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Abstract

Any nation’s growth depends on the trend of the price of fuel. The fuel price drifts have both direct and indirect impacts on
a nation’s economy. Nation’s growth will be hampered due to the higher level of inflation prevailing in the oil industry. This
paper proposed a method of analyzing Gasoline and Diesel Price Drifts based on Self-organizing Maps and Bayesian regu-
larized neural networks. The US gasoline and diesel price timeline dataset is used to validate the proposed approach. In the
dataset, all grades, regular, medium, and premium with conventional, reformulated, all formulation of gasoline combinations,
and diesel pricing per gallon weekly from 1995 to January 2021, are considered. For the data visualization purpose, we have
used self-organizing maps and analyzed them with a neural network algorithm. The nonlinear autoregressive neural network
is adopted because of the time series dataset. Three training algorithms are adopted to train the neural networks: Levenberg-
Marquard, scaled conjugate gradient, and Bayesian regularization. The results are hopeful and reveal the robustness of the
proposed model. In the proposed approach, we have found Levenberg-Marquard error falls from — 0.1074 to 0.1424, scaled
conjugate gradient error falls from — 0.1476 to 0.1618, and similarly, Bayesian regularization error falls in — 0.09854 to

0.09871, which showed that out of the three approaches considered, the Bayesian regularization gives better results.

Keywords Self-organizing maps (SOM) - Levenberg-Marquard (LM) - Scaled conjugate gradient (SCG) - Bayesian
regularization (BR) - Bayesian regularized neural networks (BRNN5s) - Nonlinear autoregressive neural network

(NAR-NN)

1 Introduction

The transportation industry has come a long way from
horses and mules in the early days to railways, airlines,
cruises, municipal transportation companies, cargo track-
ing, and express delivery services in today’s world. This
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industry finds its uses in moving people, animals, and goods
by land, air, or sea, and as a global necessity, generates rev-
enue worth billions of dollars. The transportation industry
services majorly rely on the usage and pricing of gasoline
and diesel, which are prone to fluctuations worldwide. The
United States, being the most significant consumer, has
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recently witnessed price drifts concerning gasoline and die-
sel. The significant factors that influence these two compo-
nents’ pricing are crude oil prices, processing and distribu-
tion costs, demand, taxation, currencies, and availability of
local sources [1].

Moreover, the national pricing policy determines the cost
paid by consumers. Between 2004 and 2008, the demand for
crude oil went up, leading to increased gasoline costs. Prices
jumped from $35 to $145 per barrel leading to an increase
in gas costs. Gasoline prices in the United States (US) are
also affected by fuel taxes as both federal and state taxes
apply. Transporting crude oil to refineries and points of dis-
tribution as per demand incurs additional costs. Some other
factors that contributed to gasoline cost could be in the form
of extreme weather conditions, natural disasters in areas
producing oil, legislation by many states for cleaner burn-
ing fuel, etc. [2]. US consumption of gasoline is seasonal
because during summer, when people drive, the prices go
up, whereas in winter, it reduces significantly [3]. However,
over the last couple of years, the drift in gasoline and diesel
costs has been attributed to many other reasons that were
not seen before. As COVID-19 took the world by storm,
economies were wrecked, and people stopped traveling [4,
5]. The lockdown imposed further led to lesser consumption
of gasoline and diesel [6]. The average price in most states
became higher than it was a year ago. Moreover, the brutal
winter weather across many states in the US impacted oil
production, which forced refineries to close in the top crude
producing state. Many refineries were closed down, cutting
off nearly 20% of the country’s refining capacity.

The sudden dip in demand led to many US oil and
gas losing revenues worth millions of dollars and tens
of thousands of jobs. As people started leaning on credit
cards more than usual, oil companies suffered drastically.
Many researchers and industry experts are hopeful that
the capacity may come back online sometime during
2022-2023. As the lockdown impositions are taken down
and more Americans are vaccinated, life may return to
normal soon. It may witness people driving and flying
more frequently, eventually increasing fuel costs, thereby
ensuring some recovery. It may also be possible that peo-
ple replace their vehicles with much more efficient models
due to stimulus checks; this aid may lift gas prices if con-
sumers spend it on the transportation industry [7]. Gold-
man Sachs estimates that $2 trillion in economic stimu-
lus spending is predicted over 2021 and 2022, ultimately
leading to an increased US oil demand by an estimated
200,000 barrels a day [8]. Late March 2020 witnessed that
while most US was under lockdown orders, the national
average astoundingly dropped down to $1.99 a gallon. It
was found that many states had gas for less than $1 in
April 2020. Based on all these statistics, we observe a fluc-
tuation in the prices over the last few years due to various
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reasons, and hence there is a need to analyze the fluctua-
tion trends. Since almost every person in the world is a
part of the transportation industry, and the transportation
industry influences a country's economy, it is essential to
observe the behavior of price drifts in gasoline and diesel
price [9].

Volatility in gasoline and diesel prices may impact
market participants, tax revenues, international oil market
price fluctuations, and vulnerable groups. While much past
research has been done on price drifts concerning gasoline
and diesel, limited studies have been done from artificial
intelligence (AI) perspective.

Therefore, we are employing an Al-based technique for
analyzing the drifts in gasoline and diesel prices, i.e., Bayes-
ian Regularized Neural Network (BRNN). The strength of
BRNNGs lies in the fact that they are much advanced com-
pared to traditional back-propagation nets [10]. They could
also minimize the need for lengthy cross-validation [11].
The model's design, training, validation, and testing have
been performed using accurate historical market data.

Gasoline and diesel prices indicate the growth level of
the nation’s economy. Plenty of work was carried out using
trends of the hefty data segregated on fuel prices using
machine learning techniques. Considered datasets hold 13
parameters over the period and drifts are there due to the
pandemic in addition. The lifestyle changed a lot due to
the unprecedented events in the recent pasts and that have
a great role in deciding the near future. We have used the
neural network (NN)-based concepts that helped in building
a higher accuracy model.

The main contributions of the current work are as follows:

e We are analyzing the US gasoline and diesel price drifts
which will help the investors and policy decision-makers
to provide an overview for the market during the crisis.

e Our cumulative work precisely indicates that NAR-NN
serves the best purpose in the past historical data.

e We have also compared three training algorithms LM,
SCG, and BR, based on the NN concept, and BR showed
noticeable results from others.

Even though various models prevail in machine learn-
ing to analyze and predict. The NN-based structure outper-
forms better because of the three-layered structure with the
meticulous hidden layer structure that makes the model so
proficient in nature. BR is robust in nature in comparison
with regular back-propagation networks. Also, it achieves
better correlation, and the sum of square errors is minimal.

The rest of the article is structured as follows: Sect. 2
lists materials and methods incorporating the related works
subsection and the proposed work's methodology. In Sect. 3,
we have discussed the experimental analysis, including the
dataset and the evaluation parameters in detail. Section 4
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highlights the results in the form of observations, graphs,
and comparative analysis. Finally, Sect. 5 concludes this
article.

2 Materials and Methods

This section is divided into two subsections. In the first sub-
section, we are highlighting the related research works done
in the past, following which we have discussed our proposed
approach.

2.1 Related Works

Authors in [12] presented a study on detecting gasoline
adulteration utilizing altered distillation curves and artifi-
cial neural networks (ANN). Their study was conducted to
find the temperature and recovered volume simultaneously.
Image processing was performed level metering, and gaso-
line and diesel were added to distillation curves for analyz-
ing the effect of additives. The ANN predicted the volume
percentage of contaminants in super gasoline, and statistical
analysis vouched for the model’s efficiency.

Authors in [13] studied the COVID-19 pandemic's impact
on Turkey's gasoline consumption. A unique data set of
daily data from 2014 to 2020 was employed for their study.
The performance was forecasted using the Autoregressive
integrated moving average (ARIMA) model, and evalua-
tion was performed before and after the outbreak. The best
fit models seem to fail in the pandemic situation; hence,
forecasting improves adding volatility. Their study asserts
that policies targeting volatility may effectively reduce the
adverse impacts on revenues, vulnerable groups, and market
participants.

Authors in [14] investigated gasoline compression igni-
tion (CGI) in diesel engines utilizing computational fluid
dynamics. A single-cylinder engine experiment was consid-
ered for validating the results. The model captured the com-
bustion performance, which was analyzed using an estima-
tion of energy breakdown and emissions. Their study further
asserts that injection strategy and injector nozzle configu-
ration lead to a better fuel stratification profile, increasing
the engine and emissions performance. A comparison has
been carried out between diesel and CGI in the same oper-
ating conditions and hardware. Their study manifests that
simultaneous optimization of engine and fuel can efficiently
overcome the combustion performance trade-off.

Authors in [15] presented a study on the price elasticity
of demand for diesel, gasoline, hybrid, and battery-electric
cars. Their study aimed to retrieve direct and cross-demand
market response functions confined to Norway and was for
the automobile powertrains and their energy carriers. The
carbon dioxide emissions from automobiles were found to

be related to vehicles and energy prices. Their study was
conducted using a discrete choice model on 1.8 million
data points. An increase in the price of liquid fuel leads to a
reduction in the carbon dioxide emission rate.

Authors in [16] conducted a household-level survey to
estimate gasoline price reforms and consumption behavior
in Saudi Arabia. A total of 1800 responses were obtained.
Their analysis manifests that the January 2016 price hike
may be attributed to the 20% drop in gasoline usage among
users who utilized octane 91-type gasoline. Octane 95 con-
sumed 15% more gasoline, and the estimated demand elas-
ticity decreased with education level. It was also found that
income levels are connected with sophisticated consumption
in advanced price periods.

Authors in [17] studied China's gasoline price concerning
international crude oil price and regulation. Their analysis
was conducted to determine the fluctuations and price regu-
lation using a panel-asymmetric error correction model with
daily panel data. The primary observation made is that the
price response is symmetric concerning industry but asym-
metric concerning several refiners. China's gasoline cost is
equal to fuel oil value changes; however, unevenly corre-
sponding to value guidelines, prompting mutilations in the
oil market and cost reaction elements.

Authors in [18] performed a study on gasoline and diesel
demand for 118 countries based on the fuel prices, economic
growth, and demand for gasoline and diesel. The data incor-
porates 36 countries for over 39 years, i.e., 1978-2016. The
panel addresses problems such as cross-sectional depend-
ence, nonstationary, and heterogeneity. Their study mani-
fested that Organization for Economic Co-operation and
Development (OECD) gasoline cost elasticity is — 0.7,
whereas the OECD diesel cost elasticity is — 0.35. For non-
OECD, diesel price elasticity is almost similar to that of
gasoline.

Authors in [19] studied the demand for gasoline and die-
sel in Europe. The Autoregressive-Distributed Lag (ARDL)
model has been used to measure the short-run and long-run
costs along with income elasticities for diesel and gasoline
demands. The data spans from 1978 to 2013 and observed
that elasticity estimates vary across countries. The short-run
and long-run elasticities seem significantly elastic concern-
ing their price equivalents. Therefore, if the fuel charge is
meant to decrease emissions by the price hike, the charge
must rise higher than income. Their study appeals for a strin-
gent fuel tax policy.

Authors in [20] recommended an Al and information-
driven approach to analyze Saudi Arabia's energy markets.
Their model GANNATS is a combination of data mining
(DM), genetic algorithm (GA), and ANN along with time-
series (TS) analysis, and the design, training, validation, and
testing of this model have been done on actual historical
market data. Experiment analysis manifested that the model
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performs efficiently. Cross-validation determined that Saudi
Arabia's gasoline mandate went down by 2.5% in 2017. A
screening analysis identified the factors leading to gasoline
demands. Their model enhanced traditional econometric
models and also increased the efficiency of gasoline demand
forecasting.

Authors in [21] performed a TS analysis and forthcom-
ing trends prognosis on gasoline price in China based on
oil taxation and costing techniques. Their work explored a
statistical relationship between crude oil costs and gasoline
prices, supported by TS and error correction models. A
projection of the prices for the years 2019-2050 has been
estimated. It is seen that asymmetric responsiveness and the
threshold effect exist within the Chinese oil pricing policy.
There is also a lag of at least a month in the gasoline price
adjustment. Their study asserted that gasoline prices will
be affected by the crude oil price increase in the short run,
and in the long run, gasoline prices would be affected by the
crude oil price decrease.

Authors in [47] introduced a way to foresee new COVID-
19 cases by utilizing hybridized approach between machine
learning (ML), adaptive neuro-fuzzy inference system
(ANFIS) and upgraded beetle antennae search (BAS) swarm
intelligence metaheuristics.

Table 1 provides a summarized analysis of some of the
existing related works deploying computational and ML
methods.

Table 2 provides a related work analysis of various exist-
ing works with their research outcomes and methodologies
used.

2.2 The Proposed Approach

Clustering is a crucial information examination tech-
nique. It is broadly utilized for pattern recognition, feature

Table 1 Related work analysis with limitations

extraction, etc. As an unsupervised classification strategy,
clustering distinguishes some natural designs present in
a set of items dependent on a similarity measure [22].
The self-organizing map (SOM) is an incredible strategy
for data visualization, clustering, etc. It has been utilized
effectively for high dimensionality and intricacy where
customary strategies may frequently be deficient. To inves-
tigate information construction and to find cluster limits
from the SOM, one usual methodology is to address the
SOM's information by representation strategies. Existing
strategies introduced various parts of the data learned by
the SOM, yet information geography, which is available in
the SOM's information, is enormously underutilized [28].

Analyzing the current pricing and fitting the appropri-
ate model that yields better performance metrics is carried
out in this work. Figure 1 illustrates the workflow of the
current analysis.

The SOM calculates the Euclidean distance for the
input pattern y to every neuron / and finds the winning
neuron, denoted neuron ¢, with prototype B,, utilizing the
nearest-neighbor rule. The winning node is known as the
excitation center. For all the input vectors closest to B,
upgrade all the prototype vectors by the Kohonen learning
rule [29]. Assuming:

B(m+ 1) = B,(m) + u(m) [y, — B,(m)] (1)

B,(m + 1) = B,(m) + u(m)i,(m)[y,,—B(m),l =1,..,L

@
where u(m) persuades the Robbins—Monro criteria and i;(m)
is the excitation response or neighbor function, which tells
neuron t when B, is the excitation center. If i;(m) takes &, (2)
minimizes the SCL. i;(m) could be considered as a function

References Proposed work

Methodology

Limitation

[12] Detected gasoline adulteration Modified distillation curves and ANN Distillation may have issues with azeo-
tropic mixtures, energy consumption,
and chemical reactions. ANNs may be
hardware-dependent and may require
multiple trials and errors

[13] Impact of COVID-19 pandemic on gaso- ~ARIMA model Forecasting extreme values may be difficult

line consumption for Turkey with ARIMA

[14] CGI in diesel engines Computational fluid dynamics Computationally intensive, multiple errors
due to simplified boundary conditions

[19] Demands for gasoline and diesel in ARDL model Possibility of Multicollinearity, lag length

Europe may be more in smaller samples
[20] Analyzed energy markets in Saudi Arabia GA, ANN, DM along with time-series Computationally expensive, time-consum-
(TS) ing
[22] Gasoline cost in China TS analysis with future trends projection  Generalization issues, identifying the cor-

rect model may be challenging

@ Springer
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that decreases with the increasing distance between B, and
B, and typically as the Gaussian function in (3):

—11B-B11%
ih(m) = ioe #2(m) 3)

from the where the constant i,> 0, f(m) is a decreasing

m
function of m with a popular choice, f(m) = ﬂoe_7, B, being
a positive constant and Y, a time constant [30].

The Gaussian function is organically more sensible than
the rectangular. The SOM utilizing the Gaussian area merges
much rapidly than utilizing the rectangular one [31]. Fig-
ure 2 shows that the number of variables considered is 13
and 10 x 10 layers used to map the input data visualization.

In the most recent couple of years, much exploration has
been coordinated at comprehension and foreseeing what is to
come. Albeit conventional measurable TS strategies perform
well, many have inalienable constraints. In the first place,
without skill, it is feasible to wrongly indicate the utilitar-
ian structure relating the autonomous and ward factors and

@ Springer

neglect to make the essential information changes. Second,
anomalies can prompt one-sided assessments of model
boundaries [32]. Moreover, TS models are regularly direct
and accordingly may not catch nonlinear conduct. Many
have contended that neural organizations can survive or, in
any event, be less dependent upon these constraints [33].
These cases will be surveyed in no time. Some conventional
measurable TS strategies have intrinsic restrictions because
of how the models are assessed. When numerous sorts of
conventional factual TS models are assessed, human asso-
ciation and assessment are required. Likewise, numerous
customary factual strategies do not adapt steadily as new
information shows up; all things considered; they should
be re-assessed intermittently. It has been guaranteed that
neural organizations can likewise overcome these issues
[34]. The TS gauges dependent on neural organizations
were contrasted and estimates from conventional measur-
able TS techniques (counting remarkable smoothing and
Box-Jenkins) and a judgment-based strategy [35]. The neu-
ral organization model improved conventional factual and
human judgment strategies when gauging quarterly and
month-to-month information. Notwithstanding, the neural
organization model and conventional models were equiva-
lent to the yearly information.

A NAR-NN can anticipate a TS from that series of past
qualities X(s — 1), X(s —2),...,X(s — ?) called feedback
delay, with ¢ being the time defer boundary. The network is
made and prepared in an open circle, utilizing the genuine
objective qualities as a reaction and ensuring more superior
quality being exceptionally near the genuine number in pre-
paring. In preparing, the network is changed over into a shut
circle, and the anticipated qualities are utilized to supply
new reaction contributions to the network. A NAR applied
to TS anticipating depict a discrete, nonlinear autoregressive
model that can be written in this structure (4):

X, =g(X

s

i Xogs s X)) 4+ Y @)

The function g(.) is obscure ahead of time. The train-
ing of the NN is pointed toward approximating the function
by methods for optimizing the network weights and neuron
bias. Along these lines, a NAR model is characterized deci-
sively by a condition of the sort (5)

. b
Xs = ﬁO + ij=1 ﬁkq’(z aasz—a+aOk)+Ys’ (5)
a=1

where b is the number of entries, j is the number of hidden
layers with activation function ¢, and a, is the parameter
corresponding to the weight of the connection among the
input layer a and the hidden layer k, f, is the weight of the
connection among the hidden layer k and the output unit, a;,
and f, are the constants that correspond, respectively, to the
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hidden layer k and the output unit [36]. Figure 3 indicates
the 13 inputs with 10 hidden layers in the NAR-NN model.

As indicated by Bayesian method [53], the values A and
B (parameters) values at the minimum point of objective
function E are settled by posterior probability and Eq. (9)
is derived:

y
A=
25, ©)

Here, Y is the effective weight of sample network param-
eter, Sy is the sum of the square of the network weight.

N-Y
B = .
25, %

Here, N is the no. of connection right.

Y =m—2A.tr(H)™! 8)

H = BV*S, + AV2Sy,. ©)

Here, H is the Hessian matrix of the objective function.
The Bayesian NN training can adjust the size of Yand make
it optimal.

Levenberg—Marquardt's (LM) calculation is a reiterative
procedure that finds the lowest function to be communi-
cated as the number of squares of nonlinear functions. It
has become a benchmark strategy for nonlinear least-squares
issues and could be considered a blend of steepest descent
and the Gauss—Newton technique. When the current arrange-
ment is far from the right one, the calculation carries on
like a steepest descent technique: moderate yet ensured to
1 meet [37].

Conjugate Gradient strategies are a class of vital tech-
niques for limiting smooth functions, mainly when the
measurement is massive [38]. They are viewed as conjugate
direction or gradient deflection strategies between steepest
descent and Newton's strategy. Their chief benefit is that they
do not need the capacity of any grids as in Newton's strategy
or as in quasi-Newton techniques, and they are intended to
unite quicker than the steepest descent technique [39].

Bayesian regularized artificial neural networks
(BRANNSs) are a powerful approach than typical back-
propagation nets and could diminish or dispense with the
requirement for extensive cross-validation.

Bayesian regularization (BR) is a numerical cycle that
changes over a nonlinear regression into an “all-around
presented” measurable issue using an edge regression. The
benefit of BRANNS is hearty, and the validation interaction,
for example, back-propagation, is pointless. These networks
answer various issues that emerge in QSAR, demonstrat-
ing, like the decision of model, the strength of the model,
decision of validation set, size of validation exertion, and
network engineering improvement. They are hard for excess
training since proof strategies give a target Bayesian rule to
halting preparation. They are also hard to overfit, because
the BRANN figures and prepares on various viable network
boundaries or weights, adequately killing those most cer-
tainly not applicable. This successful number is generally
significantly more modest than the weights in a standard
completely associated back-propagation neural net. Auto-
matic relevance determination (ARD) of the info factors
can be utilized with brands. Furthermore, this permits the
network to “gauge” the significance of each info. The ARD
technique guarantees that unessential or exceptionally asso-
ciated files utilized in the displaying are dismissed just as
showing, which are the main factors for demonstrating the
movement information [10].

3 Experimental Analysis

This section will provide details about the dataset considered
for the experiment, followed by detailed parameters consid-
ered for performance evaluation.

3.1 Dataset and Data Visualization

For experimentation, we have considered the dataset [40].
The dataset consists of 1361 weekly gasoline and diesel
prices in the U.S. in $/gallon from January 1995 to January
2021. The details of the dataset are presented in Table 3 as
follows:

In Fig. 4, neurons are represented in blue color. Neighbor
neurons are connected via a red line, and it narrates about
distances. The higher intensity illustrates that those distances
are large and lighter intensity another way.

SOM is exhibited in a hexagonal structure. The topology
is illustrated in 10X 10 grids with 100 neurons. In this SOM
visualization, a maximum of 59 input vectors is prevailing,
shown in the maximum number of hits. Figure 5 illustrates
the association between data points and neurons. A com-
monly accepted version is that data should be distributed
evenly to get better results. The data concentration is rela-
tively high on the upper right, and lower left neurons, but it
is distributed.

SOM weight panes provide the weight of the individ-
ual attributes considered in the analysis and the case of

@ Springer
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Table 3 Dataset description Criteria Details
Al Weekly US all grades all formulations retail gasoline prices (Dollars per Gallon)
A2 Weekly US all grades conventional retail gasoline prices (Dollars per Gallon)
A3 Weekly US all grades reformulated retail gasoline prices (Dollars per Gallon)
R1 Weekly US regular all formulations retail gasoline prices (Dollars per Gallon)
R2 Weekly US regular conventional retail gasoline prices (Dollars per Gallon)
R3 Weekly US regular reformulated retail gasoline prices (Dollars per Gallon)
M1 Weekly US midgrade all formulations retail gasoline prices (Dollars per Gallon)
M2 Weekly US midgrade conventional retail gasoline prices (Dollars per Gallon)
M3 Weekly US midgrade reformulated retail gasoline prices (Dollars per Gallon)
P1 Weekly US premium all formulations retail gasoline prices (Dollars per Gallon)
P2 Weekly US premium conventional retail gasoline prices (Dollars per Gallon)
P3 Weekly US premium reformulated retail gasoline prices (Dollars per Gallon)
D1 Weekly US No 2 diesel retail prices (Dollars per Gallon)

Fig.4 NN training SOM neighbor weigh distances

our work. The exact weight of 13 attributes is depicted in
Fig. 6 as the usual intensity of colors indicates the rela-
tionship between data and neurons. The pattern of figures
can infer similarities and traits. In the present work input,
1-12 are similar, indicating the petrol products have simi-
lar data used. Still, diesel's last input is exhibiting varied
values that are visible by the arrangement of cells.

4 Results and Discussion

4.1 NN—TS Analysis

Figures 7, 8, 9 represent the ACE function that gives
insight into the relationship between prediction error and
time.

@ Springer
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Fig.5 NN training SOM hits

The ideal model should have only one non-zero value
and zero lag—confidence level indicated by a dotted red
line around 1.

After comparing the plots obtained by the three differ-
ent algorithms, it is evident that BR has perfect results.
We can observe only one non-zero value at the zero lag,
and a confidence limit of 95% is visualized. The rest of
the approaches are not that perfect in comparison with the
ideal model perspective.

Figures 10, 11, 12 depict the regression graph for three
different algorithms, and it is having a perfect fit for the
dataset considered.

An ideal interpretation for the best fit is that the data
should fall along a 45° line.
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In this, it is evident that the R-value is more significant
than 0.99 in all the cases.

Figures 13, 14, 15 graphical represent the error histo-
gram is the additional aid that helps gauge the network's
performance.

Blue, green, and red colors in the bar represent the insight
about training, validation, and test data utilized.

The vertical yellow color line indicates the zero-error
stuff. In our work, LM error falls from — 0.1074 to+0.1424,
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Fig. 9 Autocorrelation of Error 1—BR

SCQG error falls from — 0.1476 to 0.1618, and similarly, BR
error falls from — 0.09854 to 0.09871. From these men-
tioned data points, it is evident that BR exhibits minimum
errors, and its performance is commendable.

4.2 Performance Evaluation

For experimentation purposes, we have considered MAT-
LAB R2020a.

Tables 4, 5, 6 provide the MSE and R-value. In the
present work, the target value taken for training is 12385,
validation and testing are 2654 for all the three methods,
namely LM, SCG, and BR. In NAR, the no. of hidden layers,
lags, and neurons are the principle hyperparameters, which
impact the accuracy of the outcomes. It is ideal to think
about all hyperparameters simultaneously; in any case, it
expands the processing time [52].

For better visibility and understanding, Tables 4, 5, 6
results have been plotted with the box and whisker approach.

MSE and R values of the various approach over the train-
ing set are illustrated in Figs. 16 and 17.
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Fig. 11 Regression—SCG

MSE and R values of the various approach over the vali-
dation set are illustrated in Figs. 18 and 19.

MSE and R values of the various approach over the test-
ing set are illustrated in Figs. 20 and 21.

LM converges slowly when the numbers of parameters
are more than 10 and, in this model, the considered param-
eters are 13. Similarly, in the case of SCG, function minimi-
zation takes n cycle, and, in that way, it becomes expensive
in nature. Experimentally, our proposed BR approach out-
performed the SCG and LM models.

Table 7 provides a comparative analysis of various exist-
ing works with our proposed work.

5 Conclusion

Many industries’ growth and future are visualized with the
help of prevailing historical data. Based on the analysis,
corrective and preventive measures need to bring the indus-
try's growth to the next level. In a few cases, like the stock
market, gold prices, fuel prices require careful intervention
for the investors and the country’s economic reliability pur-
pose. GDP of the country and price of commodities highly
plunged due to acute variation of the prices. The NAR-NN
is used for the gasoline and diesel dataset. The ACE and
error histogram illustrates that BRNN is outperforming,
thus indicating the optimal forecast approach that could be
utilized. BR outperforms well in comparison with the aver-
age back-propagation nets. In the proposed approach, LM
error falls from — 0.1074 to+0.1424, SCG error falls from
—0.1476 t0 0.1618, and similarly, BR falls from — 0.09854
to 0.09871. It is also observed in the ACE plot that only
one non-zero value at the zero lag with a confidence limit
of 95% and with minimal errors. The research results show
that BR exhibits minimum errors, and its performance is
higher than other approaches. The ACE plot can observe
only one non-zero value at the zero lag, confidence limit of
95%, and minimal errors. Strategies like lockdown for a day
in the week to protect nature could be instilled. Similarly,
it helps make various policy decisions based on economic,
political, business, and vertical. Incorporating other related
attributes on various demography like income, pollution,
etc., will provide great insight into the country's growth and
be considered the extension of the proposed work. In the
future, we will also try to work in the direction of computa-
tional complexity analysis for better results.
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