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Abstract
Process mining, which aims to mine a high-quality process model from event log, provides a powerful tool to support the 
design, enactment, management, and analysis of operational business processes. However, the task is not easy because the 
algorithm needs to discover various complex process structures, handle noisy and incomplete event logs and balance multiple 
performance indicators. In this paper, a novel algorithm (called PSOMiner) for process mining is proposed, which consists of 
a discrete particle swarm optimization algorithm and guided local mutation. The former is in charge of searching the solution 
space of causal matrix and the latter is used to help the algorithm skip out the local optimum when it suffers from premature. 
A fine-grained scoring strategy which used to assign a score to each position of a particle (i.e. causal matrix) is presented 
to direct the mutation. The experiments were performed on 28 synthetic event logs with/without noise and 4 real-life event 
logs, and three classical algorithms of process mining (ETM, Hybrid ILP Miner, HM) were chosen for comparison. The 
results show that (1) PSOMiner achieved the best f-score on 25 synthetic event logs; (2) The average f-score of PSOMiner 
is 0.825 on 4 real-life event logs, which is superior to ETM whose average f-score is 0.703.

Keywords Process mining · Discrete particle swarm optimization · Event log · Causal matrix · Guided local mutation

Abbreviations
ETM  Evolutionary Tree Miner
Hybrid ILP Miner  Hybrid Integer Linear Programming 

Miner
HM  Heuristic Miner
BPM  Business process management
PSO  Particle swarm optimization
SWF-net  Structural workflow net
CI  Computational intelligence
GM  Guided local mutation
GA  Genetic algorithm

BP  Behavior precision
BR  Behavior recall
SP  Structural precision
SR  Structural recall

1 Introduction

In the last decade, process mining, also known as work-
flow mining, has emerged as a hot topic in the field of busi-
ness process management (BPM) and it provides a bridge 
between data mining and BPM. The starting point of pro-
cess mining is a collection of historical information which is 
known as event log recorded by information systems. Based 
on event logs, the goal of process mining is to output a pro-
cess model observed by the algorithm which reflects the real 
execution path of business process in an information system. 
The mined process model can be applied to many fields in 
BPM, including process model design, analysis of bottleneck 
of business process, etc. [1, 2].

Recently, the explosive growth of block-chain technology 
brings new challenges to BPM. Block-chain can make the 
traditional inter-organizational business process more secure 
and trustable. BPM can be promoted by the block-chain 
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technology to applied in many fields, such as international 
finance, security data exchange (e.g. bank account informa-
tion, personal health information), and so on. Weber et al. [3] 
firstly described a proposal to support inter-organizational 
process through block-chain. Mendling et al. [4] pointed 
out that how to collect event logs on trusted nodes in the 
chain and how to discover the real business process among 
organizations are big challenges in the field of block-chain-
based BPM. In this work, we do not consider the collection 
of event logs and assume that (1) all the required process 
information have been collected and recorded in an event 
log; (2) The process information from different organiza-
tions has been converted to a unified format. Thus, we only 
focus on how to mining a high-quality process model from 
an event log.

Mining a high-quality process model from event logs is 
not an easy task. On the one hand, besides common process 
structures (e.g. sequence structure, parallel structure, choice 
structure, etc.), the process mining algorithm needs to han-
dle lots of special structures, such as duplicated activity, 
invisible activity, non-free-choice structure, long-distance 
dependence structure, and so on [5]. On the other hand, 
event logs are always noisy or incomplete in the real life 
that may greatly affect the mining results. There are many 
reasons for the appearance of noisy data in an event log, such 
as server outage, network congestion, etc. In addition, for a 
complicated process model, it is possible to get an event log 
that cannot contain all possible execution paths, thus the 
event log is often incomplete (or unbalanced).

To evaluate the quality of a process model, researchers 
have proposed many effective indicators. The most com-
monly used indicators include replay fitness, precision and 
simplicity [6]. Replay fitness quantifies the extent to which 
the discovered model can accurately reproduce the traces 
recorded in the event log (a trace is described as a sequence 
of events and it represents a complete path of activity execu-
tion). However, only the replay fitness cannot prove the qual-
ity of the process model. For instance, the flower model is an 
extreme case which is able to replay arbitrary sequence of 
events. To handle this problem, researchers usually employ 
precision to quantify the fraction of the behavior allowed 
by the model but not observed in the event log. Simplic-
ity is used to capture the complexity of the process model. 
A complex model is not required because it is hard to be 
understood. How to balance these competing indicators to 
discover an optimal process model is an important task in 
the design of the algorithm.

Computational intelligence (CI) is an efficient technique to 
handle such complex task. However, current CI-based process 
mining algorithms, including GeneticMiner [7], evolutionary 
tree miner [8, 9], ProDiGen et al. [10], suffer from slow con-
vergence and premature. The reason behind the low efficiency 
of these algorithms is that all of them are based on genetic 

algorithm and their genetic operators are very simple. This 
paper proposes a new CI-based process mining algorithm, 
named PSOMiner, which is based on the discrete particle 
swarm optimization technique. There are three major inno-
vations in the work. Firstly, a series of arithmetic operators 
are proposed for velocity updating and position updating on 
causal matrix. Secondly, a local mutation operator is designed 
to help PSOMiner skip out the local optimum if the premature 
is detected. Thirdly, each position in a particle (i.e. a candidate 
process model) is assigned a score during the calculation of 
fitness value. Then, the score is employed to guide the local 
mutation to improve the efficiency of the algorithm.

The remainder of this paper is structured as follows. 
Section 2 reviews some works related to this paper. Sec-
tion 3 gives some background knowledge of process mining 
and particle swarm optimization (PSO). Then, the details 
of PSOMiner are given in Sect. 4. Section 5 explains the 
experiments and analyzes the experimental results in depth. 
The last section give conclusions.

2  Related Work

The basic idea of process mining is proposed by Cook and 
Wolf in 1995 [11]. Their aim is to automatically discover pro-
cess models from event logs of the software process. Later, 
Agrawal et al. [12] applied the technique to workflow manage-
ment and officially named it as process mining. So far, a large 
amount of achievements have emerged in this field. Generally, 
these works can be categorized into four groups.

(1) The α algorithm and its extensions
A milestone in the field of process mining is the 

α-algorithm proposed by van der Aalst et al. [13]. The algo-
rithm can discover a structural workflow net (SWF-net) 
from event logs under the assumption of that the event log 
is complete. It models the business process by petri net and 
focuses on discovery of four classical relations (i.e. sequence 
relation, causal relation, parallel relation and choice relation) 
among activities from event logs. Based on the α algorithm, 
de Medeiros et al. proposed α + algorithm [14] which can 
discover length-one loops and length-two loops from event 
logs. Wen et al. proposed α# algorithm [15] and α +  + [16] 
which are able to handle invisible activity and non-free-
choice structure respectively. The common characteristic of 
α series algorithms are that they extract the basic relation-
ship among activities by scanning traces in event logs to 
construct the process model. The process model mined by α 
series algorithms has low structural complexity thus is easy 
to be understood. However, these algorithms do not consider 
replay fitness and precision, thus the quality of the obtained 
process model is low.
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(2) Heuristics algorithm.
Weijters et al. proposed a heuristic algorithm for process 

mining, named as Heuristic Miner (HM) [17]. The HM algo-
rithm quantifies the dependency among activities by count-
ing the occurrence frequency of some patterns in an event 
log. Since the observed patterns with low frequency in an 
event log are considered to be noises, the HM algorithm 
has strong ability of anti-noise. Unfortunately, some correct 
but low frequency patterns are easy to be wrongly handled, 
thus the HM algorithm is unable to get a perfect process 
model. Later, they proposed an improved algorithm, called 
Flexible Heuristic Miner [18], which significantly improves 
the performance of the HM algorithm. Besides that, Greco 
et al. proposed CNMiner algorithm [19] which considers 
precedence constraint in the heuristic method. The disad-
vantage of the heuristic algorithm is that the performance 
of the algorithm mainly depends on the number of structure 
patterns. The more the patterns are, the higher the time com-
plexity of the algorithm is.

(3) Region-based algorithm.
Bergenthum et al. firstly proposed a process mining algo-

rithm based on language-based region [20]. However, the 
algorithm does not consider precision of the process model, 
moreover its time complexity increases exponentially with 
the size of event log. Werf et al. proposed ILP Miner which 
is also based on language-based region [21]. The ILP Miner 
employs integer linear programming technique to construct 
the process model. van Zelst et al. proposed Hybrid ILP 
Miner [22] which changes the objective function of ILP 
Miner and considers a method to handle the behavior with 
low frequency in an event log. Leemans et al. proposed 
Inductive Miner [23] which employs a strategy of divide-
and-conquer. The Inductive Miner algorithm starts from a 
single node and it uses the recursive method to combine the 
adjacent local process models into a larger process model.

(4) CI-based algorithm.
CI is a powerful tool to solve problems in data mining, 

nonlinear optimization and other fields. This kind of meth-
ods simulate the biological evolution process, and has very 
strong search ability and robustness. Medeiros et al. firstly 

applied genetic algorithm in process mining (named as 
Genetic Miner) [7]. Through well-defined fitness function 
and crossover/mutation operators, the Genetic Miner is able 
to obtain a process model which is very consistent with the 
event log. Moreover, many problems, including non-free-
choice structure, invisible activity, duplicated activity etc., 
are solved in a unified framework. Vázquez-Barreiros et al. 
proposed another algorithm ProDiGen [10] which is also 
based on genetic algorithm. However, the hierarchical objec-
tive function used in ProDiGen often obtains an unsatis-
factory process model which has perfect replay fitness but 
very poor precision. Buijs et al. proposed Evolutionary Tree 
Miner (ETM) [8] which employs process tree to represent 
a process model. Moreover, the objective function of ETM 
considers replay fitness, precision and simplicity, therefore 
it can find high-quality process model.

3  Preliminaries

3.1  Process Mining

Process mining aims to extract knowledge from an event log 
and produce a process model which is required to be consist-
ent with real business process. A process model is usually 
represented by petri net.

Definition 1 A petri net over a set of activities A is denoted 
by a tuple N = (P, T ,F,�) , where:

1. P is a finite set of places;
2. T  is a finite set of transitions, and P ∩ T = �;
3. F = (P × T) ∪ (T × P) is a finite set of directed arcs con-

necting places and transitions;
4. � ∶ T → A ∪ � is a function mapping transitions to either 

activities or � , such that ∀a∈A∃t∈T�(t) = a.

The symbol � denotes the invisible activity in a process 
model. Let N = (P, T ,F,�) be a petri net, a, b ∈ P ∪ T  are 
two nodes in N  , if < a, b >∈ F , we say that a is an input 
node of b , meanwhile b is the output node of a . We use 
the symbol ∙a = {b|< b, a >∈ F ∧ y ∈ P ∪ T } to denote the 

Fig. 1  An illustrating example 
of process model
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input nodes of a . Similarly, the symbol a∙ represents the 
output nodes of a.

Figure 1 gives an illustrating example of process model 
represented by petri net, in which the circles denote places 
and the squares denote transitions. For a business process, 
the activities are modeled by transitions and the causal 
dependency among activities are modeled by places and 
arcs. It is easy to find that there are eleven transitions and 
ten places in Fig. 1. Two nodes that named “start” and “end” 
denote the beginning place and the ending place respectively.

Petri net is a token-based system. The token is represented 
by a block dot (see the “start” place). If all the input nodes 
(a.k.a. places) of a transition have one token, the transition 
is enabled to be fired. A firing transition will remove a token 
from each input place, and then put a token to each output 
place. For example, in Fig. 1, it can be seen that the input 
place of transition “A” contains a token, thus the transition 
“A” is enabled to be fired. It would remove a token from the 
“start” place and put a token to place “P1”. Then, transition 
“B” is enabled to be fired. It should be noted that “P3” is an 
OR-Split structure, that is to say, one of the four following 
transitions (i.e. “C”, “D”, “E” and “F”) would be able to be 
fired if “P3” has a token. Besides, “P1” and “P5” are OR-
join structure, transitions “D” and “J” represent AND-split 
and AND-join structure respectively. More details can be 
found in [13].

Although petri net provides a powerful tool for process 
modeling, it is hard for us to directly apply a CI-based 
method on a petri net. To solve this problem, Medeiros et al. 
[7] proposed causal net (also known as causal matrix) to 
represent the process model. The definition is given below.

Definition 2 [7]: A causal matrix is a tuple Π = (A,C, I,O) , 
where.

(1) A is a finite set of activities;
(2) C ⊆ A × A is the causality relation;
(3) I ∶ A → P(P(A)) is an input condition function1;
(4) O ∶ A → P(P(A)) is an output condition function.

Furthermore, since a process model represented by petri 
net is usually compared with a model represented by causal 
matrix, a method for converting a petri net to a causal matrix 
is given below.

Definition 3 Let N = (P, T ,F,�) be a petri net. The rules 
of mapping N to a causal matrix Π = (A,C, I,O) include:

(1) A = �(T).
(2) C =

{(
t1, t2

)
∈ T × T||t1 ⋅ ∩ ⋅ t2 ≠ �

}
.

(3) I ∶ T → P(P(T)) such that ∀t∈T I(t) = {⋅p|p ∈ ⋅t}.
(4) O ∶ T → P(P(T)) such that ∀t∈T O(t) = {p ⋅ |p ∈ t⋅}.

For explanation, the process model in Fig. 1 is converted 
to a causal matrix shown in Table 1. It can be seen that each 
row in the table corresponds to an activity. Each row has two 
columns, i.e. the input of the activity I(a) and the output of 
the activity O(a) . The input and output are denoted by a set 
whose elements are also sets. For distinction, the element is 
called subset in the following paper. It should be noted that 
activities in a same subset of I(a) have an OR-join relation 
and those in different subsets have an AND-join relation. 
On the other hand, activities in a same subset of O(a) have 
an OR-split relation and those in different subsets have an 
AND-split relation.

Take transition “B” as an instance, it has two input places 
“P1” and “P2”. Moreover, the input transition of “P1” is 
transition “A” and the input transition of “P2” is transition 
“C”, thus I(B) = {{A,C}} . The output place of “B” is “P3” 
whose following transitions include “C”, “D”, “E” and “F”, 
thus O(B) = {{C,D,E,F}}.

Then, the definitions of event, trace and event log are 
given below.

Definition 4 (Event, trace, and event log) Let A be a set of 
activities, event is denoted as e = �(a) , where a ∈ A and 
� is a function relating each activity to an event. Let Γ be 
a universe of events, a trace t ∈ Γ∗ is a finite sequence of 
events. Let Σ = Γ∗ be a universe of traces, an event log L is 
a multi-set of traces, i.e.L = B(Σ).

It is not difficult to understand that the process model 
in Fig. 1 may produce many different execution paths rep-
resented by a sequence of events (i.e. a trace) and these 
traces consist of an event log, just like {ABEIK50,  ACFIK20, 
 ACEBF100,  ABCBEIK80,  ABDGHJ60,  ABDHGJ45 …}. The 
superscript represents the number of times that the trace 
appears in the event log.

Table 1  The process model in Fig. 1 as a causal matrix

Activity I O

A {} {{B}}
B {{A, C}} {{C, D, E, F}}
C {{B}} {{B}}
D {{B}} {{G}, {H}}
E {{B}} {{I}}
F {{B}} {{I}}
G {{D}} {{J}}
H {{D}} {{J}}
I {{E, F}} {{K}}
J {{G}, {H}} {}
K {{I}} {}

1 P(A) is the power set of A
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3.2  Particle Swarm Optimization

PSO, which imitates the social behavior of bird flock-
ing, is one of the most popular CI algorithm [24]. The 
PSO algorithm is initialized with a population of par-
ticles randomly distributed in the search place. Each 
particle imitates a bird which has two properties, i.e. 
its position xi =

(
xi,1, xi,2,⋯ , xi,n

)
 and flying velocity 

vi =
(
vi,1, vi,2,⋯ , vi,n

)
 , where n is the dimension of the prob-

lem. In addition, each particle is assigned a fitness value 
calculated by an optimization function. During each genera-
tion, each particle updates its velocity and position using the 
following rules [25]:

where pbesti,j and gbestj are the value of j-th dimension of 
the best-so-far position yielded by the i-th particle and the 
whole population respectively. In addition, � is the inertia 
weight, r1,j and r2,j are two random numbers, c1, c2 are two 
acceleration parameters which are used to control the speed 
flying to the best-so-far position found by the particle itself 
and the population. In this way, particles learn from their 
self-cognition and social interaction to approximate the opti-
mal solution of the problem.

4  Discrete Particle Swarm Optimization 
Algorithm for Process Mining

4.1  Framework of PSOMiner

Most of the CI algorithms for process mining follow the 
approach of genetic evolution, such as Genetic Miner, ETM, 
ProDiGen, etc. All of them suffer from premature and slow 
convergence speed because of the poor search ability of the 
genetic operators.

In this work, we propose a novel CI algorithm for process 
mining which is based on PSO technique, called PSOMiner. 
The flowchart of the PSOMiner is shown in Fig. 2. Firstly, 
the algorithm initializes a population of particles by the 
heuristic method proposed in [7]. Then, the particles are 
evaluated by the fitness function. If the stopping criteria is 
achieved, the algorithm will output the best solution. Oth-
erwise, it will check whether or not the algorithm falls into 
local optimum (i.e. premature). If so, the algorithm will 
select the guided local mutation algorithm to help itself 
skip out the local optimum; otherwise it will select the PSO 
algorithm to fast approximate the optimal solution. There are 
two termination conditions, which are (1) whether or not the 

(1)vi,j = �vi,j + c1r1,j
(
pbesti,j − xi,j

)
+ c2r2,j

(
gbestj − xi,j

)

(2)xi,j = xi,j + vi,j

number of times that the best fitness value is not changed 
is higher than a predefined threshold, or (2) the number of 
generation reaches upper bound. The premature is judged by 
the variance of the fitness value of all particles. The details 
of the PSO algorithm as well as the guided local mutation 
technique will be introduced below.

4.2  Fitness Function

In this work, particles are evaluated by a fitness function 
which is composed of three indicators, including complete-
ness Fc , precision Fp and simplicity Fs . The formula is given 
below, where �c, �p, �s are three weight coefficients.

The completeness Fc is in charge of quantifying the 
ability of a process model that it can properly replay the 
traces in an event log. For an event log without noise, the 
completeness of a perfect process model should be 1.0, 
i.e. all the traces can be properly replayed on the process 
model. A simple way to define the completeness metric is 

(3)fitness = �c × Fc + �p × Fp + �s × Fs

Begin

Ini�alize a popula�on 
of par�cles

Evaluate the par�cles

Stop condi�ons are 
sa�sfied?

Apply local muta�on on 
each par�cle

Output the best 
par�cle

End

Yes

Yes
No

No
Premature?

Update velocity and 
posi�on for each par�cle

Fig. 2  The flowchart of PSOMiner



 International Journal of Computational Intelligence Systems           (2022) 15:21 

1 3

   21  Page 6 of 16

the number of correctly replayed traces divided by the total 
number of traces. However, this definition is too coarse. 
Consider two process models, one is a totally incorrect 
process model and the other just misses an arc, the above 
method cannot distinguish the two models because both of 
them can not properly replay the event log. This work fol-
lows the definition of completeness in [7]. The definition 
of completeness Fc is shown in formula (4). The function 
allParsedActivities(Π,L) returns the total number of activi-
ties in the event log L that could be parsed without prob-
lems by the causal matrix Π , and numOfActivitiesInLog(L) 
gives the total number of activities in L.

A process model maybe not a good solution even if it 
has completeness 1.0. An extreme instance is the flower 
model, i.e. for any activity, its inputs and outputs are the 
rest of the activities. The flower model can replay arbitrary 
traces, so its completeness value is the best. However, it 
is meaningless. Precision is an indicator for quantifying 
the fraction of the behavior allowed by the model which 
is not seen in the event log. However, it is difficult to give 
a proper definition of precision because it has to detect all 
the extra behavior in the process model. Therefore, our 
definition of precision takes into account all the activities 
that are enabled when the model replays an event log (see 
formula 5). The function allEnabledActivities(Π,L) returns 
the number of enabled activities the log L is replayed on 
the model Π.

The third dimension of the fitness is simplicity, which is 
used to measure complexity of a process model [10]. The 
definition of the indicator is shown in formula (6), where 
the symbol � and � denote the AND-join structure and the 
AND-split structure respectively. It has been introduced that 
AND-split (or AND-join) structure is modeled by the activi-
ties in different subset of O(a)(or I(a) ). Therefore, what we 
need to do is to count the number of subset in I(a) and O(a).

4.3  PSO Algorithm

Different with the S-PSO [24, 25], the particle in 
PSOMiner is naturally represented by causal matrix which 
is more complex than the representation of particles in 

(4)Fc =
allParsedActivities(Π,L)

numOfActivitiesInLog(L)

(5)Fp = 1 −
allEnabledActivities(Π,L)

maxΠ�∈Ω (allEnabledActivities(Π�, L))

(6)Fs = 1 −

∑
a∈A

�∑
�∈I(a) ��� +

∑
�∈O(a) ����

maxΠ∈Ω

�∑
a∈A

�∑
�∈I(a) ��� +

∑
�∈O(a) �����

most of the S-PSO works. All the concepts and operators, 
such as position, velocity, position updating and velocity 
updating, are required to be redefined. Next, these new 
concepts and operators will be introduced.

4.3.1  Position

In PSO, the position of a particle usually represents a solu-
tion to the problem. In this work, the position of a parti-
cle is naturally represented by the causal matrix. Formally, 
the position is denoted by a tuple Pos =

(
PosI ,PosO

)
 , 

where PosI = {I(a)|a ∈ A} is a set that represents the 
input structure of each node and PosO = {O(a)|a ∈ A} 
is a set that represents the output structure of each 
node. Take the process model in Fig. 1 for an example, 
Pos

I = {{}, {{A,C}}, {{B}}, {{B}}, {{B}}, {{B}}, {{D}},

{{D}}, {{E,F}}, {{G}, {H}}, {{I}}} . It can be seen that 
the representation of particle position in PSOMiner is much 
more complex than that in the traditional S-PSO. The former 
contains subsets of arbitrary length, but the latter contains 
subsets with fix length (just as {(a, b), (b, c), ….}).

4.3.2  Velocity

In PSO, velocity determines the speed and direction of a 
particle to update its position. Similar to the S-PSO, velocity 
is defined as a set of elements with possibility in this work. 
The definition of the velocity V  is shown in formula (7).

where e is the element which is a subset of the power set of 
activities A , p(e) ∈ [0, 1] is the possibility of the subset. Note 
that an element with possibility zero will be ignored for the 
sake of convenience.

4.3.3  Velocity Update

The velocity updating rule in PSOMiner is different from 
the traditional method (see formula 8) because we do not 
consider the velocity of last generation. The reason behind 
the consideration is that the algorithm only selects one node 
to update in each generation, thus the historical velocity may 
provide trivial information for the search of optimal solution.

The symbols Vi,j and Posi,j mean the velocity and the posi-
tion of the j-th node (including the input set and the output 
set) of i-th particle respectively,pbesti,j is the j-th node of the 
historically best position found by i-th particle, and gbestj 
is the j-th node of the historically best position found by all 
particles. The meaning of other symbols are same with the 

(7)V = {e∕p(e)|e ⊆ P(A)}

(8)Vi,j = c1r1,j
(
pbesti,j − Posi,j

)
+ c2r2,j

(
gbestj − Posi,j

)



International Journal of Computational Intelligence Systems           (2022) 15:21  

1 3

Page 7 of 16    21 

traditional PSO. Then, all related operators will be intro-
duced in detail.

(1) Position—Position (e.g.pbesti,j − Posi,j)
It has been explained that position of each particle con-

tains two factors, i.e.PosI
i
 and PosO

i
 . Both of them are sets 

composed of the subsets of the P(A) . This section makes no 
distinction between them, i.e., all of the definitions proposed 
in this section can be applied to both factors. A minus opera-
tor between two positions are given below.

For explanation, an example is shown in Fig.  3, in 
which three different structures of the output of node “B” 
a r e  g i v e n .  L e t  gbestO

i
= {{A}, {C,D}, {E}}

, pbestO
i,j
= {{C,D,E}} PosO

i,j
= {{C,D}, {D,E}} ,  t hen 

gbestO
j
− PosO

i,j
= {{A}, {E}} , pbestO

i,j
− PosO

i,j
= {{C,D,E}} . 

This operator is able to find out the promising structures 
that appear in good solution but not appear in current 
solution.

(2) Real number × Position (e.g. c1r1,j
(
pbesti,j − Posi,j

)
)

The multiplication operator between a positive coefficient 
c and a position Pos yielded in the last step is defined by 
formula (10).

By multiplying a positive coefficient c , the result of minus 
operation between two positions becomes a set of possibili-
ties, i.e. it has been transformed to a velocity. Continue the 

(9)Posi,j − Posk,j =
{
e
|||e ∈ Posi,j ∧ e ∉ Posk,j

}

(10)c × Pos = {e∕p(e)|e ∈ Pos}, p(e) =

{
c if c < 1

1 if c ≥ 1

example above, assume c1r1,j = 0.92 , c2r2,j = 0.84 , then 
c1r1,j

(
pbestO

i,j
− PosO

i,j

)
= {{D,E,F}∕0.92}  , 

c2r2,j

(
gbestO

j
− PosO

i,j

)
= {{A}∕0.84, {E}∕0.84}.

( 3 )  V e l o c i t y  +  V e l o c i t y  ( e . g . 
c1r1,j

(
pbesti,j − Posi,j

)
+ c2r2,j

(
gbestj − Posi,j

)
)

The addition operator between two velocities is given by 
formula (11).

where e1
/
p
(
e1
)
∈ V1, e2

/
p
(
e2
)
∈ V2 . The principle behind 

this operator is simple that the structure with higher possi-
bility will be kept for the position updating. Since the pos-
sibilities are generated randomly, this method can enhance 
the diversity of the particles. Continue the above example, 
c
1

r
1,j

(
pbesti,j − Posi,j

)
+ c

2

r
2,j

(
gbestj − Posi,j

)
= {{A}∕0.84,

{C,D,E}∕0.92} . Based on three operators, the velocity 
updating rule given by formula (8) can be performed.

4.3.4  Position Update

So far, a velocity is ready for updating the current position 
of the particle. However, it is impossible to simply add a 
velocity to a position because the former contains possibili-
ties. We employ the method proposed in [25] to remove pos-
sibilities from the velocity meanwhile filter out the elements 

(11)

V1 + V2 =

⎧
⎪⎪⎨⎪⎪⎩

�
e1
�
p
�
e1
�
,e2

�
p
�
e2
���e1 ∩ e2 = �

�
�
e1
�
p
�
e1
����e1 ∩ e2 ≠ � ∧ p

�
e1
�
≥ p

�
e2
��

�
e2
�
p
�
e2
����e1 ∩ e2 ≠ � ∧ p

�
e1
�
< p

�
e2
��

A B

C

D

E

gbest: O(B)={{A},{C,D},{E}}

A B

C

D

E

pbest: O(B)={{C,D,E}}

A B

C

D

E

X: O(B)={{C,D},{D,E}}

Fig. 3  An example for explanation of operators in PSOMiner
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whose possibilities are lower than a threshold � (see formula 
12).

Then, the obtained V� can be used to update the position 
of the particle. The operator is given in formula (13).

where ∪ denotes a generalized union operation and e�
/
∪V�

i
 

means that it removes the elements in ∪V�
i
 from e′ . The pur-

pose is that it can keep the promising structures in V� . Con-
tinue the above example, let V0.8

i,j
= {{A}, {C,D,E}} , thus 

∪V0.8

i,j
= {A,C,D,E} and Pos

i,j
+ V

0.8

i,j
= {{C,D}, {D,E}}+

{{A}, {C,D,E}}={{A}, {C,D,E}} . The result is shown in 
Fig. 4.

4.4  Model Repair

Usually, the new particle is not consistent. For example, 
let the j-th activity and k-th activity of i-th particle be “B” 
and “E” respectively,  i t  is  possible to obtain 
PosO

i,j
= {{C,E}, {F}} , but PosI

i,k
 does not contain activity 

“B”. In addition, the input of the “start” activity as well as 
the output of the “end” activity may be not empty. There-
fore, a repair operation is required after the position 
update. Firstly, we give a definition of consistence to deter-
mine whether a causal matrix is consistent or not.

Definition 5: let Π = (A,C, I,O) be a causal matrix, it is 
consistent if it satisfies following conditions:

O(start) ≠ � ∧ I(start) = � , where start is the initial 
activity;
I(end) ≠ � ∧ O(end) = � , where end is the last activity;
for ∀a� ∈ ∪I(a),a ∈ ∪O

(
a�
)
 , where a, a� ∈ A ∧ a ≠ start

∧a� ≠ end;

(12)V� = {e|e∕p(e) ∈ V ∧ p(e) ≥ � }

(13)Posi + V�

i
=
{
e
|||e ∈

{
e�
/
∪V�

i
||e� ∈ Posi

}
∨ e ∈ V�

i

}

for ∀a� ∈ ∪O(a),a ∈ ∪I
(
a�
)
 , where a, a� ∈ A ∧ a ≠ end

∧a� ≠ start.

Next, the pseudo code of particle repair is shown in 
algorithm particle_repair ( Π,a ). The algorithm firstly 
sets the I(start) and O(end) to empty. Then, it traverses all 
nodes a� ∈ A in the particle and repair the I

(
a′
)
 and O

(
a′
)
 

iteratively.

4.5  Local Mutation

Although PSO is a stochastic algorithm that has strong 
search ability, it often suffers from the problem of premature. 

A B

C

D

E

Fig. 4  The result of position update
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In this work, a guided local mutation method is proposed to 
help the algorithm skip out the local optimum if the prema-
ture is detected during the generation.

To guide the local mutation, it requires to locate the 
incorrect node in a particle. Conformance checking is a hot 
issue in process mining. The most popular technique for con-
formance checking is based on alignment [26], in which the 
A* algorithm is used to find the optimal alignment between 
a process model and an event trace. However, this method 
is not appropriate in this work, because finding the optimal 
alignment is too time-consuming. Besides, it can only locate 
the incorrect area but not a node. It is inaccurate for the guid-
ance of the local mutation.

In this paper, we prepare to assign each node a score by 
a fine-grained method (see formula 14). Besides that it can 
accurately local the incorrect node, another advantage of 
this method is that the score can be obtained along with 
the calculation of fitness value of particles [27], thus it has 

better performance than the alignment-based method. It can 
be seen that there are three factors in the formula, which are 
allTokenParsedActivity, allMissingTokens and allTokens-
LeftOnActivity. The three factors represent the total num-
ber of tokens parsed on the activity, the number of missing 
tokens and the number of tokens that are not consumed on 
the activity during the log replay, respectively.

The pseudo code of local mutation is given in algo-
rithm 2. For each particle, it firstly selects an activity by 
the roulette wheel strategy. The higher the score of a node, 
the easier it is to be selected. Then, the algorithm randomly 
selects a mutation strategy, including add an arc, delete 
an arc and redistribute the structure, and applies it on the 
selected node.

(14)

Scorea =
#allMissingTokenOnActivity + #allTokenLeftOnActivity

#allTokenParsedOnActivity
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5  Experiments

This section gives the experimental results and the analy-
sis. The experiments are composed of three parts. Firstly, 
we compared the search ability and the convergence speed 
among different combination of strategies to prove the effec-
tiveness of PSOMiner. Secondly, we compared PSOMiner 
with three state-of-the-art algorithms of process mining on 
a group of noise-free event logs and a group of noisy event 
logs to evaluate the performance and the anti-noise ability 
of the proposed algorithm respectively. Finally, PSOMiner 
was run on event logs from real world to further validate its 
performance.

5.1  Event Logs and Experimental Settings

There are 32 different event logs used in the experiments. 
These event logs were divided into three groups. The first 
group contains 14 noise-free event logs generated by differ-
ent process models [28]2. The process models are produced 
by the CPN Tool and have different structural characteristics, 
such as choice structure, parallel structure and loop structure 
with different length. The details of the event logs are shown 
in Table 2, in which the activities column is the number 
of activity contained in the process models and the event 
column is the number of events simulated by the CPN tool. 
Besides, each event log have 300 traces. The event logs of 
the second group were produced by randomly adding noise 
in event logs of the first group. We randomly choose one 

of the following three operations with a probability of 10% 
to add noise to the event logs, including swap two adjacent 
events in a trace, add an event to a trace and remove an event 
from a trace. The third group contains four event logs from 
real production environment, named Sepsis, BPIC2012, 

Table 2  Event logs

Model name #Activities #Events Sequence Choice Parallelism Length 
one loop

Length 
two loop

Structured loop Arbitrary loop Invis-
ible 
activity

ma6 8 2040 √ √ √ √
ma7 9 2032 √ √ √
ma10 12 2665 √ √ √ √
mal1 9 3976 √ √ √ √
mal2 13 5800 √ √ √ √
mbn2 42 24,540 √ √ √ √
mbn3 42 35,527 √ √ √ √
Herbst3p4 12 5637 √ √ √ √
Herbst6p18 7 9844 √ √ √ √ √ √
Herbst6p30 19 14,851 √ √ √
Herbst6p41 16 3600 √ √ √
Ml1l 6 1987 √ √ √
Ml2lo 6 2622 √ √ √
Ml2ls 6 4554 √ √ √ √

Table 3  Setting of parameters Parameters values

ParticleSize 1 ~ 2
�
c

0.7
�
p

0.2
�
s

0.1
� 0.1
MaxGeneration 400
MaxNotChanged 20
c
1

 , c
2

2
� 0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fi
tn

es
s v

al
ue

Event logs

PSO + GM PSO + RM PSO GA

Fig. 5  Fitness value achieved by four different methods2 https:// svn. win. tue. nl/ repos/ prom/ DataS ets/ Genet icMin erLogs/

https://svn.win.tue.nl/repos/prom/DataSets/GeneticMinerLogs/
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BPIC2013cp and BPIC2013inc respectively.3 The former 
three event logs are from BPI Challenge and all of them are 
from real world. For example, The BPI2013cp event log is 
from the IT problem management system of VOLVO and 
it contains 6660 events that form 1487 traces. The Sepsis 
event log is from an information system of a hospital which 
records the process of diagnosis and treatment of sepsis. It 
contains 15,214 events that form 1050 traces.

The parameter settings are shown in Table 3. The Parti-
cleSize is set to 1 ~ 2 times of the number of activity in the 
event log. The reason behind this is the heuristic algorithm 
of population initialization which would filter out those 
causal matrices that do not satisfy the constraints. The Max-
Generation means the upper bound of the number of gen-
eration and the MaxNotChanged means that the algorithm 
will stop if the number of times that the best fitness value 
does not change exceeds the threshold. Parameters �c, �p, �s 
are set to 0.7, 0.2 and 0.1. The reason is that, for a process 
model, whether it could reproduce the event log is the most 
important characteristic that users care about. Parameter � 
is for premature detection. That is to say, if the variance of 
the fitness value of particles is lower than 0.1, we think that 
the algorithm suffers from premature. Then, the guided local 
mutation strategy is used to help the algorithm skip out the 
local optimum. The parameter � is set to 0.8. Parameters 

c1, c2 are set to 2. The reason is that the efficiency of the 
algorithm would be greatly decreased if the value of param-
eter c is too small (e.g. below 1.0) because there is a high 
probability that c × r is less than � . Conversely, if the value 
of parameter c is large, the randomness of the algorithm will 
be affected.

5.2  Effectiveness

In this section, we focus on the validation of the effective-
ness of PSOMiner. Four different combinatorial strategies 
were evaluated, which are PSO + GM (Guided local Muta-
tion, a.k.a. PSOMiner), PSO + RM (Random local Muta-
tion), PSO and GA (genetic algorithm). GA is the Genetic 
Miner proposed in [7]. Specifically, for comparison, we 
modified the fitness function and the stopping conditions 
in GA but the rest part was not changed. The metrics are 
the best fitness value achieved by these algorithms and the 
number of generation when they achieve the best results. To 
ensure the reliability of the results, all the algorithms were 
run for 20 times and the arithmetic average of the results 
were calculated.

Experimental results are shown in Figs. 5, 6. It is easy to 
find that the search ability of PSO is worse than GA. The 
reason behind it is that the GA algorithm employs some 
optimization techniques which enhance its search ability. 
Moreover, both of the number of generation and the achieved 
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Fig. 6  Number of generation of four different algorithms

3 https:// data. 4tu. nl/ repos itory/ colle ction: event_ logs.

https://data.4tu.nl/repository/collection:event_logs.
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fitness value of PSO are the least among four algorithms. It 
demonstrates that PSO is easy to fall into local optimum. 
The quality of the results achieved by PSO + RM is slightly 
worse than that achieved by GA. It is inferior to GA in 9 of 
14 event logs, but the convergence speed of PSO + RM is 
obviously faster than that of GA. Finally, compared with 
PSO + RM and GA, PSO + GM achieves much better results 
in both the fitness value and the convergence speed. It won 
gold medals in 12 of 14 event logs and shared the best result 
in the rest 2 event logs. Moreover, its convergence speed 
is faster than PSO + RM and GA. The experimental results 
prove the effectiveness of PSOMiner.

5.3  Comparison with State‑of‑the‑Art Algorithms

This section compares PSOMiner with three state-of-the-art 
algorithms of process mining, which are ETM, Hybrid ILP 
Miner and HM, to evaluate the performance of the proposed 
algorithm. We use ProM 6.9 [29] which is the most popular 
platform for process mining. The parameters of three algo-
rithms for comparison are set to default. It should be pointed 
out that the output process model of three algorithms are 
different. The output of ETM is a process tree and the output 
of Hybrid ILP Miner is a petri net and the output of HM is 
a heuristic net. Fortunately, ProM 6.9 provides function to 
convert process tree and heuristic net to petri net. For com-
parison, we convert the obtained petri nets to causal matrices 
based on definition 3.

To evaluate process models represented by causal matrix, 
we employ four metrics proposed in [7], which are behavior 
precision (BP), behavior recall (BR), structural precision 
(SP) and structural recall (SR). The former two metrics 

require to replay an event log on the obtained process model 
and the original process model. BP evaluates how much 
behavior is allowed by the obtained process model but not 
by the original process model. BR is for the opposite. If 
the obtained model perfectly fit to the original model, both 
of the BP and BR would be 1.0. The latter two metrics are 
based on the causal relations of the obtained process model 
and the original process model. SP evaluates how many 
causal relations the obtained process model has but not in 
the original process model, and SR is for the opposite.

In the experiments, both of PSOMiner and ETM were 
run for 20 times because they are stochastic algorithms. We 
calculate the arithmetic mean value of the four metrics of the 
output model. Firstly, the experiments were performed on 
event logs of the first group (a.k.a. the noise-free event logs). 
The results are shown in Table 4. To facilitate the analysis, 
the optimal value of metrics obtained by these algorithms 
are labeled by bold. From the table, it is easy to find that 
ETM, Hybrid ILP Miner, HM and PSOMiner mine the best 
process model (i.e. totally same with the original model) 
on 2 event logs, 8 event logs, 10 event logs and 12 event 
logs respectively. It can conclude that the performance of 
PSOMiner is better than other three state-of-art process min-
ing algorithms on noise-free event logs.

The proposed algorithm only lost two event log which is 
ma7 and Herbst6p18. To find out the reason why PSOMiner 
did not achieve the best results on the two event logs, the 
most frequent obtained results on ma7 was analyzed in 
depth (see Fig. 7). In the figures, OR-S, OR-J, AND-S and 
AND-J denote structures of OR-Split, OR-Join, AND-Split 
and AND-Join respectively. We find that the incorrect part 
is the input of activity “D” labeled by red color. The origi-
nal input of activity “D” is I(D) = {{C,E}, {E,F,B}, {G}} 

Table 4  Comparing PSOMiner with three state-of-art algorithms on noise-free event logs

Event
Log

ETM Hybrid ILP Miner HM PSOMiner

Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp

ma6 0.98 0.91 0.93 0.93 1.00 1.00 1.00 1.00 0.87 0.68 0.93 1.00 1.00 1.00 1.00 1.00
ma7 0.95 0.93 0.95 0.97 1.00 0.99 0.95 1.00 0.86 0.78 0.95 0.92 1.00 0.98 1.00 0.97
ma10 0.96 0.86 1.00 1.00 1.00 0.97 1.00 0.95 1.00 0.91 0.90 1.00 1.00 1.00 1.00 1.00
mal1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mal2 0.95 0.88 0.94 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mbn2 0.98 0.96 0.98 0.94 1.00 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mbn3 − − − − 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Herbst3p4 0.93 0.82 0.94 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Herbst6p18 0.95 0.82 0.92 0.92 1.00 0.80 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.92 0.98 1.00
Herbst6p30 0.92 0.98 0.90 0.91 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.95 1.00 1.00 1.00 1.00
Herbst6p41 0.93 0.99 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
L1L 1.00 1.00 1.00 1.00 0.95 0.97 0.86 1.00 0.95 0.97 0.87 1.00 1.00 1.00 1.00 1.00
L2LO 0.91 0.83 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
L2LS 1.00 0.95 1.00 0.90 1.00 0.95 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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and the obtained is I(D) = {{C,E}, {F,B}, {G}} . The rea-
son behind this phenomenon is that the position update 
operation will remove all the elements in ∪V�

i
 from the 

particle’s position of last generation. For example, assume 
Pos = {{C,E}, {E,F,B}} and V�={{C,E}, {G}} , then 
Pos + V� = {{C,E}, {F,B}, {G}} . It can be seen that the 
intersection of two sets is removed. The proposed algorithm 
suffers same problem on another event log.

Furthermore, the experiments were performed on 14 
event logs with 10% noise. Experimental results are given 
in Table 5. From the results, we can find that PSOMiner 
achieves the best performance on most of the metrics of 

these event logs. However, it cannot prove that the process 
models mined by PSOMiner are better than that of other 
algorithms, because a process model may have very good 
performance on three of the four metrics, but very poor on 
the last one. For fairness, we propose a new metric fscore 
which integrates four metrics together (see formula 15). 
The results of calculation is given in Fig. 8. It is easy to 
find that PSOMiner is obviously superior to other three 
algorithms on 8 event logs and is slightly superior to other 
three algorithms on 5 event logs. It only slightly inferior 
to Hybrid ILP Miner on the last event log (a.k.a. L2LS). 
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Fig. 7  The original process model of a7 (left) and the obtained process model of a7 (right)

Table 5  Comparing PSOMiner with three state-of-the-art algorithms on event logs with 10% noise

Event
Log

ETM Hybrid ILP Miner HM PSOMiner

Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp Br Bp Sr Sp

ma6 0.98 0.91 0.86 0.93 1.00 0.89 0.92 0.87 1.00 0.89 0.91 0.93 1.00 0.98 0.92 0.96
ma7 0.98 0.91 0.86 0.93 1.00 0.95 1.00 0.98 1.00 0.88 0.94 0.86 1.00 0.98 0.92 0.96
ma10 0.90 0.74 0.82 0.62 0.91 0.79 0.86 0.73 0.84 0.73 0.86 0.70 0.96 0.82 0.91 0.72
mal1 0.92 0.73 0.84 0.81 0.95 0.81 0.85 0.92 0.91 0.67 0.75 0.60 0.94 0.83 0.92 0.92
mal2 0.88 0.62 0.81 0.80 0.94 0.79 0.83 0.84 0.89 0.73 0.74 0.79 0.95 0.81 0.88 0.79
mbn2 1.00 0.74 0.95 0.90 1.00 0.73 0.99 0.82 0.98 0.74 0.93 0.77 1.00 0.84 1.00 0.90
mbn3 - - - - 0.96 0.84 0.95 0.82 1.00 0.79 0.91 0.74 1.00 0.86 0.98 0.80
Herbst3p4 0.96 0.70 0.85 0.72 0.93 0.77 0.92 0.72 0.95 0.66 0.89 0.63 0.96 0.82 0.92 0.72
Herbst6p18 0.93 0.74 0.92 0.70 0.92 0.76 0.92 0.80 0.96 0.75 0.95 0.78 0.95 0.74 0.93 0.81
Herbst6p30 0.92 0.80 0.86 0.75 0.95 0.78 0.96 0.80 0.96 0.76 0.95 0.78 0.95 0.84 0.96 0.80
Herbst6p41 0.87 0.80 0.88 0.72 0.93 0.73 0.95 0.78 0.91 0.74 0.92 0.77 0.99 0.83 1.00 0.84
L1L 0.87 0.75 0.83 0.82 1.00 0.78 0.94 0.85 0.87 0.75 0.92 0.80 1.00 0.78 1.00 0.85
L2LO 0.98 0.85 0.89 0.82 1.00 0.80 0.98 0.77 1.00 0.82 1.00 0.73 1.00 0.90 0.98 0.80
L2LS 0.90 0.75 0.96 0.76 0.98 0.77 0.92 0.80 0.97 0.80 0.92 0.74 0.96 0.79 0.94 0.77



 International Journal of Computational Intelligence Systems           (2022) 15:21 

1 3

   21  Page 14 of 16

The results demonstrate that PSOMiner has good ability 
of anti-noise.

5.4  Results on Real Data Sets

This section gives the results of experiments performed 
on four real event logs. Since the process models of these 
event logs are unknown, the metrics used in previous 
section are no longer applicable. Three alignment-based 
metrics, which are alignment-based fitness, alignment-
based precision and their combination (i.e. fscore) [30], 
were employed to evaluate the performance of PSOMiner 
on real event logs. Moreover, for fairness, we refer to 
the results of benchmark given in [31]. The output of 
PSOMiner (a.k.a. causal matrix) was converted to petri 
nets based on the method in [7], since the tool only sup-
ports petri net as the input.

PSOMiner was run for 20 times on each event log. The 
results are shown in Table 6. Compared with the results of 
ETM in [31], it is easy to find that the quality of the process 
models mined by PSOMiner are superior to the quality of the 

(15)fscore =
Bp ⋅ Br

Bp + Br

+
Sp ⋅ Sr

Sp + Sr

process models mined by ETM. Especially on BPIC2012, 
BPIC2013cp and BPIC2013cp, the f-score value obtained 
by PSOMiner is much better than that obtained by ETM. 
Moreover, compared with other state-of-art algorithms, the 
f-score obtained by PSOMiner on four event logs are also 
very competitive. These results prove that PSOMiner can 
perform well on real event logs.

6  Conclusion and Future Work

In this paper, we propose a novel PSO algorithm, named 
PSOMiner, to solve the problem of process mining. The 
most interesting thing is that a series of operators based on 
causal matrix are designed for position updating and veloc-
ity updating in PSOMiner. Besides that, a guided local 
mutation technique is embedded to address the problems 
of premature.

We validated the performance of the algorithm through 
a large number of experiments. Experimental results prove 
that (1) PSOMiner has strong search ability and fast con-
vergence speed. (2) Compared with three state-of-the-art 
algorithms of process mining, PSOMiner can achieve the 
optimal results on 12 in 14 noise-free event logs and 13 in 
14 noisy event logs. It demonstrates that PSOMiner has good 
performance and anti-noise ability. (3) PSOMiner achieved 
competitive results in the last experiment and it proves that 
PSOMiner can perform well on real world event logs.

Except for the step of evaluation, other steps of 
PSOMiner are easy to be parallelized, therefore we can 
employ modern parallel or distributed techniques, e.g. 
GPU or cluster, to further speed-up the algorithm. Next, 
the CI-based process mining can be further studied from 
two aspects. On the one hand, we can utilize current CI-
based process mining techniques to solve deeper tasks 
in this field, such as cross-organization process mining, 

Fig. 8  f-score of four algo-
rithms on event logs with 10% 
noise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ETM Hybrid ILP Miner HM PSOMiner

Table 6  The experimental results of performing PSOMiner on four 
real event logs

Event log Fitness Precision F-score

BPIC2012 0.82 ± 0.04 0.77 ± 0.03 0.79 ± 0.03
BPIC2013cp 0.98 ± 0.02 0.90 ± 0.09 0.94 ± 0.06
BPIC2013inc 0.95 ± 0.05 0.74 ± 0.08 0.83 ± 0.07
Sepsis 0.90 ± 0.06 0.63 ± 0.05 0.74 ± 0.05
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blockchain-oriented process mining, etc. On the other 
hand, we can study some recent CI techniques and propose 
new CI-based algorithms of process mining with higher 
performance.
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