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Abstract
Basic uncertain information is a newly proposed normative formulation to express and model uncertain information. This 
study further generalizes this concept by introducing the concept of refined interval of discourse in which the true value is 
known to be included. Hence, we define some new definitions of relative basic uncertain information, relative certainty/
uncertainty degree and comprehensive certainty/uncertainty with some related measurements and analysis. With the intro-
duced uncertain data type, we define two corresponding aggregation operators, namely, the relative basic uncertain informa-
tion valued weighted arithmetic mean operator and the interval-induced relative basic uncertain information valued ordered 
weight averaging operator. An application of the proposed concepts and methods in multi-agents evaluation is provided.
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used in information fusion which includes a large number 
of uncertainty involved data types.

Uncertainties with different types have been ever increas-
ingly more involved in multi-criteria evaluation and deci-
sion-making problems. For example, interval information, 
fuzzy information, probability information and possibility 
information are some representative types. A large num-
ber of further extensions and applications such as basic 
uncertain information have been developed with fast speed 
[14–17].

With the space provided by uncertainties, the subjective 
preferences of decision makers can be involved in multi-
criteria evaluation and decision-making problems. Notwith-
standing with some extent of subjectivity, the preferences 
usually are indeed the appropriate reflection and embodi-
ment of the decision makers’ long-time working experiences 
or extraordinary management intuitions. A typical prefer-
ence concerned in a myriad of practical problems is the bi-
polar preferences such as the bi-polar optimism–pessimism 
preference, and the bi-polar strong–weak, strong–neutral, or 
weak–neutral preference of any type of aversions.

Recently, Jin et al. proposed the concept of basic uncertain 
information (BUI) [16, 17], which can generalize many types 
of uncertainties using some paradigmatic expression, and soon 
this concept has been further studied and applied in different 
areas [18–27]. We use a real pair (a, c) ∈ [0, 1]2 to express a 
BUI granule in which a is the concerned individual assessment 

1 Introduction

Information fusion techniques are particularly important in 
numerous areas such as multi-criteria evaluation and deci-
sion making [1–6]. The theory of information fusion largely 
includes two aspects. The first one is the rigorous theory 
of aggregation operators [7] which has been significantly 
developed during the past decades [8–13]. The second con-
cern is the development and study of the diverse data types 
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value, while c is the certainty degree of a; and 1 − c is called 
the uncertain degree of a. Certainty degree can have differ-
ent meanings in different decisional scenarios. For example, 
a large certainty degree may indicate that decision maker has 
large confidence over the obtained value a, or show the extent 
to which the value a is precisely measured or exactly collected.

Without loss of generality, the defined BUI is based on the 
domain of discourse [0, 1], which implies that for a BUI gran-
ule (a, c) , once certainty degree c = 0 is offered from an eval-
uator, then the value a is absolutely uninformative. Although it 
indeed provides an ideal model and frame for modeling many 
decision-making and evaluation situations, in practice the 
preset domain of discourse sometimes can be narrowed and 
thereby properly included in [0, 1], still without sacrificing the 
generality. For example, for a given object under evaluation, 
an approximate range that is smaller than [0, 1] for the evalua-
tion value has been known or been preset by a decision maker 
before he possibly invites some other evaluators to make more 
precise assessment. As another example, when an expert pro-
vides an evaluation value with certainty degree (which can 
be transformed into a BUI granule), he/she may also give the 
range in which the true evaluation value will definitely not 
fall, e.g., [0, u) ∪ (v, 1] ( u < v ). Clearly, such requirements can 
be easily realized in practice. In other words, sometimes the 
domain of discourse is no longer [0, 1], but a narrowed sub-
interval of it [u, v] ⊂ [0, 1] . Meanwhile, the concept of BUI can 
still be applied to such narrowed sub-interval.

Against this background, we will discuss some new norma-
tive expression based on a narrowed sub-interval and analyze 
its related basic operations, measurements and applications. 
The results of this study will provide both theoretical contribu-
tions and good application potentials for practitioners.

The remainder of this work is organized as follows. Sec-
tion 2 reviews or recapitulates some basic concepts of BUI 
and related aggregation operators. In Sect. 3, we propose the 
new concept of relative basic uncertain information and rela-
tive certainty degree with some related analysis and numeri-
cal examples. Section 4 discusses some of the new defined 
concepts in bi-polar preference aggregations and rules-based 
decision making. Section 5 concludes and remarks this study.

2  Basic Uncertain Information and Some 
Related Aggregation Operators

This section only reviews a minimum knowledge of basic 
uncertain information, weighted arithmetic mean for BUI 
vector and interval valued vectors.

Definition 1 [16, 17] A BUI granule is in expression of a 
pair (a, c) ∈ [0, 1]2 in which a is the concerned value, while c 
is the certainty degree of a; and 1 − c is called the uncertain 

degree of a. The set of all BUI granules (a, c) is denoted 
by B.

In this work, all of the closed intervals [a, b] ⊆ [0, 1] 
are denoted by I  . Conventionally, the extended interval 
[a, a] is sometimes identified with real number a, while 
all the interval operators can be retained. We also consider 
the lattice (I,≤Int) in which the partial order ≤Int may be 
used for comparison of two intervals and is defined such 
that [a1, b1]≤Int[a2, b2] if and only if a1 ≤ a2 and b1 ≤ b2 ; 
we take the notation [a1, b1]<Int[a2, b2] if and only if 
[a1, b1]≤Int[a2, b2] and [a1, b1] ≠ [a2, b2].

We agree on the following notations even with some 
possible abusements when no risk of misunderstanding 
can arise. Let � = (ai)

n
i=1

∈ [0, 1]n and � = (bi)
n
i=1

∈ [0, 1]n 
be two real vectors, and then a vector of BUI granules 
((ai, ci))

n
i=1

∈ B
n is denoted by (�, �) ; and a vector of closed 

intervals ([ai, bi])ni=1 ∈ I
n is denoted by [�, �].

Definition 2 (IWAM operators for vectors of intervals and 
BUI granules) 

 (i) The interval valued weighted arithmetic mean 
(IvWA) operator with weight vector � = (wi)

n
i=1

 is a 
mapping IvWA� ∶ I

n
→ I  such that 

 (ii) [16] The BUI weighted arithmetic mean (BUIWAM) 
operator with weight vector � = (wi)

n
i=1

 for BUI vec-
tor BWA� ∶ B

n
→ B is defined by 

3  Relative Basic Uncertain Information 
and Relative Certainty Degree

As we discussed in Introduction, sometimes the domain of 
discourse for BUI granules should be further narrowed down 
into a sub-interval. We next directly present a strict paradig-
matic form for the desired generalization since we assume 
one is familiar with the concept of BUI.

Definition 3 (Relative basic uncertain information) Let 
g(�) ∈ [0, 1] be the true value of a certain object under 
evaluation (which might not be known). A relative basic 
uncertain information (RBUI) granule is expressed by a tri-
ple ([u, v], a, c) ∈ I × [0, 1]2, where [u, v] is a refined interval 
(of discourse) in which the true value g(�) is known to be 
included, a ∈ [u, v] is the plausible value (of the true value 

(1)
IvWA�([�, �]) =

∑n

i=1
wi[ai, bi] =

∑n

i=1
[wiai,wibi].

(2)
BWA�(�, �) =

∑n

i=1
wi(ai, ci) =

∑n

i=1
(wiai,wici).
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g(�) ), and c is called the relative certainty degree of a; and 
1 − c is called the relative uncertainty degree of a. The set of 
all RBUI granules ([u, v], a, c) is denoted by RB.

Remark In the above definition, the true value of a certain 
object g(�) has fallen into the narrowed interval [u, v] before 
making further assessment. This implies that it is impossi-
ble for g(�) to be within [0, 1]�[u, v] . Besides, the plausible 
value should also fall into [u, v] as a tacit restriction.

In Definition 3, even if we may have a very small relative 
certainty degree c, the “actual comprehensive uncertainty” 
contained in ([u, v], a, c) may not be high. As an extreme 
case, even if c = 0 but the refined interval degenerates into 
an extended interval of a real number [u, u], then both the 
plausible value and the true value “have to” equal to u; in 
this situation, the value of relative certainty degree c actually 
no longer has effect. Particularly note that, although in this 
case c seems irrelevant, we still let it remain in its position 
for the consistencies in both mathematics and expressions. 
We recall that for the standard BUI granule in Definition 1, 
once certainty degree c = 0 , then the true value may be at 
any point of the unit interval [0,1] irrespective of the plausi-
ble value a, meaning that the BUI granule (a, 0) provides the 
same information as the unit interval [0,1]. Similarly, for the 
RBUI granule ([u, v], a, 0), the true value can be at any point 
in [u, v] and thus ([u, v], a, 0) becomes equivalent to inter-
val [u, v]. As another extreme case, if the refined interval is 
[0,1] (i.e., without any refinement), then ([0, 1], a, c) in fact 
degenerates into the standard BUI in Definition 1. In addi-
tion, if c = 1 , then the plausible value and the true value of a 
certain object coincide, which implies ([u, v], a, 1) in actual 
degenerates into real value a. To make the above analysis 
clearer, we take the following illustrative formulations where 
“ ⇒ ” represents “degenerates into”: 

(a) ([u, u], a, c) ⇒ [u, u] ⇒ u = a;
(b) ([u, v], a, 0) ⇒ [u, v];
(c) ([0, 1], a, c) ⇒ (a, c);
(d) ([u, v], a, 1) ⇒ a.

In an RBUI granule ([u, v], a, c), it actually contains 
two different types of uncertainties which may interact 
to generate a resulting effect of uncertainty. The first 
type is the uncertainty within interval [u, v] which usu-
ally can be measured by the length of it, and the other 
type is just the relative uncertainty degree 1 − c . It seems 
natural in form to express these two types of uncertainty 
by a pair (v − u, 1 − c) ∈ [0, 1]2 . However, when either of 
the two values v − u and 1 − c is zero, the RBUI granule 
([u, v], a, c) degenerates into the real value a  as we just 
discussed, which implies the whole/comprehensive uncer-
tainty involved in ([u, v], a, c) is zero, i.e., the whole/

comprehensive certainty involved is 1. Hence, in practice 
we may define the following definition to provide differ-
ent comprehensive certainty/uncertainty measurements 
using any semi-copula [7, 28]. Recall a semi-copula 
(x, y) ↦ x◦y is a binary aggregation operator which is 
monotonic non-decreasing w. r. t. each parameter and sat-
isfies 1◦x = x◦1 = x . One may differentiate it from the rela-
tive certainty/uncertainty of an RBUI granule.

Definition 4 The comprehensive uncertainty of an RBUI 
granule ([u, v], a, c) is defined by

The comprehensive certainty of an RBUI granule 
([u, v], a, c) is defined by

where ◦ can be any semi-copula.

Example 1 We firstly adopt the product as the desired 
semi-copula. 

 (i) CU([0.1, 0.7], 0.5, 0.6) = (0.7 − 0.1) ⋅ (1 − 0.6) = 0.24,

CC([0.1, 0.7], 0.5, 0.6) = 1 − (0.7 − 0.1) ⋅ (1 − 0.6) = 0.76.

 (ii) CU([0.5, 0.8], 0.6, 0.5) = (0.8 − 0.5) ⋅ (1 − 0.5) = 0.15, 
CC([0.5, 0.8], 0.6, 0.5) = 1 − (0.8 − 0.5) ⋅ (1 − 0.5) = 0.85.

 (iii) CU([0, 1], 0.6, 0.2) = (1 − 0) ⋅ (1 − 0.2) = 0.8,

CC([0, 1], 0.6, 0.2) = 1 − (1 − 0) ⋅ (1 − 0.2) = 0.2.

 (iv) CU([0.5, 0.5], 0.5, 0) = (0.5 − 0.5) ⋅ (1 − 0) = 0, 
CC([0.5, 0.5], 0.5, 0) = 1 − (0.5 − 0.5) ⋅ (1 − 0) = 1.

Next, we consider using min operator ∧ ,  i .e., 
x ∧ y = min(x, y) . Accordingly, 

 (i) CU([0.1, 0.7], 0.5, 0.6) = (0.7 − 0.1) ∧ (1 − 0.6) = 0.4, 
CC([0.1, 0.7], 0.5, 0.6) = 1 − (0.7 − 0.1) ∧ (1 − 0.6) = 0.6.

 (ii) CU([0.5, 0.8], 0.6, 0.5) = (0.8 − 0.5) ∧ (1 − 0.5) = 0.3, 
CC([0.5, 0.8], 0.6, 0.5) = 1 − (0.8 − 0.5) ∧ (1 − 0.5) = 0.7.

 (iii) CU([0, 1], 0.6, 0.2) = (1 − 0) ∧ (1 − 0.2) = 0.8, 
CC([0, 1], 0.6, 0.2) = 1 − (1 − 0) ∧ (1 − 0.2) = 0.2.

 (iv) CU([0.5, 0.5], 0.5, 0) = (0.5 − 0.5) ∧ (1 − 0) = 0, 
CC([0.5, 0.5], 0.5, 0) = 1 − (0.5 − 0.5) ∧ (1 − 0) = 1.

Recall that given a BUI granule (a, c),  we can transform 
it into an interval by the following transformation T ∶ B → I  
[29–31]:

Though BUI granule can be directly used in some rules-
based decision making [32–35], the derived interval value 
sometimes might be more suitable for the interval-based 
decision making. Correspondingly, we have the following 

(3)CU([u, v], a, c) = (v − u)◦(1 − c).

(4)CC([u, v], a, c) = 1 − (v − u)◦(1 − c),

(5)T(a, c) = [a − a(1 − c), a + (1 − a)(1 − c)].
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transformation T ∶ RB → I  to convert an RBUI granule 
([u, v], a, c) into an interval:

Note that when [u, v] = [0, 1] , (6) degenerates into (5).

Example 2 

 (i) T([0.1, 0.7], 0.5, 0.6) = [0.5 − (0.5 − 0.1)(1 − 0.6),

0.5 + (0.7 − 0.5)(1 − 0.6)] = [0.34, 0.58].
 (ii) T([0.5, 0.8], 0.6, 0.5) = [0.6 − (0.6 − 0.5)(1 − 0.5),

0.6 + (0.8 − 0.6)(1 − 0.5)] = [0.55, 0.7].
 (iii) T([0, 1], 0.6, 0.2) = [0.6 − (0.6 − 0)(1 − 0.2), 0.6

+(1 − 0.6)(1 − 0.2)] = [0.12, 0.92].
 (iv) T([0.5, 0.5], 0.5, 0) = [0.5 − (0.5 − 0.5)(1 − 0), 0.5

+(0.5 − 0.5)(1 − 0)] = [0.5, 0.5].

For any BUI granule (a, c), let T(a, c) = [g, h] be the 
derived interval by (5), then it is easy to observe the rela-
tion 1 − c = h − g . For any RBUI granule ([u, v], a, c) we 
can have the corresponding relation when the semi-copula 
chosen in Definition 4 is product ◦ = ⋅.

Proposition 1 For any RBUI granule ([u,  v],  a,  c), 
t h e  c o m p r e h e n s i v e  u n c e r t a i n t y  d e g r e e 
CU([u, v], a, c) = (v − u) ⋅ (1 − c) defined with semi-copula 
⋅ being the product, and the interval [g, h] = T([u, v], a, c) 
derived from (6) has the relation h − g = (v − u) ⋅ (1 − c).

Proof 

Remark If the semi-copula adopted is not the product, then 
the corresponding result as in Proposition 1 may not hold.

Remark With the same a and c, an RBUI granule 
([u, v], a, c) can provide better or more refined information 
than the standard BUI granule (a, c) in the sense that if we 
take the transformations in (5) and (6), respectively, we eas-
ily check T([u, v], a, c) ⊆ T(a, c).

4  Bi‑polar Preference Aggregations 
and Rules‑Based Decision Making in RBUI 
Environment

Ordered weighted averaging (OWA) operators [6], induced 
ordered weighted averaging (IOWA) operators [36] and 
some of their extensions [37, 38] can well model bi-polar 

(6)T([u, v], a, c) = [a − (a − u)(1 − c), a + (v − a)(1 − c)].

h − g = (a + (v − a)(1 − c)) − (a − (a − u)(1 − c))

= (v − a)(1 − c) + (a − u)(1 − c)

= v − vc − a + ac + a − ac − u + uc = v − vc − u + uc

= (v − u) ⋅ (1 − c).

references with different types. The whole information 
fusion process and the type modeled can be decided by a 
vector of inducing variable related to input vector which can 
be magnitudes of inputs, chronological orders of inputs or 
the amounts of uncertainty contained in inputs, etc.

Recently, scholars proposed some formulations based on 
three-set method [37] which can very effectively perform the 
IOWA operators with interval inducing variables, without 
using any permutations as should be used in the original 
IOWA operators where it is difficult to handle tied or incom-
parable inducing values. In what follows we review as mini-
mum related knowledge as we can before we discuss some 
bi-polar preference aggregations and rules-based decision 
making [32–35] in RBUI environment.

Similar to BUI vector and interval vector, a vector of RBUI 
granules is denoted by ([�, �], �, �) = (([ui, vi], ai, ci))

n
i=1

 . The 
RBUI weighted arithmetic mean operator is formally defined 
as follows.

Definition 5 The relative basic uncertain information val-
ued weighted arithmetic mean (RvWA) operator with weight 
vector � = (wi)

n
i=1

 for RBUI vector RvWA� ∶ (RB)n → RB 
is defined by

Remark For the reasonability of multiplying the correspond-
ing entries by wi four times, respectively, one may refer to 
literature [16] where the reasonability of defining BUIWAM 
in (2) has been discussed. In addition, it is not difficult to 
check that 

∑n

i=1
wiai ∈ [

∑n

i=1
wiui,

∑n

i=1
wivi] and hence the 

resulting form in (7) is still an RBUI granule.

Definition 6 [39]A BUM function Q ∶ [0, 1] → [0, 1] is a 
non-decreasing function with Q(0) = 0 and Q(1) = 1.

The orness of a BUM function is defined by 
orness(Q) = ∫ 1

0
Q(t)dt and the andness of a BUM function 

is defined by andness(Q) = 1 − orness(Q) [40]. When the 
adopted BUM functions are convex (e.g., Q(y) = yn with 
n ≥ 1 ) or concave (e.g., Q(y) = 1 − (1 − y)2 with n ≥ 1 ), a 
larger BUM function can well model a stronger prefer-
ence extent exhibited by decision maker, and vice versa 
[37, 41]. When the inducing vector is about magnitudes of 
input, the orness of a BUM function embodies its original 
literal meaning of logic OR; that is, a large orness corre-
sponds to an optimism preference in evaluation, and vice 
versa.

As a combined method, we adopt the three-set method 
[37] as a powerful tool to perform OWA/IOWA operators 
with interval valued inducing vectors using the language of 
WA expressions of IOWA operators [38]. One significant 

(7)
RvWA�([�, �], �, �) =

∑n

i=1
wi

��
ui, vi

�
, ai, ci

�

=
��∑n

i=1
wiui,

∑n

i=1
wivi

�
,
∑n

i=1
wiai,

∑n

i=1
wici

� .
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advantage of using this weighting method lies in that it can 
perfectly handle the situation where tied inducing values 
appear which cannot be ideally or conveniently tackled by 
existing induced weighting methods.

Definition 7 An interval-induced relative basic uncertain 
information valued ordered weight averaging (IvIRvOWA) 
operator IvIRvOWAQ;[�,�] ∶ (RI)n → RI  with an induc-
ing interval vector [�, �] = ([xi, yi])

n
i=1

 and a BUM function 
Q ∶ [0, 1] → [0, 1] is defined by an RBUI valued weighted 
arithmetic mean operator (with � ) RvWA� ∶ (RB)n → RB,

in which � is defined in the following steps:
Step 1: For each [xi, yi] , define three disjoint subsets of 

{1,… , n} : Ai,Bi,Ei ⊆ {1,… , n} such that
Ai = {j ∈ {1,… , n} ∶ [xi, yi]<Int[xj, yj]},

Bi = {j ∈ {1,… , n} ∶ [xj, yj]<Int[xi, yi]},

Ei = {1,… , n}�(A ∪ B).

Step 2: Form an intermediate vector � = (si)
n
i=1

∈ [0, 1]n 
(which is not necessarily normalized) such that

where |S| is the cardinality of any finite set S.
Step 3: It can be shown that � ≠ � = (0,… , 0) [37], and 

then after normalizing � , we obtain a normalized weight vec-
tor � = (wi)

n
i=1

 by

Remark Similar to induced OWA aggregation for BUI, the 
reason why we do not define the OWA version of IvIRvOWA 
is because the inducing vector about substantial magnitudes 
in the vector of RBUI is not clear due to the existence of 
uncertainties. When the inducing interval vector [�, �] is 
clearly determined by a magnitude vector in relation to the 
RBUI inputs, the corresponding bi-polar preference aggre-
gation with the type of input magnitudes can be defined by 
Definition 7 as the following numerical example shows.

Example 3 Suppose a company needs to decide whether 
or not to put into production a new product according to a 
prediction of the next year’s market share of this product. 
The manager invites n = 4 experts {Ei}

4

i=1
 to give their indi-

vidual predictions which are expressed by an RBUI vector 
([�, �], �, �) = (([ui, vi], ai, ci))

4

i=1
 . That is, ([ui, vi], ai, ci) is 

provided by expert Ei , indicating that he feels a plausible 
market share is 100ai% with confidence (relative certainty 

(8)RvWA�([�, �], �, �) =
∑n

i=1
wi([ui, vi], ai, ci),

(9)si =
Q(1 −

|Bi|
n
) − Q(

|Ai|
n
)

||Ei
||

,

(10)wi =
si∑n

k=1
sk
.

degree) ci , and it is impossible that the market share will be 
larger than 100vi% or lower than 100ui%.

If the manager has a moderate pessimistic preference 
which, for example, is embodied by a convex BUM function 
Q(t) = t2 , then he prefers the RBUI granules that indicate 
predictions with lower market share. We will firstly apply 
the transformation in (6) to derive a vector of intervals 
[�, �] = ([xi, yi])

4

i=1
 from the given RBUI vector, and then 

perform IvIRvOWA operator with inducing vector [�, �] and 
BUI function Q.

Assume the manager wishes to take the rules-based deci-
sion making [32–35] to automatically judge whether the new 
product can be put into production. If the final aggregation 
result ([u, v], a, c) satisfies at least one of the following set 
of rules, the new product should be produced, else it cannot.

Set of rules A: ( u ≥ 0.3 ) or ( u < 0.3 , a ≥ 0.6 and c ≥ 0.5).
Set of rules B: ( u ≥ 0.3 ) or ( u < 0.3 , a ≥ 0.4 and c ≥ 0.75).
Set of rules C: ( u ≥ 0 ) and ( a ≥ 0.6 and c ≥ 0.7).
Set of rules D: ( u ≥ 0 ) and ( a ≥ 0.4 and c = 1).

Note that the above sets of rules are majorly for illustra-
tion, and in practice decision makers can design suitable 
rules according to their own situations.

S u p p o s e  ([u1, v1], a1, c1) = ([0.1, 0.7], 0.5, 0.6), 
([u2, v2], a2, c2) = ([0.5, 0.8], 0.6, 0.5),

([u3, v3], a3, c3) = ([0, 1], 0.6, 0.2), 
([u4, v4], a4, c4) = ([0.4, 0.6], 0.5, 0.5).

With the transformation defined in (6), we have
[x1, y1] = T([0.1, 0.7], 0.5, 0.6) = [0.34, 0.58], 

[x2, y2] = T([0.5, 0.8], 0.6, 0.5) = [0.55, 0.7],

[x3, y3] = T([0, 1], 0.6, 0.2) = [0.12, 0.92], 
[x4, y4] = T([0.4, 0.6], 0.5, 0.5) = [0.45, 0.55].

Next, by formula (9), we obtain s1 =
Q(1 −

|B1|
4

) − Q(
|A1|
4

)

||E1
||

s1 =
Q(1 −

|B1|
4
) − Q(

|A1|
4
)

||E1
||

s2 =
1

8
 , s3 =

1

4
 , s4 =

5

16
.

Since the intermediate vector � = (si)
4

i=1
= (

5

16
,
1

8
,
1

4
,

5

16
) 

i s  c o i n c i d e n t a l l y  a l r e a d y  n o r m a l i z e d , 
we  o b t a i n  t h e  n o r m a l i z e d  we i g h t  ve c t o r 
� = (wi)

4

i=1
= � = (si)

4

i=1
= (0.3125, 0.125, 0.25, 0.3125).

Finally, with (8) we carry out the RvWA and obtain

 Since the result ([u, v], a, c) = ([0.21875, 0.75625], 0.5375, 0.45625) 
satisfies none of the predetermined four sets of rules, the 
decision suggests the product cannot be produced.

RvWA�([�, �], �, �)

=
∑4

i=1
wi([ui, vi], ai, ci)

= ([0.21875, 0.75625], 0.5375, 0.45625).
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5  Conclusions

The RBUI granule is with the form ([u, v], a, c) in which the 
refined interval of discourse can convey better information 
than the standard BUI granule (a, c). The fact that RBUI is 
one perfect generalization of BUI can be observed by four 
degeneration relations (a) ([u, u], a, c) ⇒ [u, u] ⇒ u = a ; 
(b) ([u, v], a, 0) ⇒ [u, v] ;  (c) ([0, 1], a, c) ⇒ (a, c) ;  (d) 
([u, v], a, 1) ⇒ a . Some new concepts of relative certainty/
uncertainty degree and comprehensive certainty/uncer-
tainty have been defined, which further show the difference 
of RBUI from BUI.

The relative basic uncertain information valued weighted 
arithmetic mean operator has been defined, which further 
serves as an intermediate tool to well define the interval-
induced relative basic uncertain information valued ordered 
weight averaging operator. To define IvIRvOWA, we com-
bine the three-set method with the WA expressions of IOWA 
operators. The RBUI granule can be also applied in rules-based 
decision making, adding more decision making flexibility. An 
application with numerical example in market share opinions 
related bi-polar preference aggregation has been presented.

This work may provide both theoretical value to aggre-
gation theory and good application potential for practition-
ers. In future work we may further extend or generalize 
RBUI so as to be suitable in linguistic and large scale 
decision making environments.
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