
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems            (2022) 15:6  
https://doi.org/10.1007/s44196-021-00060-7

RESEARCH ARTICLE

Self‑organizing Maps and Bayesian Regularized Neural Network 
for Analyzing Gasoline and Diesel Price Drifts

R. Sujatha1 · Jyotir Moy Chatterjee2,3   · Ishaani Priyadarshini4 · Aboul Ella Hassanien3,5 · Abd Allah A. Mousa6 · 
Safar M. Alghamdi6

Received: 29 May 2021 / Accepted: 21 December 2021 
© The Author(s) 2022

Abstract
Any nation’s growth depends on the trend of the price of fuel. The fuel price drifts have both direct and indirect impacts on 
a nation’s economy. Nation’s growth will be hampered due to the higher level of inflation prevailing in the oil industry. This 
paper proposed a method of analyzing Gasoline and Diesel Price Drifts based on Self-organizing Maps and Bayesian regu-
larized neural networks. The US gasoline and diesel price timeline dataset is used to validate the proposed approach. In the 
dataset, all grades, regular, medium, and premium with conventional, reformulated, all formulation of gasoline combinations, 
and diesel pricing per gallon weekly from 1995 to January 2021, are considered. For the data visualization purpose, we have 
used self-organizing maps and analyzed them with a neural network algorithm. The nonlinear autoregressive neural network 
is adopted because of the time series dataset. Three training algorithms are adopted to train the neural networks: Levenberg-
Marquard, scaled conjugate gradient, and Bayesian regularization. The results are hopeful and reveal the robustness of the 
proposed model. In the proposed approach, we have found Levenberg-Marquard error falls from − 0.1074 to 0.1424, scaled 
conjugate gradient error falls from − 0.1476 to 0.1618, and similarly, Bayesian regularization error falls in − 0.09854 to 
0.09871, which showed that out of the three approaches considered, the Bayesian regularization gives better results.

Keywords  Self-organizing maps (SOM) · Levenberg-Marquard (LM) · Scaled conjugate gradient (SCG) · Bayesian 
regularization (BR) · Bayesian regularized neural networks (BRNNs) · Nonlinear autoregressive neural network 
(NAR-NN)

1  Introduction

The transportation industry has come a long way from 
horses and mules in the early days to railways, airlines, 
cruises, municipal transportation companies, cargo track-
ing, and express delivery services in today’s world. This 

industry finds its uses in moving people, animals, and goods 
by land, air, or sea, and as a global necessity, generates rev-
enue worth billions of dollars. The transportation industry 
services majorly rely on the usage and pricing of gasoline 
and diesel, which are prone to fluctuations worldwide. The 
United States, being the most significant consumer, has 
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recently witnessed price drifts concerning gasoline and die-
sel. The significant factors that influence these two compo-
nents’ pricing are crude oil prices, processing and distribu-
tion costs, demand, taxation, currencies, and availability of 
local sources [1].

Moreover, the national pricing policy determines the cost 
paid by consumers. Between 2004 and 2008, the demand for 
crude oil went up, leading to increased gasoline costs. Prices 
jumped from $35 to $145 per barrel leading to an increase 
in gas costs. Gasoline prices in the United States (US) are 
also affected by fuel taxes as both federal and state taxes 
apply. Transporting crude oil to refineries and points of dis-
tribution as per demand incurs additional costs. Some other 
factors that contributed to gasoline cost could be in the form 
of extreme weather conditions, natural disasters in areas 
producing oil, legislation by many states for cleaner burn-
ing fuel, etc. [2]. US consumption of gasoline is seasonal 
because during summer, when people drive, the prices go 
up, whereas in winter, it reduces significantly [3]. However, 
over the last couple of years, the drift in gasoline and diesel 
costs has been attributed to many other reasons that were 
not seen before. As COVID-19 took the world by storm, 
economies were wrecked, and people stopped traveling [4, 
5]. The lockdown imposed further led to lesser consumption 
of gasoline and diesel [6]. The average price in most states 
became higher than it was a year ago. Moreover, the brutal 
winter weather across many states in the US impacted oil 
production, which forced refineries to close in the top crude 
producing state. Many refineries were closed down, cutting 
off nearly 20% of the country’s refining capacity.

The sudden dip in demand led to many US oil and 
gas losing revenues worth millions of dollars and tens 
of thousands of jobs. As people started leaning on credit 
cards more than usual, oil companies suffered drastically. 
Many researchers and industry experts are hopeful that 
the capacity may come back online sometime during 
2022–2023. As the lockdown impositions are taken down 
and more Americans are vaccinated, life may return to 
normal soon. It may witness people driving and flying 
more frequently, eventually increasing fuel costs, thereby 
ensuring some recovery. It may also be possible that peo-
ple replace their vehicles with much more efficient models 
due to stimulus checks; this aid may lift gas prices if con-
sumers spend it on the transportation industry [7]. Gold-
man Sachs estimates that $2 trillion in economic stimu-
lus spending is predicted over 2021 and 2022, ultimately 
leading to an increased US oil demand by an estimated 
200,000 barrels a day [8]. Late March 2020 witnessed that 
while most US was under lockdown orders, the national 
average astoundingly dropped down to $1.99 a gallon. It 
was found that many states had gas for less than $1 in 
April 2020. Based on all these statistics, we observe a fluc-
tuation in the prices over the last few years due to various 

reasons, and hence there is a need to analyze the fluctua-
tion trends. Since almost every person in the world is a 
part of the transportation industry, and the transportation 
industry influences a country's economy, it is essential to 
observe the behavior of price drifts in gasoline and diesel 
price [9].

Volatility in gasoline and diesel prices may impact 
market participants, tax revenues, international oil market 
price fluctuations, and vulnerable groups. While much past 
research has been done on price drifts concerning gasoline 
and diesel, limited studies have been done from artificial 
intelligence (AI) perspective.

Therefore, we are employing an AI-based technique for 
analyzing the drifts in gasoline and diesel prices, i.e., Bayes-
ian Regularized Neural Network (BRNN). The strength of 
BRNNs lies in the fact that they are much advanced com-
pared to traditional back-propagation nets [10]. They could 
also minimize the need for lengthy cross-validation [11]. 
The model's design, training, validation, and testing have 
been performed using accurate historical market data.

Gasoline and diesel prices indicate the growth level of 
the nation’s economy. Plenty of work was carried out using 
trends of the hefty data segregated on fuel prices using 
machine learning techniques. Considered datasets hold 13 
parameters over the period and drifts are there due to the 
pandemic in addition. The lifestyle changed a lot due to 
the unprecedented events in the recent pasts and that have 
a great role in deciding the near future. We have used the 
neural network (NN)-based concepts that helped in building 
a higher accuracy model.

The main contributions of the current work are as follows:

•	 We are analyzing the US gasoline and diesel price drifts 
which will help the investors and policy decision-makers 
to provide an overview for the market during the crisis.

•	 Our cumulative work precisely indicates that NAR-NN 
serves the best purpose in the past historical data.

•	 We have also compared three training algorithms LM, 
SCG, and BR, based on the NN concept, and BR showed 
noticeable results from others.

Even though various models prevail in machine learn-
ing to analyze and predict. The NN-based structure outper-
forms better because of the three-layered structure with the 
meticulous hidden layer structure that makes the model so 
proficient in nature. BR is robust in nature in comparison 
with regular back-propagation networks. Also, it achieves 
better correlation, and the sum of square errors is minimal.

The rest of the article is structured as follows: Sect. 2 
lists materials and methods incorporating the related works 
subsection and the proposed work's methodology. In Sect. 3, 
we have discussed the experimental analysis, including the 
dataset and the evaluation parameters in detail. Section 4 
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highlights the results in the form of observations, graphs, 
and comparative analysis. Finally, Sect. 5 concludes this 
article.

2 � Materials and Methods

This section is divided into two subsections. In the first sub-
section, we are highlighting the related research works done 
in the past, following which we have discussed our proposed 
approach.

2.1 � Related Works

Authors in [12] presented a study on detecting gasoline 
adulteration utilizing altered distillation curves and artifi-
cial neural networks (ANN). Their study was conducted to 
find the temperature and recovered volume simultaneously. 
Image processing was performed level metering, and gaso-
line and diesel were added to distillation curves for analyz-
ing the effect of additives. The ANN predicted the volume 
percentage of contaminants in super gasoline, and statistical 
analysis vouched for the model’s efficiency.

Authors in [13] studied the COVID-19 pandemic's impact 
on Turkey's gasoline consumption. A unique data set of 
daily data from 2014 to 2020 was employed for their study. 
The performance was forecasted using the Autoregressive 
integrated moving average (ARIMA) model, and evalua-
tion was performed before and after the outbreak. The best 
fit models seem to fail in the pandemic situation; hence, 
forecasting improves adding volatility. Their study asserts 
that policies targeting volatility may effectively reduce the 
adverse impacts on revenues, vulnerable groups, and market 
participants.

Authors in [14] investigated gasoline compression igni-
tion (CGI) in diesel engines utilizing computational fluid 
dynamics. A single-cylinder engine experiment was consid-
ered for validating the results. The model captured the com-
bustion performance, which was analyzed using an estima-
tion of energy breakdown and emissions. Their study further 
asserts that injection strategy and injector nozzle configu-
ration lead to a better fuel stratification profile, increasing 
the engine and emissions performance. A comparison has 
been carried out between diesel and CGI in the same oper-
ating conditions and hardware. Their study manifests that 
simultaneous optimization of engine and fuel can efficiently 
overcome the combustion performance trade-off.

Authors in [15] presented a study on the price elasticity 
of demand for diesel, gasoline, hybrid, and battery-electric 
cars. Their study aimed to retrieve direct and cross-demand 
market response functions confined to Norway and was for 
the automobile powertrains and their energy carriers. The 
carbon dioxide emissions from automobiles were found to 

be related to vehicles and energy prices. Their study was 
conducted using a discrete choice model on 1.8 million 
data points. An increase in the price of liquid fuel leads to a 
reduction in the carbon dioxide emission rate.

Authors in [16] conducted a household-level survey to 
estimate gasoline price reforms and consumption behavior 
in Saudi Arabia. A total of 1800 responses were obtained. 
Their analysis manifests that the January 2016 price hike 
may be attributed to the 20% drop in gasoline usage among 
users who utilized octane 91-type gasoline. Octane 95 con-
sumed 15% more gasoline, and the estimated demand elas-
ticity decreased with education level. It was also found that 
income levels are connected with sophisticated consumption 
in advanced price periods.

Authors in [17] studied China's gasoline price concerning 
international crude oil price and regulation. Their analysis 
was conducted to determine the fluctuations and price regu-
lation using a panel-asymmetric error correction model with 
daily panel data. The primary observation made is that the 
price response is symmetric concerning industry but asym-
metric concerning several refiners. China's gasoline cost is 
equal to fuel oil value changes; however, unevenly corre-
sponding to value guidelines, prompting mutilations in the 
oil market and cost reaction elements.

Authors in [18] performed a study on gasoline and diesel 
demand for 118 countries based on the fuel prices, economic 
growth, and demand for gasoline and diesel. The data incor-
porates 36 countries for over 39 years, i.e., 1978–2016. The 
panel addresses problems such as cross-sectional depend-
ence, nonstationary, and heterogeneity. Their study mani-
fested that Organization for Economic Co-operation and 
Development (OECD) gasoline cost elasticity is − 0.7, 
whereas the OECD diesel cost elasticity is − 0.35. For non-
OECD, diesel price elasticity is almost similar to that of 
gasoline.

Authors in [19] studied the demand for gasoline and die-
sel in Europe. The Autoregressive-Distributed Lag (ARDL) 
model has been used to measure the short-run and long-run 
costs along with income elasticities for diesel and gasoline 
demands. The data spans from 1978 to 2013 and observed 
that elasticity estimates vary across countries. The short-run 
and long-run elasticities seem significantly elastic concern-
ing their price equivalents. Therefore, if the fuel charge is 
meant to decrease emissions by the price hike, the charge 
must rise higher than income. Their study appeals for a strin-
gent fuel tax policy.

Authors in [20] recommended an AI and information-
driven approach to analyze Saudi Arabia's energy markets. 
Their model GANNATS is a combination of data mining 
(DM), genetic algorithm (GA), and ANN along with time-
series (TS) analysis, and the design, training, validation, and 
testing of this model have been done on actual historical 
market data. Experiment analysis manifested that the model 
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performs efficiently. Cross-validation determined that Saudi 
Arabia's gasoline mandate went down by 2.5% in 2017. A 
screening analysis identified the factors leading to gasoline 
demands. Their model enhanced traditional econometric 
models and also increased the efficiency of gasoline demand 
forecasting.

Authors in [21] performed a TS analysis and forthcom-
ing trends prognosis on gasoline price in China based on 
oil taxation and costing techniques. Their work explored a 
statistical relationship between crude oil costs and gasoline 
prices, supported by TS and error correction models. A 
projection of the prices for the years 2019–2050 has been 
estimated. It is seen that asymmetric responsiveness and the 
threshold effect exist within the Chinese oil pricing policy. 
There is also a lag of at least a month in the gasoline price 
adjustment. Their study asserted that gasoline prices will 
be affected by the crude oil price increase in the short run, 
and in the long run, gasoline prices would be affected by the 
crude oil price decrease.

Authors in [47] introduced a way to foresee new COVID-
19 cases by utilizing hybridized approach between machine 
learning (ML), adaptive neuro-fuzzy inference system 
(ANFIS) and upgraded beetle antennae search (BAS) swarm 
intelligence metaheuristics.

Table 1 provides a summarized analysis of some of the 
existing related works deploying computational and ML 
methods. 

Table 2 provides a related work analysis of various exist-
ing works with their research outcomes and methodologies 
used.

2.2 � The Proposed Approach

Clustering is a crucial information examination tech-
nique. It is broadly utilized for pattern recognition, feature 

extraction, etc. As an unsupervised classification strategy, 
clustering distinguishes some natural designs present in 
a set of items dependent on a similarity measure [22]. 
The self-organizing map (SOM) is an incredible strategy 
for data visualization, clustering, etc. It has been utilized 
effectively for high dimensionality and intricacy where 
customary strategies may frequently be deficient. To inves-
tigate information construction and to find cluster limits 
from the SOM, one usual methodology is to address the 
SOM's information by representation strategies. Existing 
strategies introduced various parts of the data learned by 
the SOM, yet information geography, which is available in 
the SOM's information, is enormously underutilized [28].

Analyzing the current pricing and fitting the appropri-
ate model that yields better performance metrics is carried 
out in this work. Figure 1 illustrates the workflow of the 
current analysis.

The SOM calculates the Euclidean distance for the 
input pattern y to every neuron l and finds the winning 
neuron, denoted neuron t, with prototype Bt, utilizing the 
nearest-neighbor rule. The winning node is known as the 
excitation center. For all the input vectors closest to Bt, 
upgrade all the prototype vectors by the Kohonen learning 
rule [29]. Assuming:

where µ(m) persuades the Robbins–Monro criteria and ilt(m) 
is the excitation response or neighbor function, which tells 
neuron t when Bt is the excitation center. If ilt(m) takes δlt, (2) 
minimizes the SCL. ilt(m) could be considered as a function 

(1)Bt(m + 1) = Bt(m) + �(m)
[
ym − Bt(m)

]

(2)
Bl(m + 1) = Bl(m) + �(m) ilt(m) [ym−Bt(m), l = 1, . . ., L

Table 1   Related work analysis with limitations

References Proposed work Methodology Limitation

[12] Detected gasoline adulteration Modified distillation curves and ANN Distillation may have issues with azeo-
tropic mixtures, energy consumption, 
and chemical reactions. ANNs may be 
hardware-dependent and may require 
multiple trials and errors

[13] Impact of COVID-19 pandemic on gaso-
line consumption for Turkey

ARIMA model Forecasting extreme values may be difficult 
with ARIMA

[14] CGI in diesel engines Computational fluid dynamics Computationally intensive, multiple errors 
due to simplified boundary conditions

[19] Demands for gasoline and diesel in 
Europe

ARDL model Possibility of Multicollinearity, lag length 
may be more in smaller samples

[20] Analyzed energy markets in Saudi Arabia GA, ANN, DM along with time-series 
(TS)

Computationally expensive, time-consum-
ing

[22] Gasoline cost in China TS analysis with future trends projection Generalization issues, identifying the cor-
rect model may be challenging
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that decreases with the increasing distance between Bl and 
Bn, and typically as the Gaussian function in (3):

from the where the constant i0 > 0, β(m) is a decreasing 

function of m with a popular choice, �(m) = �0e
−
m

Y  , β0 being 
a positive constant and ϒ, a time constant [30].

The Gaussian function is organically more sensible than 
the rectangular. The SOM utilizing the Gaussian area merges 
much rapidly than utilizing the rectangular one [31]. Fig-
ure 2 shows that the number of variables considered is 13 
and 10 × 10 layers used to map the input data visualization.

In the most recent couple of years, much exploration has 
been coordinated at comprehension and foreseeing what is to 
come. Albeit conventional measurable TS strategies perform 
well, many have inalienable constraints. In the first place, 
without skill, it is feasible to wrongly indicate the utilitar-
ian structure relating the autonomous and ward factors and 

(3)ilt(m) = i0e
−||Bl−Bt ||2

�2 (m)

neglect to make the essential information changes. Second, 
anomalies can prompt one-sided assessments of model 
boundaries [32]. Moreover, TS models are regularly direct 
and accordingly may not catch nonlinear conduct. Many 
have contended that neural organizations can survive or, in 
any event, be less dependent upon these constraints [33]. 
These cases will be surveyed in no time. Some conventional 
measurable TS strategies have intrinsic restrictions because 
of how the models are assessed. When numerous sorts of 
conventional factual TS models are assessed, human asso-
ciation and assessment are required. Likewise, numerous 
customary factual strategies do not adapt steadily as new 
information shows up; all things considered; they should 
be re-assessed intermittently. It has been guaranteed that 
neural organizations can likewise overcome these issues 
[34]. The TS gauges dependent on neural organizations 
were contrasted and estimates from conventional measur-
able TS techniques (counting remarkable smoothing and 
Box-Jenkins) and a judgment-based strategy [35]. The neu-
ral organization model improved conventional factual and 
human judgment strategies when gauging quarterly and 
month-to-month information. Notwithstanding, the neural 
organization model and conventional models were equiva-
lent to the yearly information.

A NAR-NN can anticipate a TS from that series of past 
qualities X(s − 1), X(s − 2),… ,X(s − t) called feedback 
delay, with t being the time defer boundary. The network is 
made and prepared in an open circle, utilizing the genuine 
objective qualities as a reaction and ensuring more superior 
quality being exceptionally near the genuine number in pre-
paring. In preparing, the network is changed over into a shut 
circle, and the anticipated qualities are utilized to supply 
new reaction contributions to the network. A NAR applied 
to TS anticipating depict a discrete, nonlinear autoregressive 
model that can be written in this structure (4):

The function g(.) is obscure ahead of time. The train-
ing of the NN is pointed toward approximating the function 
by methods for optimizing the network weights and neuron 
bias. Along these lines, a NAR model is characterized deci-
sively by a condition of the sort (5)

where b is the number of entries, j is the number of hidden 
layers with activation function � , and �ak is the parameter 
corresponding to the weight of the connection among the 
input layer a and the hidden layer k, �k is the weight of the 
connection among the hidden layer k and the output unit, �0k 
and �0 are the constants that correspond, respectively, to the 

(4)Xt = g
(
Xs−1, Xs−2,… , Xs−t

)
+ Υs.

(5)Xs = �0 +
∑j

k=1
�k�(

b∑

a=1

�akXs−a+�0k)+Υs,

Fig. 1   The proposed approach

Fig. 2   SOM-layered architecture
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hidden layer k and the output unit [36]. Figure 3 indicates 
the 13 inputs with 10 hidden layers in the NAR-NN model.

As indicated by Bayesian method [53], the values A and 
B (parameters) values at the minimum point of objective 
function E are settled by posterior probability and Eq. (9) 
is derived:

Here, Y  is the effective weight of sample network param-
eter, SW is the sum of the square of the network weight.

Here, N is the no. of connection right.

Here, H is the Hessian matrix of the objective function. 
The Bayesian NN training can adjust the size of Yand make 
it optimal.

Levenberg–Marquardt's (LM) calculation is a reiterative 
procedure that finds the lowest function to be communi-
cated as the number of squares of nonlinear functions. It 
has become a benchmark strategy for nonlinear least-squares 
issues and could be considered a blend of steepest descent 
and the Gauss–Newton technique. When the current arrange-
ment is far from the right one, the calculation carries on 
like a steepest descent technique: moderate yet ensured to 
1 meet [37].

Conjugate Gradient strategies are a class of vital tech-
niques for limiting smooth functions, mainly when the 
measurement is massive [38]. They are viewed as conjugate 
direction or gradient deflection strategies between steepest 
descent and Newton's strategy. Their chief benefit is that they 
do not need the capacity of any grids as in Newton's strategy 
or as in quasi-Newton techniques, and they are intended to 
unite quicker than the steepest descent technique [39].

Bayesian regularized artificial neural networks 
(BRANNs) are a powerful approach than typical back-
propagation nets and could diminish or dispense with the 
requirement for extensive cross-validation.

(6)A =
Y

2SW
.

(7)B =
N − Y

2SD
.

(8)Y = m − 2A.tr(H)−1

(9)H = B∇2SD + A∇2SW .

Bayesian regularization (BR) is a numerical cycle that 
changes over a nonlinear regression into an “all-around 
presented” measurable issue using an edge regression. The 
benefit of BRANNs is hearty, and the validation interaction, 
for example, back-propagation, is pointless. These networks 
answer various issues that emerge in QSAR, demonstrat-
ing, like the decision of model, the strength of the model, 
decision of validation set, size of validation exertion, and 
network engineering improvement. They are hard for excess 
training since proof strategies give a target Bayesian rule to 
halting preparation. They are also hard to overfit, because 
the BRANN figures and prepares on various viable network 
boundaries or weights, adequately killing those most cer-
tainly not applicable. This successful number is generally 
significantly more modest than the weights in a standard 
completely associated back-propagation neural net. Auto-
matic relevance determination (ARD) of the info factors 
can be utilized with brands. Furthermore, this permits the 
network to “gauge” the significance of each info. The ARD 
technique guarantees that unessential or exceptionally asso-
ciated files utilized in the displaying are dismissed just as 
showing, which are the main factors for demonstrating the 
movement information [10].

3 � Experimental Analysis

This section will provide details about the dataset considered 
for the experiment, followed by detailed parameters consid-
ered for performance evaluation.

3.1 � Dataset and Data Visualization

For experimentation, we have considered the dataset [40]. 
The dataset consists of 1361 weekly gasoline and diesel 
prices in the U.S. in $/gallon from January 1995 to January 
2021. The details of the dataset are presented in Table 3 as 
follows:

In Fig. 4, neurons are represented in blue color. Neighbor 
neurons are connected via a red line, and it narrates about 
distances. The higher intensity illustrates that those distances 
are large and lighter intensity another way.

SOM is exhibited in a hexagonal structure. The topology 
is illustrated in 10 × 10 grids with 100 neurons. In this SOM 
visualization, a maximum of 59 input vectors is prevailing, 
shown in the maximum number of hits. Figure 5 illustrates 
the association between data points and neurons. A com-
monly accepted version is that data should be distributed 
evenly to get better results. The data concentration is rela-
tively high on the upper right, and lower left neurons, but it 
is distributed.

SOM weight panes provide the weight of the individ-
ual attributes considered in the analysis and the case of 

Fig. 3   NN layered architecture
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our work. The exact weight of 13 attributes is depicted in 
Fig. 6 as the usual intensity of colors indicates the rela-
tionship between data and neurons. The pattern of figures 
can infer similarities and traits. In the present work input, 
1–12 are similar, indicating the petrol products have simi-
lar data used. Still, diesel's last input is exhibiting varied 
values that are visible by the arrangement of cells.

4 � Results and Discussion

4.1 � NN—TS Analysis

Figures 7, 8, 9 represent the ACE function that gives 
insight into the relationship between prediction error and 
time.

The ideal model should have only one non-zero value 
and zero lag—confidence level indicated by a dotted red 
line around 1.

After comparing the plots obtained by the three differ-
ent algorithms, it is evident that BR has perfect results. 
We can observe only one non-zero value at the zero lag, 
and a confidence limit of 95% is visualized. The rest of 
the approaches are not that perfect in comparison with the 
ideal model perspective.

Figures 10, 11, 12 depict the regression graph for three 
different algorithms, and it is having a perfect fit for the 
dataset considered.

An ideal interpretation for the best fit is that the data 
should fall along a 45° line.

Table 3   Dataset description Criteria Details

A1 Weekly US all grades all formulations retail gasoline prices (Dollars per Gallon)
A2 Weekly US all grades conventional retail gasoline prices (Dollars per Gallon)
A3 Weekly US all grades reformulated retail gasoline prices (Dollars per Gallon)
R1 Weekly US regular all formulations retail gasoline prices (Dollars per Gallon)
R2 Weekly US regular conventional retail gasoline prices (Dollars per Gallon)
R3 Weekly US regular reformulated retail gasoline prices (Dollars per Gallon)
M1 Weekly US midgrade all formulations retail gasoline prices (Dollars per Gallon)
M2 Weekly US midgrade conventional retail gasoline prices (Dollars per Gallon)
M3 Weekly US midgrade reformulated retail gasoline prices (Dollars per Gallon)
P1 Weekly US premium all formulations retail gasoline prices (Dollars per Gallon)
P2 Weekly US premium conventional retail gasoline prices (Dollars per Gallon)
P3 Weekly US premium reformulated retail gasoline prices (Dollars per Gallon)
D1 Weekly US No 2 diesel retail prices (Dollars per Gallon)

Fig. 4   NN training SOM neighbor weigh distances

Fig. 5   NN training SOM hits
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In this, it is evident that the R-value is more significant 
than 0.99 in all the cases.

Figures 13, 14, 15 graphical represent the error histo-
gram is the additional aid that helps gauge the network's 
performance.

Blue, green, and red colors in the bar represent the insight 
about training, validation, and test data utilized.

The vertical yellow color line indicates the zero-error 
stuff. In our work, LM error falls from − 0.1074 to + 0.1424, 

SCG error falls from − 0.1476 to 0.1618, and similarly, BR 
error falls from − 0.09854 to 0.09871. From these men-
tioned data points, it is evident that BR exhibits minimum 
errors, and its performance is commendable.

4.2 � Performance Evaluation

For experimentation purposes, we have considered MAT-
LAB R2020a.

Tables  4, 5, 6 provide the MSE and R-value. In the 
present work, the target value taken for training is 12385, 
validation and testing are 2654 for all the three methods, 
namely LM, SCG, and BR. In NAR, the no. of hidden layers, 
lags, and neurons are the principle hyperparameters, which 
impact the accuracy of the outcomes. It is ideal to think 
about all hyperparameters simultaneously; in any case, it 
expands the processing time [52].

For better visibility and understanding, Tables 4, 5, 6 
results have been plotted with the box and whisker approach.

MSE and R values of the various approach over the train-
ing set are illustrated in Figs. 16 and 17.

Fig. 6   SOM weigh planes

Fig. 7   Autocorrelation of Error 1—LM

Fig. 8   Autocorrelation of Error 1—SCG

Fig. 9   Autocorrelation of Error 1—BR
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MSE and R values of the various approach over the vali-
dation set are illustrated in Figs. 18 and 19.

MSE and R values of the various approach over the test-
ing set are illustrated in Figs. 20 and 21.

LM converges slowly when the numbers of parameters 
are more than 10 and, in this model, the considered param-
eters are 13. Similarly, in the case of SCG, function minimi-
zation takes n cycle, and, in that way, it becomes expensive 
in nature. Experimentally, our proposed BR approach out-
performed the SCG and LM models.

Table 7 provides a comparative analysis of various exist-
ing works with our proposed work.

5 � Conclusion

Many industries’ growth and future are visualized with the 
help of prevailing historical data. Based on the analysis, 
corrective and preventive measures need to bring the indus-
try's growth to the next level. In a few cases, like the stock 
market, gold prices, fuel prices require careful intervention 
for the investors and the country’s economic reliability pur-
pose. GDP of the country and price of commodities highly 
plunged due to acute variation of the prices. The NAR-NN 
is used for the gasoline and diesel dataset. The ACE and 
error histogram illustrates that BRNN is outperforming, 
thus indicating the optimal forecast approach that could be 
utilized. BR outperforms well in comparison with the aver-
age back-propagation nets. In the proposed approach, LM 
error falls from − 0.1074 to + 0.1424, SCG error falls from 
− 0.1476 to 0.1618, and similarly, BR falls from − 0.09854 
to 0.09871. It is also observed in the ACE plot that only 
one non-zero value at the zero lag with a confidence limit 
of 95% and with minimal errors. The research results show 
that BR exhibits minimum errors, and its performance is 
higher than other approaches. The ACE plot can observe 
only one non-zero value at the zero lag, confidence limit of 
95%, and minimal errors. Strategies like lockdown for a day 
in the week to protect nature could be instilled. Similarly, 
it helps make various policy decisions based on economic, 
political, business, and vertical. Incorporating other related 
attributes on various demography like income, pollution, 
etc., will provide great insight into the country's growth and 
be considered the extension of the proposed work. In the 
future, we will also try to work in the direction of computa-
tional complexity analysis for better results.

Fig. 10   Regression—LM

Fig. 11   Regression—SCG ▸



International Journal of Computational Intelligence Systems            (2022) 15:6 	

1 3

Page 11 of 16      6 

Fig. 12   Regression—BR
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Fig. 13   Error Histogram—LM

Fig. 14   Error Histogram – SCG

Fig. 15   Error Histogram—BR

Table 4   Training with different approaches

Approach/Parameter MSE R

LM 0.00104448 0.99934
SCG 0.00184333 0.998864
BR 0.00970452 0.999397

Table 5   Validation with different approaches

Approach/Parameter MSE R

LM 0.00252317 0.998444
SCG 0.00397423 0.997493
BR 0 0

Table 6   Testing with different approaches

Approach/Parameter MSE R

LM 0.00124506 0.999259
SCG 0.00202854 0.998694
BR 0.00168114 0.998948

Fig. 16   Box plot for training (MSE)

Fig. 17   Box plot for training (R)
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Fig. 18   Box plot for validation (MSE)

Fig. 19   Box plot for validation (R)
Fig. 20   Box plot for testing (MSE)

Fig. 21   Box plot for testing (R)
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