net (also known as causal matrix) to
represent the process model. The definition is given below.

Definition 2 [7]: A causal matrix is a tuple Π = (A,C, I,O) ,
where.

(1) A is a finite set of activities;
(2) C ⊆ A × A is the causality relation;
(3) I ∶ A → P(P(A)) is an input condition function1;
(4) O ∶ A → P(P(A)) is an output condition function.

Furthermore, since a process model represented by petri
net is usually compared with a model represented by causal
matrix, a method for converting a petri net to a causal matrix
is given below.

Definition 3 Let N = (P, T ,F,�) be a petri net. The rules
of mapping N to a causal matrix Π = (A,C, I,O) include:

(1) A = �(T).
(2) C =

{(
t1, t2

)
∈ T × T||t1 ⋅ ∩ ⋅ t2 ≠ �

}
.

(3) I ∶ T → P(P(T)) such that ∀t∈T I(t) = {⋅p|p ∈ ⋅t}.
(4) O ∶ T → P(P(T)) such that ∀t∈T O(t) = {p ⋅ |p ∈ t⋅}.

For explanation, the process model in Fig. 1 is converted
to a causal matrix shown in Table 1. It can be seen that each
row in the table corresponds to an activity. Each row has two
columns, i.e. the input of the activity I(a) and the output of
the activity O(a) . The input and output are denoted by a set
whose elements are also sets. For distinction, the element is
called subset in the following paper. It should be noted that
activities in a same subset of I(a) have an OR-join relation
and those in different subsets have an AND-join relation.
On the other hand, activities in a same subset of O(a) have
an OR-split relation and those in different subsets have an
AND-split relation.

Take transition “B” as an instance, it has two input places
“P1” and “P2”. Moreover, the input transition of “P1” is
transition “A” and the input transition of “P2” is transition
“C”, thus I(B) = {{A,C}} . The output place of “B” is “P3”
whose following transitions include “C”, “D”, “E” and “F”,
thus O(B) = {{C,D,E,F}}.

Then, the definitions of event, trace and event log are
given below.

Definition 4 (Event, trace, and event log) Let A be a set of
activities, event is denoted as e = �(a) , where a ∈ A and
� is a function relating each activity to an event. Let Γ be
a universe of events, a trace t ∈ Γ∗ is a finite sequence of
events. Let Σ = Γ∗ be a universe of traces, an event log L is
a multi-set of traces, i.e.L = B(Σ).

It is not difficult to understand that the process model
in Fig. 1 may produce many different execution paths rep-
resented by a sequence of events (i.e. a trace) and these
traces consist of an event log, just like {ABEIK50, ACFIK20,
 ACEBF100, ABCBEIK80, ABDGHJ60, ABDHGJ45 …}. The
superscript represents the number of times that the trace
appears in the event log.

Table 1 The process model in Fig. 1 as a causal matrix

Activity I O

A {} {{B}}
B {{A, C}} {{C, D, E, F}}
C {{B}} {{B}}
D {{B}} {{G}, {H}}
E {{B}} {{I}}
F {{B}} {{I}}
G {{D}} {{J}}
H {{D}} {{J}}
I {{E, F}} {{K}}
J {{G}, {H}} {}
K {{I}} {}

1 P(A) is the power set of A

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 5 of 16 21

3.2 Particle Swarm Optimization

PSO, which imitates the social behavior of bird flock-
ing, is one of the most popular CI algorithm [24]. The
PSO algorithm is initialized with a population of par-
ticles randomly distributed in the search place. Each
particle imitates a bird which has two properties, i.e.
its position xi =

(
xi,1, xi,2,⋯ , xi,n

)
 and flying velocity

vi =
(
vi,1, vi,2,⋯ , vi,n

)
 , where n is the dimension of the prob-

lem. In addition, each particle is assigned a fitness value
calculated by an optimization function. During each genera-
tion, each particle updates its velocity and position using the
following rules [25]:

where pbesti,j and gbestj are the value of j-th dimension of
the best-so-far position yielded by the i-th particle and the
whole population respectively. In addition, � is the inertia
weight, r1,j and r2,j are two random numbers, c1, c2 are two
acceleration parameters which are used to control the speed
flying to the best-so-far position found by the particle itself
and the population. In this way, particles learn from their
self-cognition and social interaction to approximate the opti-
mal solution of the problem.

4 Discrete Particle Swarm Optimization
Algorithm for Process Mining

4.1 Framework of PSOMiner

Most of the CI algorithms for process mining follow the
approach of genetic evolution, such as Genetic Miner, ETM,
ProDiGen, etc. All of them suffer from premature and slow
convergence speed because of the poor search ability of the
genetic operators.

In this work, we propose a novel CI algorithm for process
mining which is based on PSO technique, called PSOMiner.
The flowchart of the PSOMiner is shown in Fig. 2. Firstly,
the algorithm initializes a population of particles by the
heuristic method proposed in [7]. Then, the particles are
evaluated by the fitness function. If the stopping criteria is
achieved, the algorithm will output the best solution. Oth-
erwise, it will check whether or not the algorithm falls into
local optimum (i.e. premature). If so, the algorithm will
select the guided local mutation algorithm to help itself
skip out the local optimum; otherwise it will select the PSO
algorithm to fast approximate the optimal solution. There are
two termination conditions, which are (1) whether or not the

(1)vi,j = �vi,j + c1r1,j
(
pbesti,j − xi,j

)
+ c2r2,j

(
gbestj − xi,j

)

(2)xi,j = xi,j + vi,j

number of times that the best fitness value is not changed
is higher than a predefined threshold, or (2) the number of
generation reaches upper bound. The premature is judged by
the variance of the fitness value of all particles. The details
of the PSO algorithm as well as the guided local mutation
technique will be introduced below.

4.2 Fitness Function

In this work, particles are evaluated by a fitness function
which is composed of three indicators, including complete-
ness Fc , precision Fp and simplicity Fs . The formula is given
below, where �c, �p, �s are three weight coefficients.

The completeness Fc is in charge of quantifying the
ability of a process model that it can properly replay the
traces in an event log. For an event log without noise, the
completeness of a perfect process model should be 1.0,
i.e. all the traces can be properly replayed on the process
model. A simple way to define the completeness metric is

(3)fitness = �c × Fc + �p × Fp + �s × Fs

Begin

Ini�alize a popula�on
of par�cles

Evaluate the par�cles

Stop condi�ons are
sa�sfied?

Apply local muta�on on
each par�cle

Output the best
par�cle

End

Yes

Yes
No

No
Premature?

Update velocity and
posi�on for each par�cle

Fig. 2 The flowchart of PSOMiner

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 6 of 16

the number of correctly replayed traces divided by the total
number of traces. However, this definition is too coarse.
Consider two process models, one is a totally incorrect
process model and the other just misses an arc, the above
method cannot distinguish the two models because both of
them can not properly replay the event log. This work fol-
lows the definition of completeness in [7]. The definition
of completeness Fc is shown in formula (4). The function
allParsedActivities(Π,L) returns the total number of activi-
ties in the event log L that could be parsed without prob-
lems by the causal matrix Π , and numOfActivitiesInLog(L)
gives the total number of activities in L.

A process model maybe not a good solution even if it
has completeness 1.0. An extreme instance is the flower
model, i.e. for any activity, its inputs and outputs are the
rest of the activities. The flower model can replay arbitrary
traces, so its completeness value is the best. However, it
is meaningless. Precision is an indicator for quantifying
the fraction of the behavior allowed by the model which
is not seen in the event log. However, it is difficult to give
a proper definition of precision because it has to detect all
the extra behavior in the process model. Therefore, our
definition of precision takes into account all the activities
that are enabled when the model replays an event log (see
formula 5). The function allEnabledActivities(Π,L) returns
the number of enabled activities the log L is replayed on
the model Π.

The third dimension of the fitness is simplicity, which is
used to measure complexity of a process model [10]. The
definition of the indicator is shown in formula (6), where
the symbol � and � denote the AND-join structure and the
AND-split structure respectively. It has been introduced that
AND-split (or AND-join) structure is modeled by the activi-
ties in different subset of O(a)(or I(a)). Therefore, what we
need to do is to count the number of subset in I(a) and O(a).

4.3 PSO Algorithm

Different with the S-PSO [24, 25], the particle in
PSOMiner is naturally represented by causal matrix which
is more complex than the representation of particles in

(4)Fc =
allParsedActivities(Π,L)

numOfActivitiesInLog(L)

(5)Fp = 1 −
allEnabledActivities(Π,L)

maxΠ�∈Ω (allEnabledActivities(Π�, L))

(6)Fs = 1 −

∑
a∈A

�∑
�∈I(a) ��� +

∑
�∈O(a) ����

maxΠ∈Ω

�∑
a∈A

�∑
�∈I(a) ��� +

∑
�∈O(a) �����

most of the S-PSO works. All the concepts and operators,
such as position, velocity, position updating and velocity
updating, are required to be redefined. Next, these new
concepts and operators will be introduced.

4.3.1 Position

In PSO, the position of a particle usually represents a solu-
tion to the problem. In this work, the position of a parti-
cle is naturally represented by the causal matrix. Formally,
the position is denoted by a tuple Pos =

(
PosI ,PosO

)
 ,

where PosI = {I(a)|a ∈ A} is a set that represents the
input structure of each node and PosO = {O(a)|a ∈ A}
is a set that represents the output structure of each
node. Take the process model in Fig. 1 for an example,
Pos

I = {{}, {{A,C}}, {{B}}, {{B}}, {{B}}, {{B}}, {{D}},

{{D}}, {{E,F}}, {{G}, {H}}, {{I}}} . It can be seen that
the representation of particle position in PSOMiner is much
more complex than that in the traditional S-PSO. The former
contains subsets of arbitrary length, but the latter contains
subsets with fix length (just as {(a, b), (b, c), ….}).

4.3.2 Velocity

In PSO, velocity determines the speed and direction of a
particle to update its position. Similar to the S-PSO, velocity
is defined as a set of elements with possibility in this work.
The definition of the velocity V is shown in formula (7).

where e is the element which is a subset of the power set of
activities A , p(e) ∈ [0, 1] is the possibility of the subset. Note
that an element with possibility zero will be ignored for the
sake of convenience.

4.3.3 Velocity Update

The velocity updating rule in PSOMiner is different from
the traditional method (see formula 8) because we do not
consider the velocity of last generation. The reason behind
the consideration is that the algorithm only selects one node
to update in each generation, thus the historical velocity may
provide trivial information for the search of optimal solution.

The symbols Vi,j and Posi,j mean the velocity and the posi-
tion of the j-th node (including the input set and the output
set) of i-th particle respectively,pbesti,j is the j-th node of the
historically best position found by i-th particle, and gbestj
is the j-th node of the historically best position found by all
particles. The meaning of other symbols are same with the

(7)V = {e∕p(e)|e ⊆ P(A)}

(8)Vi,j = c1r1,j
(
pbesti,j − Posi,j

)
+ c2r2,j

(
gbestj − Posi,j

)

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 7 of 16 21

traditional PSO. Then, all related operators will be intro-
duced in detail.

(1) Position—Position (e.g.pbesti,j − Posi,j)
It has been explained that position of each particle con-

tains two factors, i.e.PosI
i
 and PosO

i
 . Both of them are sets

composed of the subsets of the P(A) . This section makes no
distinction between them, i.e., all of the definitions proposed
in this section can be applied to both factors. A minus opera-
tor between two positions are given below.

For explanation, an example is shown in Fig. 3, in
which three different structures of the output of node “B”
a r e g i v e n . L e t gbestO

i
= {{A}, {C,D}, {E}}

, pbestO
i,j
= {{C,D,E}} PosO

i,j
= {{C,D}, {D,E}} , t hen

gbestO
j
− PosO

i,j
= {{A}, {E}} , pbestO

i,j
− PosO

i,j
= {{C,D,E}} .

This operator is able to find out the promising structures
that appear in good solution but not appear in current
solution.

(2) Real number × Position (e.g. c1r1,j
(
pbesti,j − Posi,j

)
)

The multiplication operator between a positive coefficient
c and a position Pos yielded in the last step is defined by
formula (10).

By multiplying a positive coefficient c , the result of minus
operation between two positions becomes a set of possibili-
ties, i.e. it has been transformed to a velocity. Continue the

(9)Posi,j − Posk,j =
{
e
|||e ∈ Posi,j ∧ e ∉ Posk,j

}

(10)c × Pos = {e∕p(e)|e ∈ Pos}, p(e) =

{
c if c < 1

1 if c ≥ 1

example above, assume c1r1,j = 0.92 , c2r2,j = 0.84 , then
c1r1,j

(
pbestO

i,j
− PosO

i,j

)
= {{D,E,F}∕0.92} ,

c2r2,j

(
gbestO

j
− PosO

i,j

)
= {{A}∕0.84, {E}∕0.84}.

(3) V e l o c i t y + V e l o c i t y (e . g .
c1r1,j

(
pbesti,j − Posi,j

)
+ c2r2,j

(
gbestj − Posi,j

)
)

The addition operator between two velocities is given by
formula (11).

where e1
/
p
(
e1
)
∈ V1, e2

/
p
(
e2
)
∈ V2 . The principle behind

this operator is simple that the structure with higher possi-
bility will be kept for the position updating. Since the pos-
sibilities are generated randomly, this method can enhance
the diversity of the particles. Continue the above example,
c
1

r
1,j

(
pbesti,j − Posi,j

)
+ c

2

r
2,j

(
gbestj − Posi,j

)
= {{A}∕0.84,

{C,D,E}∕0.92} . Based on three operators, the velocity
updating rule given by formula (8) can be performed.

4.3.4 Position Update

So far, a velocity is ready for updating the current position
of the particle. However, it is impossible to simply add a
velocity to a position because the former contains possibili-
ties. We employ the method proposed in [25] to remove pos-
sibilities from the velocity meanwhile filter out the elements

(11)

V1 + V2 =

⎧
⎪⎪⎨⎪⎪⎩

�
e1
�
p
�
e1
�
,e2

�
p
�
e2
���e1 ∩ e2 = �

�
�
e1
�
p
�
e1
����e1 ∩ e2 ≠ � ∧ p

�
e1
�
≥ p

�
e2
��

�
e2
�
p
�
e2
����e1 ∩ e2 ≠ � ∧ p

�
e1
�
< p

�
e2
��

A B

C

D

E

gbest: O(B)={{A},{C,D},{E}}

A B

C

D

E

pbest: O(B)={{C,D,E}}

A B

C

D

E

X: O(B)={{C,D},{D,E}}

Fig. 3 An example for explanation of operators in PSOMiner

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 8 of 16

whose possibilities are lower than a threshold � (see formula
12).

Then, the obtained V� can be used to update the position
of the particle. The operator is given in formula (13).

where ∪ denotes a generalized union operation and e�
/
∪V�

i

means that it removes the elements in ∪V�
i
 from e′ . The pur-

pose is that it can keep the promising structures in V� . Con-
tinue the above example, let V0.8

i,j
= {{A}, {C,D,E}} , thus

∪V0.8

i,j
= {A,C,D,E} and Pos

i,j
+ V

0.8

i,j
= {{C,D}, {D,E}}+

{{A}, {C,D,E}}={{A}, {C,D,E}} . The result is shown in
Fig. 4.

4.4 Model Repair

Usually, the new particle is not consistent. For example,
let the j-th activity and k-th activity of i-th particle be “B”
and “E” respectively, i t is possible to obtain
PosO

i,j
= {{C,E}, {F}} , but PosI

i,k
 does not contain activity

“B”. In addition, the input of the “start” activity as well as
the output of the “end” activity may be not empty. There-
fore, a repair operation is required after the position
update. Firstly, we give a definition of consistence to deter-
mine whether a causal matrix is consistent or not.

Definition 5: let Π = (A,C, I,O) be a causal matrix, it is
consistent if it satisfies following conditions:

O(start) ≠ � ∧ I(start) = � , where start is the initial
activity;
I(end) ≠ � ∧ O(end) = � , where end is the last activity;
for ∀a� ∈ ∪I(a),a ∈ ∪O

(
a�
)
 , where a, a� ∈ A ∧ a ≠ start

∧a� ≠ end;

(12)V� = {e|e∕p(e) ∈ V ∧ p(e) ≥ � }

(13)Posi + V�

i
=
{
e
|||e ∈

{
e�
/
∪V�

i
||e� ∈ Posi

}
∨ e ∈ V�

i

}

for ∀a� ∈ ∪O(a),a ∈ ∪I
(
a�
)
 , where a, a� ∈ A ∧ a ≠ end

∧a� ≠ start.

Next, the pseudo code of particle repair is shown in
algorithm particle_repair (Π,a). The algorithm firstly
sets the I(start) and O(end) to empty. Then, it traverses all
nodes a� ∈ A in the particle and repair the I

(
a′
)
 and O

(
a′
)

iteratively.

4.5 Local Mutation

Although PSO is a stochastic algorithm that has strong
search ability, it often suffers from the problem of premature.

A B

C

D

E

Fig. 4 The result of position update

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 9 of 16 21

In this work, a guided local mutation method is proposed to
help the algorithm skip out the local optimum if the prema-
ture is detected during the generation.

To guide the local mutation, it requires to locate the
incorrect node in a particle. Conformance checking is a hot
issue in process mining. The most popular technique for con-
formance checking is based on alignment [26], in which the
A* algorithm is used to find the optimal alignment between
a process model and an event trace. However, this method
is not appropriate in this work, because finding the optimal
alignment is too time-consuming. Besides, it can only locate
the incorrect area but not a node. It is inaccurate for the guid-
ance of the local mutation.

In this paper, we prepare to assign each node a score by
a fine-grained method (see formula 14). Besides that it can
accurately local the incorrect node, another advantage of
this method is that the score can be obtained along with
the calculation of fitness value of particles [27], thus it has

better performance than the alignment-based method. It can
be seen that there are three factors in the formula, which are
allTokenParsedActivity, allMissingTokens and allTokens-
LeftOnActivity. The three factors represent the total num-
ber of tokens parsed on the activity, the number of missing
tokens and the number of tokens that are not consumed on
the activity during the log replay, respectively.

The pseudo code of local mutation is given in algo-
rithm 2. For each particle, it firstly selects an activity by
the roulette wheel strategy. The higher the score of a node,
the easier it is to be selected. Then, the algorithm randomly
selects a mutation strategy, including add an arc, delete
an arc and redistribute the structure, and applies it on the
selected node.

(14)

Scorea =
#allMissingTokenOnActivity + #allTokenLeftOnActivity

#allTokenParsedOnActivity

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 10 of 16

5 Experiments

This section gives the experimental results and the analy-
sis. The experiments are composed of three parts. Firstly,
we compared the search ability and the convergence speed
among different combination of strategies to prove the effec-
tiveness of PSOMiner. Secondly, we compared PSOMiner
with three state-of-the-art algorithms of process mining on
a group of noise-free event logs and a group of noisy event
logs to evaluate the performance and the anti-noise ability
of the proposed algorithm respectively. Finally, PSOMiner
was run on event logs from real world to further validate its
performance.

5.1 Event Logs and Experimental Settings

There are 32 different event logs used in the experiments.
These event logs were divided into three groups. The first
group contains 14 noise-free event logs generated by differ-
ent process models [28]2. The process models are produced
by the CPN Tool and have different structural characteristics,
such as choice structure, parallel structure and loop structure
with different length. The details of the event logs are shown
in Table 2, in which the activities column is the number
of activity contained in the process models and the event
column is the number of events simulated by the CPN tool.
Besides, each event log have 300 traces. The event logs of
the second group were produced by randomly adding noise
in event logs of the first group. We randomly choose one

of the following three operations with a probability of 10%
to add noise to the event logs, including swap two adjacent
events in a trace, add an event to a trace and remove an event
from a trace. The third group contains four event logs from
real production environment, named Sepsis, BPIC2012,

Table 2 Event logs

Model name #Activities #Events Sequence Choice Parallelism Length
one loop

Length
two loop

Structured loop Arbitrary loop Invis-
ible
activity

ma6 8 2040 √ √ √ √
ma7 9 2032 √ √ √
ma10 12 2665 √ √ √ √
mal1 9 3976 √ √ √ √
mal2 13 5800 √ √ √ √
mbn2 42 24,540 √ √ √ √
mbn3 42 35,527 √ √ √ √
Herbst3p4 12 5637 √ √ √ √
Herbst6p18 7 9844 √ √ √ √ √ √
Herbst6p30 19 14,851 √ √ √
Herbst6p41 16 3600 √ √ √
Ml1l 6 1987 √ √ √
Ml2lo 6 2622 √ √ √
Ml2ls 6 4554 √ √ √ √

Table 3 Setting of parameters Parameters values

ParticleSize 1 ~ 2
�
c

0.7
�
p

0.2
�
s

0.1
� 0.1
MaxGeneration 400
MaxNotChanged 20
c
1

 , c
2

2
� 0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fi
tn

es
s v

al
ue

Event logs

PSO + GM PSO + RM PSO GA

Fig. 5 Fitness value achieved by four different methods2 https:// svn. win. tue. nl/ repos/ prom/ DataS ets/ Genet icMin erLogs/

https://svn.win.tue.nl/repos/prom/DataSets/GeneticMinerLogs/

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 11 of 16 21

BPIC2013cp and BPIC2013inc respectively.3 The former
three event logs are from BPI Challenge and all of them are
from real world. For example, The BPI2013cp event log is
from the IT problem management system of VOLVO and
it contains 6660 events that form 1487 traces. The Sepsis
event log is from an information system of a hospital which
records the process of diagnosis and treatment of sepsis. It
contains 15,214 events that form 1050 traces.

The parameter settings are shown in Table 3. The Parti-
cleSize is set to 1 ~ 2 times of the number of activity in the
event log. The reason behind this is the heuristic algorithm
of population initialization which would filter out those
causal matrices that do not satisfy the constraints. The Max-
Generation means the upper bound of the number of gen-
eration and the MaxNotChanged means that the algorithm
will stop if the number of times that the best fitness value
does not change exceeds the threshold. Parameters �c, �p, �s
are set to 0.7, 0.2 and 0.1. The reason is that, for a process
model, whether it could reproduce the event log is the most
important characteristic that users care about. Parameter �
is for premature detection. That is to say, if the variance of
the fitness value of particles is lower than 0.1, we think that
the algorithm suffers from premature. Then, the guided local
mutation strategy is used to help the algorithm skip out the
local optimum. The parameter � is set to 0.8. Parameters

c1, c2 are set to 2. The reason is that the efficiency of the
algorithm would be greatly decreased if the value of param-
eter c is too small (e.g. below 1.0) because there is a high
probability that c × r is less than � . Conversely, if the value
of parameter c is large, the randomness of the algorithm will
be affected.

5.2 Effectiveness

In this section, we focus on the validation of the effective-
ness of PSOMiner. Four different combinatorial strategies
were evaluated, which are PSO + GM (Guided local Muta-
tion, a.k.a. PSOMiner), PSO + RM (Random local Muta-
tion), PSO and GA (genetic algorithm). GA is the Genetic
Miner proposed in [7]. Specifically, for comparison, we
modified the fitness function and the stopping conditions
in GA but the rest part was not changed. The metrics are
the best fitness value achieved by these algorithms and the
number of generation when they achieve the best results. To
ensure the reliability of the results, all the algorithms were
run for 20 times and the arithmetic average of the results
were calculated.

Experimental results are shown in Figs. 5, 6. It is easy to
find that the search ability of PSO is worse than GA. The
reason behind it is that the GA algorithm employs some
optimization techniques which enhance its search ability.
Moreover, both of the number of generation and the achieved

0
10
20
30
40
50
60
70
80
90

100

m
a6

m
a7

m
a1

0

m
al

1

m
al

2

m
bn

2

m
bn

3

H3
p4

H6
p1

8

H6
p3

0

H6
p4

1

L1
L

L2
LO

L2
LS

N
um

be
r o

f i
te

ar
�o

n

PSO + GM

0

20

40

60

80

100

120

m
a6

m
a7

m
a1

0

m
al

1

m
al

2

m
bn

2

m
bn

3

H3
p4

H6
p1

8

H6
p3

0

H6
p4

1

L1
L

L2
LO

L2
LS

N
um

be
r o

f i
te

ra
�o

n

PSO + RM

0

10

20

30

40

50

60

N
um

be
r o

f i
te

ra
�o

n

PSO

0
20
40
60
80

100
120
140
160
180

m
a6

m
a7

m
a1

0

m
al

1

m
al

2

m
bn

2

m
bn

3

H3
p4

H6
p1

8

H6
p3

0

H6
p4

1

L1
L

L2
LO

L2
LS

N
um

be
r o

f i
te

ar
�o

n

GA

Fig. 6 Number of generation of four different algorithms

3 https:// data. 4tu. nl/ repos itory/ colle ction: event_ logs.

https://data.4tu.nl/repository/collection:event_logs.

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 12 of 16

fitness value of PSO are the least among four algorithms. It
demonstrates that PSO is easy to fall into local optimum.
The quality of the results achieved by PSO + RM is slightly
worse than that achieved by GA. It is inferior to GA in 9 of
14 event logs, but the convergence speed of PSO + RM is
obviously faster than that of GA. Finally, compared with
PSO + RM and GA, PSO + GM achieves much better results
in both the fitness value and the convergence speed. It won
gold medals in 12 of 14 event logs and shared the best result
in the rest 2 event logs. Moreover, its convergence speed
is faster than PSO + RM and GA. The experimental results
prove the effectiveness of PSOMiner.

5.3 Comparison with State‑of‑the‑Art Algorithms

This section compares PSOMiner with three state-of-the-art
algorithms of process mining, which are ETM, Hybrid ILP
Miner and HM, to evaluate the performance of the proposed
algorithm. We use ProM 6.9 [29] which is the most popular
platform for process mining. The parameters of three algo-
rithms for comparison are set to default. It should be pointed
out that the output process model of three algorithms are
different. The output of ETM is a process tree and the output
of Hybrid ILP Miner is a petri net and the output of HM is
a heuristic net. Fortunately, ProM 6.9 provides function to
convert process tree and heuristic net to petri net. For com-
parison, we convert the obtained petri nets to causal matrices
based on definition 3.

To evaluate process models represented by causal matrix,
we employ four metrics proposed in [7], which are behavior
precision (BP), behavior recall (BR), structural precision
(SP) and structural recall (SR). The former two metrics

require to replay an event log on the obtained process model
and the original process model. BP evaluates how much
behavior is allowed by the obtained process model but not
by the original process model. BR is for the opposite. If
the obtained model perfectly fit to the original model, both
of the BP and BR would be 1.0. The latter two metrics are
based on the causal relations of the obtained process model
and the original process model. SP evaluates how many
causal relations the obtained process model has but not in
the original process model, and SR is for the opposite.

In the experiments, both of PSOMiner and ETM were
run for 20 times because they are stochastic algorithms. We
calculate the arithmetic mean value of the four metrics of the
output model. Firstly, the experiments were performed on
event logs of the first group (a.k.a. the noise-free event logs).
The results are shown in Table 4. To facilitate the analysis,
the optimal value of metrics obtained by these algorithms
are labeled by bold. From the table, it is easy to find that
ETM, Hybrid ILP Miner, HM and PSOMiner mine the best
process model (i.e. totally same with the original model)
on 2 event logs, 8 event logs, 10 event logs and 12 event
logs respectively. It can conclude that the performance of
PSOMiner is better than other three state-of-art process min-
ing algorithms on noise-free event logs.

The proposed algorithm only lost two event log which is
ma7 and Herbst6p18. To find out the reason why PSOMiner
did not achieve the best results on the two event logs, the
most frequent obtained results on ma7 was analyzed in
depth (see Fig. 7). In the figures, OR-S, OR-J, AND-S and
AND-J denote structures of OR-Split, OR-Join, AND-Split
and AND-Join respectively. We find that the incorrect part
is the input of activity “D” labeled by red color. The origi-
nal input of activity “D” is I(D) = {{C,E}, {E,F,B}, {G}}

Table 4 Comparing PSOMiner with three state-of-art algorithms on noise-free event logs

Event
Log

ETM Hybrid ILP Miner HM PSOMiner

Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp

ma6 0.98 0.91 0.93 0.93 1.00 1.00 1.00 1.00 0.87 0.68 0.93 1.00 1.00 1.00 1.00 1.00
ma7 0.95 0.93 0.95 0.97 1.00 0.99 0.95 1.00 0.86 0.78 0.95 0.92 1.00 0.98 1.00 0.97
ma10 0.96 0.86 1.00 1.00 1.00 0.97 1.00 0.95 1.00 0.91 0.90 1.00 1.00 1.00 1.00 1.00
mal1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mal2 0.95 0.88 0.94 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mbn2 0.98 0.96 0.98 0.94 1.00 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mbn3 − − − − 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Herbst3p4 0.93 0.82 0.94 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Herbst6p18 0.95 0.82 0.92 0.92 1.00 0.80 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.92 0.98 1.00
Herbst6p30 0.92 0.98 0.90 0.91 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.95 1.00 1.00 1.00 1.00
Herbst6p41 0.93 0.99 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
L1L 1.00 1.00 1.00 1.00 0.95 0.97 0.86 1.00 0.95 0.97 0.87 1.00 1.00 1.00 1.00 1.00
L2LO 0.91 0.83 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
L2LS 1.00 0.95 1.00 0.90 1.00 0.95 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 13 of 16 21

and the obtained is I(D) = {{C,E}, {F,B}, {G}} . The rea-
son behind this phenomenon is that the position update
operation will remove all the elements in ∪V�

i
 from the

particle’s position of last generation. For example, assume
Pos = {{C,E}, {E,F,B}} and V�={{C,E}, {G}} , then
Pos + V� = {{C,E}, {F,B}, {G}} . It can be seen that the
intersection of two sets is removed. The proposed algorithm
suffers same problem on another event log.

Furthermore, the experiments were performed on 14
event logs with 10% noise. Experimental results are given
in Table 5. From the results, we can find that PSOMiner
achieves the best performance on most of the metrics of

these event logs. However, it cannot prove that the process
models mined by PSOMiner are better than that of other
algorithms, because a process model may have very good
performance on three of the four metrics, but very poor on
the last one. For fairness, we propose a new metric fscore
which integrates four metrics together (see formula 15).
The results of calculation is given in Fig. 8. It is easy to
find that PSOMiner is obviously superior to other three
algorithms on 8 event logs and is slightly superior to other
three algorithms on 5 event logs. It only slightly inferior
to Hybrid ILP Miner on the last event log (a.k.a. L2LS).

BEGIN
OR-S

A
OR-S

OR-J

AND-S OR-S AND-S OR-S

G
OR-S

OR-J
C

OR-S

OR-J
E

OR-S

OR-J
F

OR-S

OR-J
B

OR-S

OR-J

END
XOR

BEGIN
OR-S

A
OR-S

OR-J

AND-S OR-S AND-S OR-S

G
OR-S

OR-J
C

OR-S

OR-J
E

OR-S

OR-J
F

OR-S

OR-J
B

OR-S

OR-J

END
XOR

OR-S

OR-J AND-J

D
OR-J AND-J OR-J

OR-S

OR-J AND-J

D
OR-J AND-J OR-J

Fig. 7 The original process model of a7 (left) and the obtained process model of a7 (right)

Table 5 Comparing PSOMiner with three state-of-the-art algorithms on event logs with 10% noise

Event
Log

ETM Hybrid ILP Miner HM PSOMiner

Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp

ma6 0.98 0.91 0.86 0.93 1.00 0.89 0.92 0.87 1.00 0.89 0.91 0.93 1.00 0.98 0.92 0.96
ma7 0.98 0.91 0.86 0.93 1.00 0.95 1.00 0.98 1.00 0.88 0.94 0.86 1.00 0.98 0.92 0.96
ma10 0.90 0.74 0.82 0.62 0.91 0.79 0.86 0.73 0.84 0.73 0.86 0.70 0.96 0.82 0.91 0.72
mal1 0.92 0.73 0.84 0.81 0.95 0.81 0.85 0.92 0.91 0.67 0.75 0.60 0.94 0.83 0.92 0.92
mal2 0.88 0.62 0.81 0.80 0.94 0.79 0.83 0.84 0.89 0.73 0.74 0.79 0.95 0.81 0.88 0.79
mbn2 1.00 0.74 0.95 0.90 1.00 0.73 0.99 0.82 0.98 0.74 0.93 0.77 1.00 0.84 1.00 0.90
mbn3 - - - - 0.96 0.84 0.95 0.82 1.00 0.79 0.91 0.74 1.00 0.86 0.98 0.80
Herbst3p4 0.96 0.70 0.85 0.72 0.93 0.77 0.92 0.72 0.95 0.66 0.89 0.63 0.96 0.82 0.92 0.72
Herbst6p18 0.93 0.74 0.92 0.70 0.92 0.76 0.92 0.80 0.96 0.75 0.95 0.78 0.95 0.74 0.93 0.81
Herbst6p30 0.92 0.80 0.86 0.75 0.95 0.78 0.96 0.80 0.96 0.76 0.95 0.78 0.95 0.84 0.96 0.80
Herbst6p41 0.87 0.80 0.88 0.72 0.93 0.73 0.95 0.78 0.91 0.74 0.92 0.77 0.99 0.83 1.00 0.84
L1L 0.87 0.75 0.83 0.82 1.00 0.78 0.94 0.85 0.87 0.75 0.92 0.80 1.00 0.78 1.00 0.85
L2LO 0.98 0.85 0.89 0.82 1.00 0.80 0.98 0.77 1.00 0.82 1.00 0.73 1.00 0.90 0.98 0.80
L2LS 0.90 0.75 0.96 0.76 0.98 0.77 0.92 0.80 0.97 0.80 0.92 0.74 0.96 0.79 0.94 0.77

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 14 of 16

The results demonstrate that PSOMiner has good ability
of anti-noise.

5.4 Results on Real Data Sets

This section gives the results of experiments performed
on four real event logs. Since the process models of these
event logs are unknown, the metrics used in previous
section are no longer applicable. Three alignment-based
metrics, which are alignment-based fitness, alignment-
based precision and their combination (i.e. fscore) [30],
were employed to evaluate the performance of PSOMiner
on real event logs. Moreover, for fairness, we refer to
the results of benchmark given in [31]. The output of
PSOMiner (a.k.a. causal matrix) was converted to petri
nets based on the method in [7], since the tool only sup-
ports petri net as the input.

PSOMiner was run for 20 times on each event log. The
results are shown in Table 6. Compared with the results of
ETM in [31], it is easy to find that the quality of the process
models mined by PSOMiner are superior to the quality of the

(15)fscore =
Bp ⋅ Br

Bp + Br

+
Sp ⋅ Sr

Sp + Sr

process models mined by ETM. Especially on BPIC2012,
BPIC2013cp and BPIC2013cp, the f-score value obtained
by PSOMiner is much better than that obtained by ETM.
Moreover, compared with other state-of-art algorithms, the
f-score obtained by PSOMiner on four event logs are also
very competitive. These results prove that PSOMiner can
perform well on real event logs.

6 Conclusion and Future Work

In this paper, we propose a novel PSO algorithm, named
PSOMiner, to solve the problem of process mining. The
most interesting thing is that a series of operators based on
causal matrix are designed for position updating and veloc-
ity updating in PSOMiner. Besides that, a guided local
mutation technique is embedded to address the problems
of premature.

We validated the performance of the algorithm through
a large number of experiments. Experimental results prove
that (1) PSOMiner has strong search ability and fast con-
vergence speed. (2) Compared with three state-of-the-art
algorithms of process mining, PSOMiner can achieve the
optimal results on 12 in 14 noise-free event logs and 13 in
14 noisy event logs. It demonstrates that PSOMiner has good
performance and anti-noise ability. (3) PSOMiner achieved
competitive results in the last experiment and it proves that
PSOMiner can perform well on real world event logs.

Except for the step of evaluation, other steps of
PSOMiner are easy to be parallelized, therefore we can
employ modern parallel or distributed techniques, e.g.
GPU or cluster, to further speed-up the algorithm. Next,
the CI-based process mining can be further studied from
two aspects. On the one hand, we can utilize current CI-
based process mining techniques to solve deeper tasks
in this field, such as cross-organization process mining,

Fig. 8 f-score of four algo-
rithms on event logs with 10%
noise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ETM Hybrid ILP Miner HM PSOMiner

Table 6 The experimental results of performing PSOMiner on four
real event logs

Event log Fitness Precision F-score

BPIC2012 0.82 ± 0.04 0.77 ± 0.03 0.79 ± 0.03
BPIC2013cp 0.98 ± 0.02 0.90 ± 0.09 0.94 ± 0.06
BPIC2013inc 0.95 ± 0.05 0.74 ± 0.08 0.83 ± 0.07
Sepsis 0.90 ± 0.06 0.63 ± 0.05 0.74 ± 0.05

International Journal of Computational Intelligence Systems (2022) 15:21

1 3

Page 15 of 16 21

blockchain-oriented process mining, etc. On the other
hand, we can study some recent CI techniques and propose
new CI-based algorithms of process mining with higher
performance.

Author contributions G-LL contributed to the algorithm design and
performed the experiments. S-YJ helped perform the experiments; YS
helped design the algorithm; BG is a director of this work.

Funding This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant No. 61772352; National Key
Research and Development Project under Grant No. 2020YFB1711800
and 2020YFB1707900; the Science and Technology Project of
Sichuan Province under Grant No. 2019YFG0400, 2021YFG0152,
2020YFG0479, 2020YFG0322, 2020GFW035, and the R&D Project
of Chengdu City under Grant No. 2019-YF05-01790-GX.

Availability of Data and Materials The data sets used to support the
findings of this paper can be downloaded from https:// svn. win. tue. nl/
repos/ prom/ DataS ets/ Genet icMin erLogs/.

Declarations

Conflict of interest All authors declare that they have no competing
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. van der Aalst, W.M.P.: Process mining: data science in action
(Second Edition). Springer-Verlag, Berlin (2016)

 2. Ruschel, E., Santos, E.A.P., Loures, E.D.F.R.: Establishment of
maintenance inspection intervals: an application of process min-
ing techniques in manufacturing. J. Intell. Manuf. 31(1), 53–72
(2020)

 3. Weber, I., Xu, X.W., Riveret, R., et al.: Untrusted business process
monitoring and execution using blockchain. In: Proceedings of the
14th International Conference on Business Process Management
(BPM’16), 2016, pp. 329–347

 4. Mendling, J., Weber, I., van der Aalst, W.M.P., et al.: Blockchains
for business process management-challenges and opportunities.
ACM Trans. Manage. Inform. Syst. 9(1), 41–416 (2018)

 5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B.,
et al.: Workflow patterns. Distrib Parallel Database 14(1), 5–51
(2003)

 6. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P., et al.:
On the role of fitness, precision, generalization and simplicity in

process discovery. In: Proceedings of On the Move to Meaningful
Internet Systems Conference, 2012, pp. 305–322.

 7. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst,
W.M.P.: Genetic process mining: an experimental evaluation.
Data Min. Knowl. Disc. 14(2), 245–304 (2007)

 8. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A
genetic algorithm for discovering process trees. In: Proceedings
of IEEE Congress Evolutionary Computation (CEC’12), 2012,
pp. 1–8.

 9. van Eck, M.L., Buijs, J.C.A.M., van Dongen, B.F.: Genetic pro-
cess mining: alignment-based process model mutation. In: Pro-
ceedings of the Business Process Management Workshops, 2014,
pp. 291–303.

 10. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: ProDiGen: min-
ing complete, precise and minimal structure process models with
a genetic algorithm. Inf. Sci. 294, 315–333 (2015)

 11. Cook, J.E., Wolf, A.L.: Automating process discovery through
event-data analysis. In: Proceedings of the 17th International Con-
ference on Software Engineering (ICSE’95), 1995, pp. 73–82.

 12. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models
from workflow logs. In: Proceedings of the International Confer-
ence on Extending Database Technology, 1998, pp. 467–483.

 13. van der Aalst, W.M.P., Weijters, A.J.M.M.: Workflow mining:
discovering process model from event logs. IEEE Trans. Knowl.
Data Eng. 16(9), 1128–1142 (2004)

 14. Medeiros, A., Dongen, B., van der Aalst, W.M.P., et al.: Process
mining for ubiquitous mobile systems: an overview and a concrete
algorithm. In: Proceedings of the Ubiquitous Mobile Information
and Collaboration Systems, 2004, pp. 156–170.

 15. Wen, L.J., Wang, J.M., van der Aalst, W.M.P., et al.: Mining pro-
cess models with prime invisible tasks. Data Knowl. Eng. 69(10),
999–1021 (2010)

 16. Wen, L.J., van der Aalst, W.M.P., Wang, J.M., et al.: Mining pro-
cess models with non-free-choice constructs. Data Min. Knowl.
Disc. 15(2), 145–180 (2007)

 17. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering work-
flow models from event-based data using little thumb. Integr.
Comput. Aided Eng. 10(2), 151–162 (2003)

 18. Weijters, A.J.M.M., Ribeiro, J.T.: Flexible heuristics miner
(FHM). In: Proceedings of the IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM’2011), 2011, pp.
310–317.

 19. Greco, G., Guzzo, A., Lupia, F.: Process discovery under prec-
edence constraints. ACM Trans. Knowl. Discov. Data 9(4), 321–
3237 (2015)

 20. Bergenthum, R., Desel, J., Lorenz, R., et al.: Process mining based
on regions of languages. In: Proceedings of the 5th International
Conference on Business Process Management (BPM’07), 2007,
375–383.

 21. van der Werf, J., van Dongen, B., Hurkens, C., et al.: Process dis-
covery using integer linear programming. Fund. Inform. 94(3–4),
387–412 (2009)

 22. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., et al.:
Discovering workflow nets using integer linear programming.
Computing 100(5), 529–556 (2018)

 23. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable pro-
cess discovery and conformance checking. Softw. Syst. Model.
17(2), 599–631 (2018)

 24. Chen, W.N., Zhang, J., Chung, H.S.H., et al.: A novel set-based
particle swarm optimization method for discrete optimization
problems. IEEE Trans. Evol. Comput. 14(2), 278–300 (2010)

 25. Chen, W.N., Tan, D.Z.: Set-based discrete particle swarm opti-
mization and its applications: a survey. Front. Comp. Sci. 12(2),
203–216 (2018)

 26. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replay-
ing history on process models for conformance checking and

https://svn.win.tue.nl/repos/prom/DataSets/GeneticMinerLogs/
https://svn.win.tue.nl/repos/prom/DataSets/GeneticMinerLogs/
http://creativecommons.org/licenses/by/4.0/

 International Journal of Computational Intelligence Systems (2022) 15:21

1 3

 21 Page 16 of 16

performance analysis. WIREs Data Min. Knowl. Discov. 2(2),
182–192 (2012)

 27. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conform-
ance checking using cost-based fitness analysis. In: Proceedings of
the 15th IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC’11), 2011, pp. 55–64.

 28. Alves de Medeiros, A.K.: Genetic process mining. Ph.D. thesis,
Eindhoven University of Technology, 2006.

 29. Verbeek, E., Buijs, J.C.A.M., van Dongen, B.F., et al.: ProM 6:
The Process Mining Toolkit. In: Proceedings of the 8th nterna-
tional Conference on Business Process Management (BPM’10),
2010.

 30. Adriansyah, A., Munoz-Gama, J., Carmona, J., et al.: Align-
ment based precision checking. In: Proceedings of the inter-
national workshop on business process intelligence, 2012, pp.
137–149.

 31. Augusto, A., Conforti, R., Dumas, M., et al.: Automated discovery
of process models from event logs: review and benchmark. IEEE
Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Efficient Discrete Particle Swarm Optimization Algorithm for Process Mining from Event Logs
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Process Mining
	3.2 Particle Swarm Optimization

	4 Discrete Particle Swarm Optimization Algorithm for Process Mining
	4.1 Framework of PSOMiner
	4.2 Fitness Function
	4.3 PSO Algorithm
	4.3.1 Position
	4.3.2 Velocity
	4.3.3 Velocity Update
	4.3.4 Position Update

	4.4 Model Repair
	4.5 Local Mutation

	5 Experiments
	5.1 Event Logs and Experimental Settings
	5.2 Effectiveness
	5.3 Comparison with State-of-the-Art Algorithms
	5.4 Results on Real Data Sets

	6 Conclusion and Future Work
	References

