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Abstract
The vast majority of the existing social network-based group decision-making models require extra information such as 
trust/distrust, influence and so on. However, in practical decision-making process, it is difficult to get additional information 
apart from opinions of decision makers. For large-scale group decision making (LSGDM) problem in which decision makers 
articulate their preferences in the form of comparative linguistic expressions, this paper proposes a consensus model based 
on an influence network which is inferred directly from preference information. First, a modified agglomerative hierarchical 
clustering algorithm is developed to detect subgroups in LSGDM problem with flexible linguistic information. Meanwhile, a 
measure method of group consensus level is proposed and the optimal clustering level can be determined. Second, according 
to the preference information of group members, influence network is constructed by determining intra-cluster and inter-
cluster influence relationships. Third, a two-stage feedback mechanism guided by influence network is established for the 
consensus reaching process, which adopts cluster adjustment strategy and individual adjustment strategy depending on the 
different levels of group consensus. The proposed mechanism can not only effectively improve the efficiency of consensus 
reaching of LSGDM, but also take individual preference adjustment into account. Finally, the feasibility and effectiveness 
of the proposed method are verified by the case of intelligent environmental protection project location decision.

Keywords Large-scale group decision making · Social network · Consensus reaching process · Influence relationship · 
Comparative linguistic expression

Abbreviations
GDML  Group decision making
SNA  Social network analysis
LSGDM  Large-scale group decision making
CWW   Computing with words
CLE  Comparative linguistic expression
LDA  Linguistic distribution assessment
DLPR  Distribution linguistic preference relation
AHC  Agglomerative hierarchical clustering
INF  IOWA-influence induced ordered weighted 

averaging operator

1 Introduction

Due to the development of society and the increasing com-
plexity of decision-making problems, many companies and 
organizations employ multiple members in decision-mak-
ing processes, which is known as group decision-making 
(GDM). GDM aims to reconcile differences of preferences 
articulated by multiple decision makers or experts to find an 
alternative or a subset of alternatives with acceptable group 
agreement [1, 2]. In recent years, with the rapid develop-
ment of information technology, the number of participants 
allowed to take part in a decision-making activity drastically 
increases, which has led to the so-called large-scale group 
decision-making (LSGDM) to become a new type of GDM 
[3–15]. Generally, a GDM problem has been considered as 
a LSGDM problem when the number of experts engaged 
in the decision process is no fewer than 20 [16]. Compared 
with the traditional GDM problems, LSGDM problems 
bring some new challenges such as dimension reduction, 
decision information aggregation, behavior management, 
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cost management and knowledge distribution and informa-
tion increase [10].

Current studies regarding LSGDM mainly focuses on 
the following two aspects: (1) the preference clustering and 
(2) the consensus-reaching process (CRP). Clustering is 
one of the most important methods to reduce the dimension 
of participants for LSGDM problems. By utilizing cluster-
ing analysis, a large number of individuals are clustered 
into small subgroups. Many clustering methods have been 
proposed in recent years to solve LSGDM problems [5, 7, 
17–21]. For example, Palomares et al. [17] proposed a clus-
tering algorithm for LSGDM problem using fuzzy c-means 
clustering method. Based on an adapted fuzzy c-means, 
Rodríguez et al. [18] proposed a clustering approach. Wu 
et al. [5] introduced a changeable clustering method based 
on the commonly used k-means clustering method. Xu et al. 
[19] utilized the self-organizing maps to classify the large 
number of individuals into discrete subgroups. By consid-
ering experts’ preferences and concerns, Zhang et al. [20] 
proposed a novel clustering method for LSGDM problem. 
By considering opinion similarity and trust relationship 
simultaneously, Du et al. [21] developed a trust-similarity 
analysis (TSA)-based clustering method to handle the clus-
tering operation in LSGDM problems under a social network 
environment. In GDM, a group of experts initially may have 
very different opinions due to the different attitudes, moti-
vations, and perceptions of experts. Therefore, it is neces-
sary to develop a CRP to help experts achieve agreement. In 
LSGDM, CRP becomes much more necessary and compli-
cated because of the fact that opinions among a large number 
of experts tend to be easily polarized and conflicting [7]. 
CRP in LSGDM has received increasing attention recently. 
For example, Quesada et al. [22] developed a weighting 
method for CRPs of LSGDM, which used uninorm aggre-
gation operators to compute the experts’ weights by con-
sidering their behaviors. Rodríguez et al. [18] introduced 
an LSGDM consensus model, which used hesitant fuzzy 
sets to fuse subgroup’s opinions to retain as much informa-
tion as possible. Wu et al. [5] developed a consensus model 
for LSGDM with hesitant fuzzy information, in which the 
clusters were allowed to change. Xu et al. [19] proposed 
a consensus model for multi-attribute LSGDM to manage 
experts’ minority opinions and non-cooperative behaviors. 
In the past few years, some CRP models have been proposed 
to deal with LSGDM problems in linguistic environment 
[13, 63, 64].

Recently, GDM research from the perspective of social 
network has attracted the much attention [23–29]. To resolve 
LSGDM in the social network environment, a variety of 
decision-making models based on social networks have 
been proposed. For example, Liu et al. [30] developed a 
TR-CDE model for handling LSGDM problems where 
some intra-group social relationships exist among decision 

makers. Ding et al. [31] introduced a social network anal-
ysis-based conflict relationship investigation process and a 
conflict degree-based CRP for LSGDM problems. By con-
sidering the trust of social behavioral factor, Wu et al. [8] 
proposed a two-stage trust network partition algorithm to 
reduce the complexity of LGDM problems. Tian et al. [32] 
developed a social network-based decision framework for 
handling LSGDM problems with incomplete interval type-2 
fuzzy information. Ren et al. [33] developed a CRP model to 
manage minority opinions for LSGDM with social network 
analysis for micro-grid planning. Chu et al. [34] developed 
a social network community detection approach of social 
networks based on the fuzzy clustering method. Lu et al. 
[11] proposed a CRP model based on robust optimization 
to deal with the uncertain unit adjustment cost in LSGDM 
problems. Li et al. [12] proposed a framework based on 
WeChat-like interaction network to deal with manipulative 
and non-cooperative behaviors in the LSGDM problems. It 
is worth noting that the social network information in these 
LSGDM models is not derived from the experts’ preference 
information about the alternatives. In these works, informa-
tion about social network is usually assumed to be known in 
advance or determined by other methods that require addi-
tional input information. In addition to the works mentioned 
above, some new LSGDM models based on social network 
analysis have been proposed recently [32, 50, 62], which 
will be reviewed later.

To deal with LSGDM problems, we have to consider 
the inherent uncertainty and vagueness of decision infor-
mation. In many GDM problems, individual experts may 
tend to convey their opinions using linguistic information 
instead of numerical values [35]. Computing with words 
(CWW) is of necessity for managing GDM in linguistic 
information environment [36]. In literature, there are two 
classic types of CWW models: the semantic model [37, 
38] and the symbolic model [39, 40]. These linguistic 
computation models have been proved to be effective in 
dealing with linguistic decision problems, in which single 
linguistic term is used for preference expression. However, 
in many practical linguistic GDM problems, decision mak-
ers may be reluctant to use single linguistic term to convey 
their preferences due to time pressures, lack of knowl-
edge and inherent vagueness exhibited by themselves. 
Consequently, in some complex GDM problems, decision 
makers prefer to use more flexible linguistic expression 
rather than single linguistic term to articulate their prefer-
ences [41]. In the literature, Rodríguez et al. [42] adopted 
a context-free grammar-based approach to elicit com-
parative linguistic expressions (CLEs). To facilitate the 
elicitation of flexible linguistic expressions in linguistic 
GDM problems, decision makers can use CLEs which is 
close to the natural way of human thinking and reasoning. 
In the modeling of GDM problems with CLEs, CLEs are 
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often transformed into hesitant fuzzy linguistic term sets 
(HFLTSs) [42]. It should be emphasized that there is an 
assumption implied in HFLTSs that the occurring pos-
sibilities of the linguistic terms in the HFLTSs are equal. 
However, in some real decision-making situations, partici-
pants might believe that some linguistic terms are more 
likely to reflect their preference than others. To improve 
the flexibility of preference expression in this case, lin-
guistic distribution has become a popular tool in decision-
making [43–49].

Although the existing studies have made significant 
contributions to LSGDM problems, we observe that the 
following related research issues still need to be addressed, 
which motivates us to study deeply:

• In the existing consensus models for LSGDM in social 
network environment, information about social net-
work is usually handled as extra input information of 
decision analysis. Nevertheless, it is not easy to obtain 
information about the social relations among decision 
makers in practice. Another possible way is to establish 
a more objective social network by mining the prefer-
ence information of decision makers [50]. However, the 
relevant research is not sufficient.

• Although some CRP models for conventional GDM 
problems can be extended to LSGDM problems, such 
simple expansion cannot effectively solve the problem 
of consensus reaching in LSGDM. Actually, the effi-
ciency of consensus building is an important criterion 
to evaluate the performance of CRP model in LSGDM. 
Consequently, it is necessary to develop CRP models 
with higher efficiency to tackle the new challenges 
brought by LSGDM.

• As mentioned earlier, in complex GDM situations, 
decision makers may prefer to use more flexible lin-
guistic expressions rather than single linguistic term to 
convey their opinions. However, a more detailed survey 
of the literature showed that consensus modeling of 
LSGDM problem with flexible linguistic expressions 
has not been adequately considered.

Based on the above analysis, this paper aims to develop 
an influence-driven consensus model for LSGDM prob-
lems with CLEs. The main contributions of this work are 
summarized as follows:

(1) Develop a novel preference clustering method for 
LSGDM problems with CLEs. We propose a modified 
agglomerative hierarchical-clustering algorithm to detect 
subgroups in the group. Moreover, the informative out-
put results of the clustering algorithm provide a way to 
measure the group consensus level. Specifically, cluster 
consensus is determined based on internal and external 
consistency, while the group consensus level is derived 

by identifying the highest-level consensus at optimal level 
of clustering.

(2) Construct the influence network among experts by 
mining the preference information about alternatives pro-
vided by experts. We propose to build an influence network 
through determining inter-cluster and intra-cluster influence 
relationships. It should be emphasized that the influence 
relationships are determined based on the preference infor-
mation of experts. Thus, different from most social network 
group decision-making models, the proposed model does not 
require input of social relations among participants.

(3) Propose an influence-driven CRP model for LSGDM 
problems with CLEs. In the event of unacceptable group 
consensus state, we propose a two-stage feedback mecha-
nism procedure to achieve agreement. The mechanism 
adopts group adjustment strategy or individual adjustment 
strategy depending on different group consensus levels, 
which can not only effectively improve the efficiency of con-
sensus reaching but also take individual preference adjust-
ment into account.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some basic concepts and operators. Then, 
Sect. 3 presents a modified agglomerative hierarchical clus-
tering algorithm for the considered LSGDM problems. We 
put forward the method of constructing influence network 
based on preferences provided by experts in Sect. 4. Sec-
tion 5 designs the influence network-based consensus model 
for LSGDM with linguistic information. The feasibility and 
effectiveness of the proposed method are verified by the case 
of intelligent environmental protection project location deci-
sion in Sect. 6. Section 7 presents some discussions to illus-
trate the advantages and weaknesses of the proposal. Finally, 
we conclude the paper in the last section.

2  Preliminaries

This section reviews some relevant basic knowledge regard-
ing comparative linguistic expressions (CLEs), linguistic 
distribution assessments (LDAs) and some related prefer-
ence aggregation operators.

Let X =
{
x1, x2,… , xn

}
 be a set of alternatives and 

E =
{
e1,… , em

}
 be a set of m DMs or experts in a group. 

Generally speaking, when the number of DMs m ≥ 20 , the 
group can be regarded as large-scale group. In the proposed 
model, it is supposed that each DM ek(k = 1, 2,… ,m) pro-
vides her/his preferences on X using CLEs to increase the flex-
ibility in eliciting linguistic judgements. In [42], Rodríguez 
et al. proposed a context-free grammar GH =

(
VN ,VT , I,P

)
 

and extended it to produce CLEs. Moreover, CLEs can be 
transformed into HFLTSs by utilizing a transformation func-
tion EGH

 . By pairwise comparison, DM’s preferences on X 
can be expressed by a preference relation, the entries of which 
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are CLEs. For the convenience of modeling, preference rela-
tions with CLEs are transformed into distribution linguistic 
preference relations in the model. Let Dk represent the trans-
formed distribution linguistic preference relation of DM 
ek(k = 1, 2,… ,m) in the following. To reduce information 
loss, LDA is also used to represent the aggregation results of 
linguistic preference information of large-scale group mem-
bers. In the following, the concept of LDA proposed by Zhang 
et al. is introduced.

Definition 1 (Linguistic distribution assessment, LDA) [43]. 
Let S =

{
s0, s1,… , sg

}
 be a predefined linguistic term set. 

Supposed that d =
{(

sk, �k
)
, k = 0, 1,… , g

}
 satisfies sk ∈ S , 

�k ≥ 0,
g∑

k=0

�k = 1 , where �k denotes the symbolic proportion 

associated with the linguistic term sk . Then d is called lin-
guistic distribution assessment on the linguistic term set S.

L e t  d1 =
{(

sk, �
1
k

)
, k = 0, 1,… , g

}
 a n d 

d2 =
{(

sk, �
2
k

)
, k = 0, 1,… , g

}
 be two given LDAs on lin-

guistic term set S. The distance measure between d1 and d2 is 
defined as [51]:

Further, the similarity measure between d1 and d2 can be 
expressed as:

Note that the distance measure and the similarity measure 
satisfy 0 ≤ dis

(
d1, d2

)
≤ 1 and 0 ≤ sim

(
d1, d2

)
≤ 1.

Definition 2 (Distribution linguistic preference relation, 
DLPR) [43] Given a linguistic term set S =

{
s0, s1,… , sg

}
 

and an set of alternative X =
{
x1,… , xn

}
 , a DLPR on 

X  is defined as D ⊂ X × X, D =
(
dij
)
n×n

 , where LDA 
dij =

{(
sk, �k,ij

)
, k = 0, 1,… , g

}
 indicates the preference 

degrees of the alternative xi over xj.

According to Eq.  (1), the distance between DLPRs 
Dh =

(
dh
ij

)

n×n
 and Dk =

(
dk
ij

)

n×n
 of DMs eh and ek is defined 

as:

Accordingly, the similarity of the DLPRs Dh and Dk is com-
puted as:

(1)dis
(
d1, d2

)
=

1

g

g∑

k=0

||||||

k∑

r=0

�1
r
−

k∑

r=0

�2
r

||||||
.

(2)sim
(
d1, d2

)
= 1 − dis

(
d1, d2

)
.

(3)dis
(
Dh,Dk

)
=

2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

dis
(
dh
ij
, dk

ij

)
.

(4)simhk = 1 − dis
(
Dh,Dk

)
.

Obviously,0 ≤ dis
(
Dh,Dk

)
≤ 1, 0 ≤ sim

(
Dh,Dk

)
≤ 1.

For the sake of logic self-consistency, the weighted aver-
aging operator of distribution assessments (DAWA) and the 
induced ordered weighted averaging operator (IOWA) are 
detailed.

Definition 3 (DAWAOperator ) [43] Let S =
{
s0, s1,… , sg

}
 

be a linguistic term set, and d =
{
d1, d2,… , dq

}
 be a 

set of distribution linguistic assessments on S, where 
di =

{(
sk, �

i
k

)
, k = 0, 1,… , g

}
 .  Le t  w =

{
w1,… ,wq

}T 
be an associated weighting vector that satisfies 
wi > 0 and

∑q

i=1
wi = 1 . The weighted averaging operator 

of distribution linguistic assessments is computed as:

Definition 4 (IOWAOperator ) [52] An IOWA operator of 
dimension q is a function �W ∶ (ℝ ×ℝ)n → ℝ , to which 
a set of weights is associated, W =

(
w1,… ,wq

)
 , with 

wi ∈ [0, 1],
∑q

i=1
wi = 1 and it is defined to aggregate a list 

of q two-tuples 
�
⟨u1, p1⟩,… ,

�
uq, pq

��
 according to the fol-

lowing expression:

where {�(1),… , �(q)} is a permutation of {1,… , q} such 
that u�(i) ≥ u�(i+1),∀i = 1,… , q − 1.

3  Clustering Process and Consensus 
Measure

One of the main challenges in LSGDM problems is to han-
dle the opinion of a large number of participants simulta-
neously. To deal with this problem, clustering technique is 
often used to classify the initial group of participants into 
smaller and more manageable subgroups or clusters. In the 
proposed model, the traditional agglomerative hierarchical 
clustering (AHC) algorithm is adapted to solve experts clus-
tering in LSGDM problems with preferences represented 
by DLPRs. An important benefit of adopting AHC-based 
clustering process is that its informative output provides an 
effective way to measure the group consensus level in the 
considered problem. Specifically, the group consensus level 
is defined as the highest cluster consensus index at optimal 
clustering level.

As a well-established clustering technique, AHC algo-
rithm does not need to predetermine the initial partitions. 
In addition, AHC algorithm can output very informative 

(5)

DAWA
(
d1,… , dq

)
=

{(
sk,

q∑

i=1

wi�
i
k

)
, k = 0,… , g

}
.

(6)�W
��

⟨u1, p1⟩,… ,
�
uq, pq

���
=

q�

i=1

wi.p�(i),
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descriptions for the potential data clustering structure [53]. 
Because of the above advantages, AHC algorithm is also 
applied to analyze GDM problems [54, 55]. For example, 
Chen et al. [55] introduced a novel aggregation method for 
HFLTS possibility distributions to achieve representative 
outcomes in terms of the summarization of central tendency 
guided by the idea of AHC. In their work, AHC algorithm 
is adapted to develop possibilistic 2-tuple linguistic pair 
(P2TLP) clustering framework. Considering that the experts’ 
preferences are represented by DLPRs in the considered 
LSGDM problems, we have to modify the AHC model to 
make it appropriate to the considered LSGDM problems. 
The modification of AHC clustering algorithm only needs 
to adjust the distance measure in the algorithm. In detail, the 
proposed model uses the distance measure between LDAs to 
calculate the distance between DLPRs, and then develops a 
clustering procedure using the basic idea of the traditional 
AHC method. The AHC algorithm based on the distance 
measure between DLPRs is described in Algorithm1.

The hierarchical clustering sequence output by Algo-
rithm 1 can be displayed by a graphic known as dendro-
gram. Based on the dendrogram, a particular partition of 
the experts is determined by cutting it horizontally at a 
particular level. Setting a cutting level is equivalent to 
choosing the number of clusters. Consequently, the pro-
posed AHC algorithm for LSGDM with DLPRs provides 
flexibility in determining the number of clusters, which is 
controlled by the horizontal cutting level.

Another important issue related to choosing the number 
of clusters is the group consensus measure. In our context, 
we observe that partitions of experts at different cutting 
level result in different group consensus level. Considering 
that the purpose of CRP is to achieve a satisfactory group 
consensus level, it seems reasonable to choose the clus-
tering cutting level that maximizes consensus level of the 
group [54]. In the follows, we discuss how to measure con-
sensus based on AHC algorithm for LSGDM with DLPRs.

Let L = {�|2, 3,… ,m − 1} be the set of the clustering 
level α of the hierarchical-clustering output by Algo-
rithm  1. Let Cl =

{
Clk|k = 1, 2,… l

}
 denote the set of 

clusters at cutting level �l . To measure the group consen-
sus, the cluster internal cohesion index �int and the cluster 
external cohesion index �ext are introduced. The cluster 
internal cohesion �int is an index to measure the similarity 
degree within cluster. The �int of the cluster Clk , �int

(
Clk

)
 , 

is computed as:

The cluster external cohesion �ext is an index that meas-
ures the degree of agreement between one cluster and all 
other different clusters. The �ext of the cluster Clk , �ext

(
Clk

)
 , 

is computed as:

Based on the cluster internal cohesion index �int and the 
cluster external cohesion index �ext , we introduce consen-
sus contribution degree to measure the contribution of a 
cluster to the large-scale group consensus. The consensus 
contribution degree of the cluster Clk , �cc

(
Clk

)
, is com-

puted as:

At the level of � = l , the group consensus level GCL(l) 
of the large-scale group is computed as:

Consequently, the optimal � level can be determined as

It can be seen that the optimal � level of clustering is 
the � level that maximizes the group consensus level, and 
the clustering result corresponding to the optimal � level 

(7)�int
�
Clk

�
=

∑
i∈Clk

∑
j∈Clk

simij

�
#Clk

�2 ,

(8)�ext
�
Clk

�
=

∑
i∈Clk

∑
j∉Clk

simij

#Clk

�
m − #Clk

� .

(9)�cc
(
Clk

)
=

#Clk ⋅ �int
(
Clk

)

m
+

(
m − #Clk

)
⋅ �ext

(
Clk

)

m
.

(10)GCL(l) =
1

l

l∑

k=1

�cc
(
Clk

)
.

(11)r = argmaxl(GCL(l)).



 International Journal of Computational Intelligence Systems            (2022) 15:3 

1 3

    3  Page 6 of 17

is the optimal clustering. Obviously, the optimal � level 
and the optimal clustering result are dynamic in the CRP.

4  Constructing the Influence Network

As already  stated, in the existing models for GDM in 
social network environment, information about social 
network is usually regarded as extra input information of 
decision analysis. However, it is hard to get information 
about the social relationships apart from the participants’ 
opinion in practice. Ureña et al. [50] provided another pos-
sible way to obtain social network relationship in social 
network GDM. In the work, they developed a mechanism 
to infer the participant relationships directly from their 
opinions, and developed a social network. Motivated by 
this idea, for LSGDM problem with CLEs, this paper pro-
poses to construct influence network based on preference 
information provided by experts. Specifically, we first 
measure the influence of experts and clusters using the 
preference information, and then construct the influence-
based network.

4.1  Influence Measure of Experts

To measure the influence of single expert in GDM, indi-
vidual consistency and preference similarity are important 
factors to be considered [50]. For LSGDM problems where 
expert’s opinions are represented by DLPR, we argue that 
certainty of judgment information in DLPR is also an 
important factor to measure the influence of expert due 
to the fact that DLPR is a kind of preference information 
with high uncertainty. As a matter of fact, preference infor-
mation in the form of LDA implies the degree of experts' 
confidence in pairwise comparison. Consequently, it is 
believed that individual consistency, preference similar-
ity and certainty of judgment information have positive 
correlation with the influence of experts, which guides us 
to measure the influence of single expert using preference 
information provided by him/her. Keeping this in mind, 
we develop a consistency-similarity-certainty based influ-
ence measure method for experts. Next, we discuss how to 
quantify the above-mentioned factors and how to aggregate 
related indices to measure the influence of single expert.

(1) Measure consistency of DLPRs. Let Dh be the DLPR 
of the expert eh and ACIh be the consistency index of Dh . 
Tang et al. [56] defined the consistency of DLPRs and 
developed a consistency index for DLPRs. The proposed 
model adopts this consistency index for DLPRs. For DLPR 
Dh =

(
dh
ij

)

n×n
 , ACIh is computed as

where NS
(
dh
ij

)
 is the numerical index of dh

ij
 [57], and 

P =
(
pij
)
n×n

 is an additively consistent matrix constructed 
based on P =

(
NS

(
dh
ij

))

n×n
 . Notice that 0 ≤ ACIh ≤ 1.

(2) Measure preference similarity. For the expert eh , 
preference similarity refers to the preference similar-
ity between the expert eh and all the other experts in the 
group. In Sect. 2, we have given a method to calculate the 
similarity between DLPRs. Therefore, the average value 
of preference similarity between the expert eh and other 
experts can be used as an index to measure preference 
similarity. For eh ∈ E , preference similarity can be cal-
culated as

Obviously, 0 ≤ simh ≤ 1 . As an impact factor of influence, 
the higher preference similarity means the greater influence of 
the expert in the group.

(3) Measure certainty of judgment. Certainty of judgment 
refers to the accuracy of the expert's judgment. In the LSGDM 
problems discussed in this paper, the preferences of experts 
about alternatives are expressed by DLPRs, in which the ele-
ments are LDAs. As a kind of fuzzy expression defined on the 
linguistic term set, LDA has the characteristics of inherent 
uncertainty. It can be roughly understood that the smaller the 
number of linguistic terms with positive symbolic proportion, 
the higher the certainty of the judgment. For DLPR 
Dh =

(
dh
ij

)

n×n
 , let A

(
dh
ij

)
 denote the number of linguistic 

terms with positive symbolic proportion in dh
ij
 . For the conveni-

ence of calculation, we use the standard 0–1 transformation to 
convert it into a value on the interval [0,1]:

For eh ∈ E , certainty of judgment can be calculated as:

Suppose that wE
1
,wE

2
,wE

3
 are the weights of individual 

consistency, preference similarity and certainty of judgment, 
respectively. Using weighted averaging method, the influence 
of the expert eh ∈ E , denoted by INFh , can be aggregated as:

(12)ACIh = 1 −
2

n(n − 1)

∑

1≤i≤j≤n

||||
NS

(
dh
ij

)
− pij

||||
,

(13)simh =
1

m − 1

m∑

k=1,k≠h

simhk

CJ
(
dh
ij

)
=

maxij

{
A
(
dh
ij

)}
− A

(
dh
ij

)

maxij

{
A
(
dh
ij

)}
−minij

{
A
(
dh
ij

)} .

(14)CJh =
2

n(n − 1)

n−1∑

i=1

n∑

j=i+1

CJ
(
dh
ij

)
.

(15)INFh = wE
1
ACIh + wE

2
simh + wE

3
CJh.
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4.2  Influence measure of clusters

To construct influence network by utilizing preferences of 
participants, not only the influence of single expert but also 
the influence of each cluster as a whole is measured in the 
proposed model. Similar to influence measure of single expert, 
preference similarity and certainty of judgment are used as 
two important indexes to measure the influence a cluster. 
Since a cluster consists of experts with different opinions, we 
have reason to believe that the higher the consensus level of 
experts in the cluster, the greater the influence of the cluster. 
Consequently, the consensus level of a cluster is used as the 
third index to measure the influence of cluster. Based on the 
above analysis, we develop a consensus-similarity-certainty 
based influence measure method for cluster. Let � = l be the 
optimal clustering level and C

l
=
{
C
lk
|k = 1, 2,… , l

}
 be the 

set of clusters at optimal level l . Remember that we have pro-
posed the concept of the cluster internal cohesion �int , which 
is an index to measure the similarity degree within cluster. 
The cluster internal cohesion �int is also an appropriate index 
to measure the agreement level among experts in a cluster. Let 
CL

(
Clk

)
 represent the cluster consensus level of the cluster 

Clk ∈ Cl , then it is defined as:

Preference similarity of a cluster is to measure the degree of 
similarity between the cluster and all other clusters in opinions. 
Similarly, the cluster external cohesion index �ext can be used 
to measure the preference similarity of a cluster. The prefer-
ence similarity of cluster Clk ∈ Cl , sim(Clk) is expressed as:

Certainty of judgment of a cluster is defined as the average 
level of the accuracy of the DLPRs provided by the experts 
in the cluster. Certainty of judgment of a cluster Clk ∈ Cl , 
CJ

(
Clk

)
 , is expressed as

Suppose that wC
1
,wC

2
,wC

3
  are the weights of consensus 

level, preference similarity and certainty of judgment, respec-
tively. Using weighted averaging method, the influence of 
cluster Clk ∈ Cl , INF(Clk) , can be computed as:

4.3  Network construction

On the basis Of the influence measurement, this subsection 
proposes to construct the influence network which consists 
of intra-cluster and inter-cluster influence relationships.

(16)CL
(
Clk

)
= �int(Clk).

(17)sim(Clk) = �ext(Clk).

(18)CJ
(
Clk

)
=

1

#Clk

∑

eh∈Clk

CJh.

(19)INF
(
Clk

)
= wC

1
CL

(
Clk

)
+ wC

2
sim

(
Clk

)
+ wC

3
CJ

(
Clk

)
.

From Eqs. (15) and (19), we can see that the influ-
ence is denoted as INFh for eh ∈ E and the influence is 
denoted as INF

(
Clk

)
for Clk ∈ Cl . According to influence 

of experts and clusters, the proposed approach classi-
fies the experts and clusters into different profiles. Given 
a set of experts E =

{
e1,… , em

}
 and a set of clusters 

C
l
=
{
C
lk
|k = 1, 2,… , l

}
 at level l and given a minimum 

influence threshold INFmin ∈ [0, 1] and a maximum influ-
ence threshold INFmax ∈ [0, 1] , where INFmin < INFmax , the 
experts (clusters) are classified into the following levels:

(1) High-influence experts (clusters)
An expert eh ∈ E is called a high-influence expert when 

he/she satisfies INFh > INFmax.
A cluster Clk ∈ Cl is called a high-influence cluster when 

it satisfies INF(Clk) > INFmax.
(2) Medium- influence experts (clusters)
An expert eh ∈ E is called a medium-influenced expert 

when he/she satisfies INFmin < INFh ≤ INFmax.
A cluster Clk ∈ Cl is called a medium-influenced cluster 

when it satisfies INFmin < INF(Clk) ≤ INFmax.
(3) Low-influence experts (clusters)
An expert eh ∈ E is called a low-influence expert when 

he/she satisfies INFh ≤ INFmin.
A cluster Clk ∈ Cl is called a low-influence cluster when 

it satisfies INF(Clk) ≤ INFmin.
As mentioned earlier, our proposal aims to model con-

sensus reaching problem based on influence network 
which is inferred from experts’ opinions. In the proposed 
model, the feedback mechanism is guided by intra-cluster 
and inter-cluster influence relationships. To construct the 
influence network, we consider the influence relationship 
between experts in the same cluster and the influence rela-
tionship between clusters. It is assumed that an expert only 
receives recommendations from the experts with the same 
or higher level of influence. Additionally, the experts with 
low-influence never provide recommendations. For the 
experts with the same level of influence, the direction of 
the influence relationship depends on the individual consist-
ency of the provided DLPR. More specifically, the expert 
with higher consistency provides recommendation, while 
the expert with lower consistency receives recommendation. 
Similarly, the influence relationship between clusters can 
be constructed. It is worth noting that the direction of the 
relationship between clusters with the same level of influ-
ence depends on the cluster consensus level. Let IJ represent 
the all the pairs of experts with influence relationship, i.e., 
IJ = {(i, j)|ei has influence on ej}.

Sallaberry et al. stated in [58] that people in social net-
works are more likely to interact and communicate with 
people with similar opinions. Following this basic idea, 
this paper develops a similarity-based influence network to 
spread experts’ preferences with the purpose of reaching 
a consensus solution. In essence, a network is a directed 
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graph G = (N,R) where N  is a set of nodes and R is a set 
of directed edges that connect nodes. In the proposed sim-
ilarity-based influence network, there are m nodes, each of 
them corresponds to an expert in the LSGDM. And the set 
of directed edges R is characterized by an adjacency matrix.

Let M =
(
mij

)
m×m

 be the adjacency matrix, where mij 
represents the influence of expert ei on ej . According to the 
above-mentioned influence relationships and the similarity 
simij between experts ei and ej , mij can be defined as

where �sim is the similarity threshold.
Equation (20) ensures that experts with too low similarity 

are not connected.
Similarly, we can determine the adjacency matrix 

MC =
(
mC

ij

)

l×l
 between clusters.

5  Consensus Model Guided by Influence 
Relationship

5.1  Two‑Stage Feedback Mechanism Based 
on Influence Network

This subsection focuses on the feedback mechanism to build 
the CRP model for LSGDM problems. Generally speaking, 
the CRP is a dynamic process that adjusts the preferences 
of group members to achieve collective agreement. In the 
proposed model, the influence relationship is considered as 
the guiding relationship for generating preference recom-
mendations. To improve the efficiency of consensus reach-
ing in LSGDM, we introduce a two-stage consensus model 
based on influence network. When the group consensus 
level is significantly lower than the satisfactory consensus 
level (the first stage), the feedback mechanism adopts clus-
ter adjustment strategy which means that all experts in the 
cluster with the lowest consensus contribution degree need 
to adjust preferences synchronously. Otherwise, when the 
group consensus level is higher but has not reached the sat-
isfactory consensus level (the second stage), the mechanism 
adopts individual adjustment strategy which means only the 
expert with the most deviated opinion from the group needs 
to modify his/her opinion.

If the preference of an expert or cluster in the influence network 
needs to be adjusted, preference recommendation should be gen-
erated based on the preference of the related experts or clusters. 
In our model, a recommendation for an expert or cluster is the 
aggregated preferences of the nodes connected to him/her fused by 
means of an influence induced ordered weighted averaging opera-
tor (INF-IOWA), which allocates more importance to those nodes 

(20)m
ij
=

{
sim

ij
sim

ij
≥ �sim ∧ (i, j) ∈ IJ;

0 Otherwise.
,

that presents higher influence. To generate preference recommenda-
tion, we introduce the following influence-based IOWA operator.

Definition 5 (INF − IOWAOperator ). Let Eq =
{
e1,… , eq

}
 

be a set of experts. These experts provide their prefer-
ences about a set of alternatives, X =

{
x1, x2,… , xn

}
 , 

using distribution linguistic preference relations (DLPRs), 
D =

{
D1,… ,Dq

}
 . An influence-based IOWA operator 

(INF-IOWA) of dimension q , ∅INF
W

 , is an IOWA operator 
whose set of order inducing values is the set of influence 
values, 

{
INF1,… , INFq

}
 , associated with the set of experts.

Let D represent the aggregated DLPR. Therefore, D can 
be denoted as:

More specifically, denote Dh =
(
dh
ij

)

n×n
(h = 1,… , q) , 

where  dh
ij
=
{(

sk, �
ij,h

k

)
, k = 0, 1,… , g

}
 and  denote 

D =
(
dij
)
n×n

 , where dij =
{(

sk, �
ij

k

)
, k = 0, 1,… , g

}
 . Then, 

dij is computed as follows:

where {�(1), �(2),… , �(q)} i s  a  permutat ion of 
{1, 2,… , q} such that INF�(h−1) ≥ INF�(h) , w�(h−1) ≥ w�(h) 
( ∀h = 1, 2,… , q ) with 

∑q

h=1
wh = 1 . Based on the influ-

ence of experts and the linguistic quantifier, we can allocate 
different importance weights to different experts, which is 
computed in the following way:

where Q is a Basic Unit-interval Monotone function [52]: 
[0, 1] → [0, 1] such that Q(0) = 0 , Q(1) = 1 and if x > y then 
Q(x) ≥ Q(y).

Let GCL represent the group consensus level in CRP. 
Given a consensus threshold GCL and a satisfactory con-
sensus level GCL , where GCL(GCL < GCL) is the critical 
value for the stage division.

(1) The first stage ( GCL < GCL ): cluster adjustment
To begin with, we must identify the cluster that need 

to adjust preference at each iteration. Since the purpose 
of CRP is to improve the group consensus level, it is 
reasonable to choose the cluster with the lowest contri-
bution to GCL to adjust preference. Denote the cluster 
with the lowest contribution to GCL as Clk0

 at current 
iteration. The cluster Clk0

 can be determined by the fol-
lowing equation:

(21)D = �INF
W

({⟨
INF1,D

1
⟩
,… ,

⟨
INFq,D

q
⟩})

(22)dij =

{(
sk,

q∑

i=1

wh�
ij,�(h)

k

)
, k = 0,… , g

}
,

(23)wh = Q

�∑h

k=1
INF�(k)∑q

k=1
INFk

�
− Q

�∑h−1

k=1
INF�(k)∑q

k=1
INFk

�
,
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Then, the clusters that have influence on the cluster 
Clk0

 should also be determined according to the influence 
network. Let CSk0 be the set of clusters connected to the 
cluster Clk0

 . The set CSk0 can be determined as:

For  convenience, let I
(
k0
)
⊆ {1, 2,… , l} be the sub-

script set of h satisfying mC
hk0

≠ 0(h = 1,… , l) . Then, we 
can denote CSk0 as CSk0 =

{
Clh|h ∈ I

(
k0
)}

.
It is believed that, when preference adjustment is needed, 

an expert is willing to refer to the opinions of experts who 
have influence on him/her. Consequently, the preference of 
the clusters in CSk0 is important reference to generate recom-
mendation for the cluster Clk0

 . Specifically, recommendation 
can be obtained by aggregating the preference of the clusters 
in CSk0 . Further, for cluster Clh ∈ CSk0 , the preference of Clh 
can be obtained by aggregating the preference of the experts 
in Clh . Preference fusion is conducted using the INF-IOWA 
operator, which is described as follows.

For Clh

(
h ∈ I

(
k0
))

 , denote Clh =
{
elh,1,… , elh,mlh

}
 , 

where mlh represent the number of experts in Clh . Let 
Dlh,i and INFlh,i be the DLPRs and the influence of the 
expert elh,i

(
i = 1,… ,mlh

)
 respectively. Let Dcluster

lh
 rep-

resent the cluster preference of Clh

(
h ∈ I

(
k0
))

 . Then, 
Dcluster

lh

(
h ∈ I

(
k0
))

 is computed as:

Then, the recommendation for the cluster Clk0
 , denoted as 

Dref ,k0 , is computed as:

As mentioned earlier, the cluster adjustment strategy 
means that all experts in the cluster Clk0

 need to adjust pref-
erences synchronously. ∀ei ∈ Clk0

 , the adjusted preference 
D

i is calculated as follows:

where the scalar � is the adjustment parameter. For each 
expert in the cluster Clk0

 , a new DLPR is obtained as the 
weighted sum of the current DLPR and the recommendation 
at each iteration.

(2) The second stage ( GCL ≤ GCL < GCL ): individual 
adjustment

When GCL is higher than GCL but lower than GCL , the 
feedback mechanism adopts individual adjustment strategy. 
In this situation, the expert who need to adjust preference is 
the expert with low consensus contribution. Here, we iden-
tify the expert by searching in the cluster with the lowest 

(24)�cc
(
Clk0

)
= min

k=1,…,l

{
�cc

(
Clk

)}
.

(25)CSk0 =
{
Clh|mC

hk0
≠ 0, h = 1,… , l

}
.

(26)Dcluster
lh

= �INF
W

({⟨
INFlh,i,D

lh,i
⟩
|i = 1,… ,mlh

})
.

(27)Dref,k0 = �INF
W

({⟨
INF

(
Clh

)
,Dcluster

lh

⟩
|h ∈ I

(
k0
)})

.

(28)D
i
= �Di + (1 − �) ⋅ Dref ,k0 ,

consensus contribution degree, i.e., Clk0
 . For ei ∈ Clk0

 , the 
consensus degree of the expert ei , denoted by CDi, can be 
computed as:

Based on the consensus degree defined by Eq. (29), the 
expert with the lowest consensus contribution, denoted by 
ei0 , can be determined by

Next, the experts that have influence on the expert ei0 
should also be determined according to the influence net-
work. Let ESi0 be the set of experts in the cluster Clk0

 that 
have influence on the expert ei0 . The set ESi0 is determined 
as

For convenience, let I
(
i0
)
 be the subscript set of i satis-

fying ei ∈ Clk0
∧
(
mii0

≠ 0
)
 . Then, the set ESi0 can be also 

denoted as ESi0 =
{
ei|i ∈ I

(
i0
)}

 . Using the INF-IOWA 
operator, we can obtain the preference recommendation 
for the expert ei0 as:

where INFh and Dh represent the influence and the DLPR of 
the expert eh

(
h ∈ I

(
i0
))

 respectively.
For the expert ei0 , the adjusted preference D

i0 is calcu-
lated as follows:

where Di0 is the DLPR of the expert ei0 before adjustment 
and �i0 is the adjustment parameter.

In the first stage of preference adjustment, the initial 
consensus level of the large group is relatively low. Con-
sequently, adopting the cluster adjustment strategy is con-
ducive to improve the efficiency of consensus reaching. In 
the second stage, the group consensus level has reached 
a high level (but not a satisfactory level). However, there 
may be some experts whose opinions are far away from 
opinions of the group. In this situation, the individual 
adjustment strategy can conduct personalized preference 
adjustment. In Eqs. (28) and (33), the adjustment param-
eter �

(
�i0

)
 indicate the extent to which an expert retains 

the current opinion. Generally, a larger �
(
�i0

)
 means more 

preference protection, and a smaller �
(
�i0

)
 is conducive to 

accelerating the consensus reaching. Thus, there is often a 
tradeoff between accelerating the consensus reaching and 
preserving the initial preference of the experts.

(29)CDi =

∑
ej∈Clk0

simij

m − 1
+

∑
ej∉Clk0

simij

m − 1
.

(30)CDi0
= min

ei∈Clk0

{
CDi

}
.

(31)ESi0 =
{
ei
||ei ∈ Clk0

∧
(
mii0

≠ 0
)}

.

(32)Dref,i0 = �INF
W

({⟨
INFh,D

h
⟩
|h ∈ I

(
i0
)})

,

(33)D
i0
= �i0D

i0 +
(
1 − �i0

)
⋅ Dref ,i0 ,



 International Journal of Computational Intelligence Systems            (2022) 15:3 

1 3

    3  Page 10 of 17

5.2  Selection process

If the group consensus level meets the condition of 
GCL ≥ GCL , it is considered that group consensus has 
been reached among experts. In this situation, a high-
quality (i.e., low-disagreement) large group decision 
can be made using selection process. To obtain the best 
alternative, we propose to use the INF-IOWA operator to 
calculate the overall evaluation of the alternatives. In the 
following, let C

l
=
{
C
lk
|k = 1, 2,… , l

}
 denote the set of 

clusters at optimal cutting level �l when the group consen-
sus reaches the satisfactory level. We describe the general 
process for alternative selection in the following steps.

Step 1: Aggregating experts’ evaluations into cluster’s 
evaluation.

For the cluster Clk ∈ Cl , we aggregate the assessment 
information of experts on alternatives into a cluster’s 
assessment using the INF-IOWA operator. Let Dcluster

lk
 

represent the cluster preference of C
lk(k = 1, 2,… , l) . 

Without loss of generality, denote Clk =
{
elk,1,… , elk,mlk

}
 , 

where mlk represent the number of experts in Clk . Then, 
D

cluster

lk
(k = 1, 2,… , l) is computed as:

where INFlk,i and Dlk,i are the influence and DLPR of 
the expert elk,i in Clk.

Step 2: Aggregating clusters’ evaluations into the large 
group’s evaluation.

Based on the clusters’ preferences Dcluster
l1

,… ,Dcluster
ll

 , 
we can obtain the large group’s evaluation DLG using the 
INF-IOWA operator.

Step 3: Ranking alternatives
Based on the aggregated preference relation 

DLG =
(
dLG
ij

)

n×n
 , the weighted average operator of LDAs 

in Eq.
(5) is used as the alternative’s evaluation operator, 

where wi =
1

n
 , let v =

(
v1, v2,… , vn

)T is the overall evalu-
ation value of each corresponding alternative in the set 
X , then the overall evaluation of the alternative xi can be 
calculated as follows:

Let vopt = max
(
v1, v2,… , vn

)
 and therefore, the alterna-

tive xopt corresponding to vopt is the best alternative in the 
set X.

The framework of the proposed approach is presented 
in Fig. 1

(34)Dcluster
lk

= �INF
W

({⟨
INFlk,i,D

lk,i
⟩
|i = 1,… ,mlk

})
,

(35)DLG = �INF
W

({⟨
INF

(
Clk

)
,Dcluster

lk

⟩
|k = 1,… , l

})
.

(36)vi = NS(DAWA ) = NS
(
DAWA

(
dG
i1
,… , dG

in

))
.

6  Case Analysis

Ecological civilization construction has become an essen-
tial strategy for resolving China’s severe resource and 
environmental issues. In recent years, the Chinese gov-
ernment has attached great importance to environmental 
protection and pollution prevention and control, and has 
repeatedly put forward the requirement of actively explor-
ing new patterns of environmental management. With 
the rapid development of new generation of information 
technology, smart environmental protection construction 
has become an important means to promote environmen-
tal management innovation and improve environmental 
management performance. In this section, the feasibility 
and effectiveness of the proposed model are verified by 
analyzing the location decision-making problem of smart 
environmental protection project in a city in China.

As a pilot city of smart environmental protection pro-
ject, a city in Central China decided to promote the con-
struction of a smart environmental protection project in the 
urban area. Location decision-making problem is a key issue 
in the construction of the smart environmental protection 
project, which has attracted extensive public attention. On 
the basis of comprehensive consideration of construction 
requirements, supporting facilities, environmental impact 
and other factors, the management department of the pro-
ject selected four locations in the city as alternatives for the 
construction site of smart environmental protection project. 
To improve the scientificalness, transparency and social 
consensus of the site selection decision of smart environ-
mental protection projects, the management department of 
the project invited 20 experts to form a decision-making 
group, which will jointly make the site selection decision 
of smart environmental protection projects. This group is 
composed of experts in relevant fields of the project and 
some representative members of the public. Due to the large 
scale and different background of participants, it is diffi-
cult for the group to make consistent location decisions. To 
improve the consensus level of decision-making, this paper 
applies the proposed influence-based consensus model to 
analyze this problem. Let X =

{
x1, x2, x3, x4

}
 denote the set 

of the candidate sites, and E =
{
e1, e2,… , e20

}
 be the set 

of 20 decision-making participants. Given linguistic term 
set S =

{
s0 ∶ very poor, s1 ∶ generally poor, s2 ∶ poor, s3 ∶

medium, s4 ∶ good, s5 ∶ generally good, s6 ∶ very good
}

 . 
The participants' comparative linguistic expressions prefer-
ence information about alternatives is collected by question-
naire surveys. We list the DLPRs provided by the expert e1 
on the set X , as shown in Table 1. Due to space limitations, 
the preferences of other experts are not listed in the paper.

We use the proposed consensus model based on the 
influence network to solve the site selection problem of 
smart environmental protection project. In this case study, 
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given the consensus threshold for the stage GCL = 0.85 , 
the satisfactory consensus level GCL = 0.90 . For the first 
stage of the CRP, the thresholds for the division of influ-
ence groups are INFmin = 0.65, INFmax = 0.75 , and the 
similarity threshold of clusters �sim = 0.65 . After iterations 
in the first stage, the group consensus level and prefer-
ence similarity have been significantly improved. Conse-
quently, we use different parameters in the second stage. 
In the second stage, we set INFmin = 0.7, INFmax = 0.8 , 
and �sim = 0.8. There is a preference adjustment parameter 
�
(
�i0

)
 in both stages. For simplicity, the same parameter 

value is used in this example, i.e., � = �i0 = 0.7 . To investi-
gate the impact of the adjustment parameter on the consen-
sus reaching, a sensitivity analysis will be conducted later.

Firstly, the modified AHC method is applied to detect 
subgroups in the large-scale group of experts. After the AHC 
procedure for LSGDM with DLPRs as given in Algorithm 1 
is carried out, the visualization of clustering outcomes is 
demonstrated by a dendrogram (Fig. 2). As shown in Fig. 2, 
if the dendrogram is cut at different heights, the experts are 
partitioned into different clusters. For example, if the den-
drogram is cut at height 0.37, experts are grouped into four 
clusters: (e4, e15, e8) , (e2, e3, e7, e8, e9, e10, e11, e13, e20) , (e1, e6) 
and (e5, e12, e14, e16, e17, e19) . Given the set of � levels as 
{2, 3,… , 19} , the cluster internal cohesion index �int , the 
cluster external cohesion index �ext , the consensus contribu-
tion degree �cc and the group consensus level GCL are cal-
culated. Table  2 provides the related results for 

Fig. 1  The framework of the proposed model

Table 1  DLPR provided by expert e1

D
1 x1 x2 x3 x4

x1

{(
s3, 1

)} {(
s4, 0.5

)
,
(
s5, 0.5

)} {(
s5, 1

)} {(
s2, 0.5

)
,
(
s3, 0.5

)}

x2

{(
s2, 0.5

)
,
(
s3, 0.5

)} {(
s3, 1

)} {(
s4, 1

)} {(
s1, 0.25

)
,
(
s2, 0.25

)
,
(
s3, 0.25

)
,
(
s4, 0.25

)}

x3

{(
s1, 1

)} {(
s2, 1

)} {(
s3, 1

)} {(
s1, 0.33

)
,
(
s2, 0.33

)
,
(
s3, 0.33

)}

x4

{(
s3, 0.5

)
,
(
s4, 0.5

)} {(
s2, 0.25

)
,
(
s3, 0.25

)
,
(
s4, 0.25

)
,
(
s5, 0.25

)} {(
s3, 0.33

)
,
(
s4, 0.33

)
,
(
s5, 0.33

)} {(
s3, 1

)}
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� = 2, 3, 4, 5, 6 . According to the results, it can be observed 
that the maximum initial consensus level is 0.6374, and the 
optimal � level is �=2. Due to the fact that current GCL is 
less than the consensus threshold GCL

_
 (0.6374 < 0.85), the 

CRP must be carried out. Moreover, the cluster adjustment 
strategy should be adopted in the feedback mechanism.

Secondly, the CRP is carried out to improve the group 
consensus level. In the following, we only take the first itera-
tion as an example to give the calculation details. According 

to the CRP proposed in Sect. 5, the first step is to identify 
the cluster with the lowest consensus level at each iteration.

As mentioned above, the optimal level � =2 and experts 
are grouped into two clusters:

and
C22 =

{
e1, e2, e3, e4, e6, e7, e8, e9, e10, e11, e13, e15, e18, e20

}
.

As shown in Table 2, we can observe that C21 is the clus-
ter with the lowest consensus contribution. According to 
the cluster adjustment strategy, experts in cluster C21 should 
change their preferences synchronously.

To generate recommendation, we should construct the 
influence network. The influences of the two clusters C21 and 
C22 calculated by Eq. (19) are 0.7126 and 0.6948, which 
mean that they belong to the medium-influence clusters. 
Further, we can compute the similarity between the clusters 
C21 and C22 is 0.7739 . According to the cluster consensus 
level, we can determine that the cluster C22 provides recom-
mendation for the cluster C21 . The influences of the experts 
in C22 calculated by Eq.  (15) is {0.8055 0.8199 0.8226 
0.7853 0.7999 0.8105 0.7939 0.8065 0.8051 0.7924 0.8147 
0.7875 0.7852 0.7978}. Using the method in Sect. 4, we can 
obtain the influence network. From Eq. (26), the preference 
of the cluster C22 can be obtained. And the preference of the 
experts in C21 can be adjusted using Eq. (28). To save space, 
the details are not listed here. After 10 iterations in the first 

C21 =
{
e5, e12, e14, e16, e17, e19

}

Fig. 2  Dendrogram generated by Algorithm 1 at the first iteration

Table 2  Initial clustering results 
and group consensus level

� C E �int �ext CD GCL

2 1 e5, e12, e14, e16, e17, e19 0.7391 0.5733 0.6230 0.6374
2 e1, e2, e3, e4, e6, e7, e8, e9, e10, e11, e13, e15, e18, e20 0.6856 0.5733 0.6519

3 1 e1, e6 0.8214 0.5908 0.6139 0.6317
2 e2, e3, e4, e7, e8, e9, e10, e11, e13, e15, e18, e20 0.7080 0.5835 0.6582
3 e5, e12, e14, e16, e17, e19 0.7391 0.5733 0.6230

4 1 e4, e15, e18 0.8519 0.5843 0.6244 0.6327
2 e2, e3, e7, e8, e9, e10, e11, e13, e20 0.7484 0.6049 0.6695
3 e1, e6 0.8214 0.5908 0.6139
4 e5, e12, e14, e16,e17, e19 0.7391 0.5733 0.6230

5 1 e1 1.0000 0.5695 0.5910 0.6289
2 e6 1.0000 0.6176 0.6367
3 e4, e15, e18 0.8519 0.5843 0.6244
4 e2, e3, e7, e8, e9, e11, e13, e20 0.7484 0.6049 0.6695
5 e5, e12, e14, e16, e17, e19 0.7391 0.5733 0.6230

6 1 e17, e19 0.8970 0.6122 0.6407 0.6294
2 e5, e12, e14, e16 0.7887 0.5705 0.6142
3 e1 1.0000 0.5695 0.5910
4 e6 1.0000 0.6176 0.6367
5 e4, e15, e18 0.8519 0.5843 0.6244
6 e2, e3, e7, e8, e9, e10, e11, e13, e20 0.7484 0.6049 0.6695
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stage, the group consensus level (GCL = 0.8519) reached 
the threshold (GCL

_
= 0.85).

In the second stage, the optimal level � =3 and the experts 
are grouped into three clusters:

and
Using Eq. (9), we can obtain the following cluster con-

sensus levels: 0.8581, 0.8493, 0.8484, respectively. We can 
see that C33 is the cluster with the lowest consensus con-
tribution to the group consensus. Further, the expert e16 
can be identified to modify his/her preference by applying 
Eq. (29). To generate recommendation, we should determine 
the experts in C33 that have influence on the expert e16 . Using 
Eqs. (4), (15) and (20), we can determine that the experts 
e12, e13, e14, e15 have influence on the experts e16 . Using the 
INF-IOWA operator, we can obtain the preference recom-
mendation for the expert e16 . The adjusted preference can be 
obtained using Eq. (33).

Figure  3 shows the clustering dendrogram after 
the group consensus level have reached the satisfac-
tion level. The large-scale group are classified into five 
clusters, i.e., C51 =

{
e1, e2, e3, e4, e5

}
 , C52 =

{
e6, e7

}
 , 

C53 =
{
e8, e9, e10, e11

}
 ,  C54 =

{
e12, e13, e14, e15

}
 , 

C55 =
{
e16, e17, e18, e19, e20

}
 . The selection process can be 

conducted to determine the best alternative. We can obtain 
the cluster preference using Eq. (34). And the preference 
of the clusters can be aggregated into the group preference 
using Eq. (35). According to Eq. (36), the weighted average 
operator is used to calculate the overall evaluation value of 

C31 =
{
e1, e2, e3, e4, e5, e6, e7, e9, e11

}

C32 =
{
e8, e10, e17, e18, e19, e20

}

C33 =
{
e12, e13, e14, e15, e16

}

the four alternatives,z1 = 0.5524 , z2 = 0.3508 , z3 = 0.2373 , 
z4 = 0.4610 , which determine the ranking of the alternatives 
is x1 ≻ x4 ≻ x2 ≻ x3 . Therefore, alternative x1 can be submit-
ted to the decision maker as the best alternative.

Considering that the adjustment parameter is an impor-
tant parameter in the CRP, a sensitivity analysis about this 
parameter is conducted in the numerical analysis. We run 
the numerical example for the adjustment parameter values 
� = �i0 = 0.5, 0.6, 0.7, 0.8 , respectively. Figure 4 reveals the 
impact of the parameter �(�i0 ) on the evolution of the group 
consensus level. The following conclusions can be summa-
rized from Fig. 4. Firstly, evolution of the group consensus 
level has a prominent stage characteristic. When the group 
consensus level is lower than GCL

_
(the first stage), the 

improvement speed of the group consensus level is obvi-
ously faster. Apparently, the main reason is that different 
preference adjustment strategies are adopted in different 
stage of the CRP. Secondly, generally speaking, the smaller 
the preference adjustment parameter, the faster the speed of 
the consensus improvement. From Fig. 4, we can see that 
when the adjustment parameter �(�i0 ) is set to be 0.5, 0.6, 
0.7 and 0.8, it takes 9, 11, 10 and 20 iterations respectively 
to make the group consensus level reach the threshold GCL

_
 . 

Moreover, it takes 22, 29, 41 and 63 iterations respectively 
to make the group consensus level reach the satisfactory 
level GCL . Thirdly, the structure of the influence network is 
also a factor affecting the convergence of group consensus. 
Although it is pointed out that the smaller the preference 
adjustment parameter, the faster the speed of the consensus 
improvement, we can find that for � = 0.6 and � = 0.7, the 
evolution curve of group consensus level intersects at some 
points. It is believed that the specific characteristics of the 

Fig. 3  Dendrogram at the last iteration
Fig. 4  Evolution of the group consensus level with different adjust-
ment parameters
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influence network are the important reasons for this 
phenomenon.

7  Discussions: advantages and limitations

Advantages Here, we find some advantages of the proposed 
model by comparing it with some closely related works.

(1). Comparison with [59–61] from the perspective of 
preference clustering. Preference clustering process plays 
an important role in LSGDM. Zhang et al. [59] developed a 
preference clustering approach based on broad first search-
ing neighbors for the LSGSM with CLEs. In this clustering 
algorithm, one of the most important input information is 
the similarity degree matrix among decision makers, which 
is calculated from the associated fuzzy preference relations. 
For LSGDM with hesitant fuzzy linguistic information, 
Zhong et al. [60] presented a clustering method integrat-
ing the correlation and consensus to divide the large-scale 
experts into several clusters. Zheng et al. [61] proposed a bi-
objective clustering algorithm based on the group consensus 
degree indicator and group information entropy indicator 
to divide the experts into different clusters, considering the 
similar relationship and the quality of evaluation information 
simultaneously. In our work, the conventional AHC algo-
rithm is adapted to detect subgroups in LSGDM problem 
with CLEs. Compared with these works, the proposed clus-
tering algorithm uses an effective distance measure between 
LDAs to calculate information distance. More importantly, 
based on the informative output of the proposed clustering 
algorithm, an effective index can be constructed to measure 
the group consensus level.

(2). Comparison with [24, 32, 50, 62] from the perspec-
tive of social network construction. Pérez et al. [24] pre-
sented a model that gathers the experts’ initial opinions and 
provides a framework to represent the influence of a given 
expert over the other(s). Tian et al. [32] developed a novel 
SNA-based decision framework for addressing LSGDM 
problems with incomplete interval type-2 fuzzy information. 
Gai et al. [62] proposed a framework of joint feedback strat-
egy to help large-scale group decision makers to reach an 
agreement by combing social network context and feedback 
behavior. In these works, information about social network 
is usually handled as extra input information of decision 
analysis. In contrast, our model does not need to collect 
extra information about the social network in advance, but 
directly uses the preference information about alternatives 
to construct the influence network. As mentioned earlier, the 
influence network construction in our work is inspired by 
Ureña et al. [50]. Different from Ureña et al. [50], we incor-
porate certainty of judgment into the influence measurement 
by considering the fact that DLPR is a kind of preference 

information with high uncertainty. We design a consistency-
similarity-certainty based influence measure to model the 
influence of experts. Meanwhile, a consensus-similarity-
certainty based influence measure is developed to model 
the influence of clusters.

(3). Comparison with [13, 63, 64] from the perspective 
of CRP. Compared with CRP in GDM with a few experts, 
CRP in LSGDM is more important and necessary because 
opinions among a large number of participants tend to be 
easily polarized and conflicting. In recent years, many pro-
posals have been introduced to handle the CRP in LSGDM 
problems with linguistic information. Rodríguez et al. [13] 
introduced a new cohesion measure for HFLTS for measur-
ing the cluster cohesiveness to drive the consensus process 
and thus reduce the impact of internal disagreements risen 
in majority driven CRPs. Further, the measure is integrated 
in a new cohesion-driven CRP approach based on LSGDM 
to deal with CLEs. Gou et al. [63] proposed a CRP model 
for LSGDM with double hierarchy hesitant fuzzy linguistic 
preference relations. To ensure the implementation of CRP, 
they also proposed the similarity degree-based clustering 
method, the double hierarchy information entropy-based 
weights-determining method and the consensus measures. 
Xiao et al. [64] developed a framework to address personal-
ized individual semantics and consensus in LSGDM with 
linguistic distribution preference relations. They devised a 
two-stage consensus-reaching model to manage the individ-
ual consistency and group consensus, which seeks to mini-
mize the preference information loss. Compared with these 
CRP models in linguistic information context, we develop a 
two-stage feedback mechanism guided by influence network 
is established for the CRP, which adopts cluster adjustment 
strategy and individual adjustment strategy depending on the 
different consensus levels. The proposed mechanism can not 
only effectively improve the efficiency of CRP, but also take 
individual preference adjustment into account.

Limitations Meanwhile, we also find some weaknesses 
of the proposed model, which need to be overcome in the 
future research.

(1). For CLEs provided by experts, the proposed model 
transforms them into LDAs with equal proportions. 
Although this transformation can simplify the analysis, it 
is not necessarily the most reasonable transformation. We 
argue that it would be worth introducing the linguistic distri-
bution-based optimization approach for transforming CLEs 
into LDAs [59].

(2). In LSGDM dealing with CWW, there is a fact that 
words imply different things for different people. In recent 
years, personalized individual semantics (PIS) have attracted 
extensive attention in GDM due to their influence on the 
final decision in linguistic context [65–68]. However, the 
PIS issue is not considered in our model. We argue that it 
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would be very interesting in the future to address PIS and 
consensus in LSGDM problems with complex linguistic 
information.

8  Conclusion

This paper proposed an influence-driven consensus model 
for LSGDM problems with comparative linguistic expres-
sions. Firstly, an agglomerative hierarchical clustering algo-
rithm is designed for LSGDM with DLPRs. The developed 
algorithm uses the distance measure between linguistic 
distribution assessments to calculate the distance between 
DLPRs. More importantly, the proposed clustering method 
can determine the optimal clustering level by considering 
the measurement of group consensus level. Secondly, we 
propose a novel method for constructing influence network 
among participants in LSGDM. In most existing decision 
models for LSGDM in social network environment, informa-
tion about social network is usually considered as extra input 
information of decision analysis. It is highlighted that the 
influence network proposed in this paper is inferred from the 
opinions of participants. Thirdly, an influence-driven CRP 
model is proposed for LSGDM problems. In the proposed 
CRP, the feedback mechanism is designed by combining 
the cluster adjustment strategy and the individual adjust-
ment strategy, which can not only improve the efficiency of 
consensus reaching, but also take the individual adjustment 
of preferences into account.

In the future, we need to develop optimization-based 
approach to deal with personalized individual semantics 
(PIS) and CRP modeling in LSGDM with complex linguis-
tic information by considering the fact that words mean 
different things for different people. Also, GDM process 
in practice involves not only mathematical issues but also 
psychological factors (such as non-cooperative behaviors). 
Therefore, it is very interesting to consider the psychologi-
cal factors of decision makers in the proposed LSGDM 
framework.
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