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Abstract
Unmanned aerial vehicle (UAV) is one of the preferred tools for coverage detection missions, because of its maneuver-
ability and flexibility. It is challenging for the UAV to decide a track by itself in a complex geometrical environment. This 
paper presents a UAV intelligent navigation method based on deep reinforcement learning (DRL). We propose using geo-
graphic information systems (GIS) as the DRL training environment to overcome the inconsistency between the training 
environment and the test environment. We creatively save the flight path in the form of an image. The combination of the 
knowledge-based Monte Carlo tree search method and local search method can not only effectively avoid falling into local 
search, but also ensure learning the optimal search direction under the limitation of computing power. Experiments show 
that the trained UAV can find an excellent flight path by intelligent navigation, and able to make effective flight decisions in 
a complex geometrical environment.
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1 Introduction

UAV has the advantages of small size, low cost, convenient 
use, minimal environmental requirements, and flexible aerial 
surveillance views over a wide area. Thus, it is employed 
in the field of surveillance, search, rescue, wildlife, border 
patrol, etc [1–4]. The UAV’s sensor, such as the camera, is 
susceptible to interference in the complex geometry environ-
ment. The primary challenge in a coverage mission is plan-
ning the UAV path that effectively covers the given region 
[5]. These challenges include

Coverage sensing quality Many studies on UAV coverage 
problems assume that the given area has an ideal flat ter-
rain [6]. In reality, most of the target terrain is rugged. The 
picture pixel quality obtained by the traditional method is 
inequality [5, 7]. Suppose UAV flies on a horizontal plane, 
as shown in Fig. 1. Photos’ resolution taken by UAV camera 

sensors in red areas is higher, but photos’ pixel taken in blue 
areas is low. UAV needs to adjust its altitude in real time 
to get good-quality terrain photos. All kinds of obstacles 
may occlude the cameras’ view. To meet sensing resolu-
tion requirements, the UAV should be able to vary its flying 
height, which needs to optimize path planning in the 3D 
domain [8, 9].

Energy constraint and time constraint The UAV should 
travel through the waypoints with the time constraint [10, 
11]. Searching for the optimal UAV path to meet the time 
and energy constraint is a non-deterministic polynomial-
time hard (NP-hard) problem. Searching for a near-optimal 
path with comparable cost and much less search time is usu-
ally adopted in the existing UAV path planning algorithms. 
Finding an optimal flight path is factorial time complexity 
(O(n!)) [12]. n represents the number of alternative flight 
path points.

Intelligent real-time navigation UAV intelligent navigation 
means that UAV can make flight decisions itself based on the 
environment and coverage tasks. In recent years, deep rein-
forcement learning (DRL) methods are tried to solve intelligent 
path planning problems [13, 14]. By taking a depth image as 
the input and control commands as the output, the robot moves 
and tries to find a suitable path. However, most RGB-D cam-
eras function in a limited range and cannot achieve satisfactory 
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navigation when used as the only sensor for long distances 
[15]. The DRL methods are not memorizing the maps at the 
testing stage but, instead, at the training stage [16]. In other 
words, finding a path in this way that requires flying repeatedly 
to learn a strategy in the real world is unrealistic.

This paper proposes a sensing quality-aware coverage and 
intelligent path planning solution for UAV monitoring of geo-
metrically complex scenes with varying altitudes and occlusions. 
The goal is to provide overview images for a target area with 
satisfactory spatial and temporal resolutions under UAV energy 
limits. The main contributions of this paper are as follows: (1) 
we develop a DRL framework for UAV navigation in large-scale 
complex environments. We use terrain maps (for instance, Google 
terrain map, which is very close to the real UAV flying environ-
ment.) as models for DRL. The DRL framework makes it easier 
for us to find the global optimal flight path. After learning and 
training in the GIS, the UAV can make autonomous flight deci-
sions. (2) The deep neural network (DNN) has a good under-
standing and analysis ability of images. We take the route UAV 
already passed by as the current agent observation. We creatively 
use the projection method to transform the 3D path into a 2D 
image. (3) We propose the terrain knowledge-based fast evolu-
tionary MCTS (TK-MCTS) method. The TK-MCTS uses the ter-
rain information to guide the UAV to search the unexplored area 
with a higher probability. (4) According to the terrain coverage 
task’s characteristics, we combine local terrain exploration with 
global exploration. In this way, the UAV can avoid trapping at a 
local optimum. At the same time, it can also reduce the global 
estimation inaccuracy [17].

2  Relation Work

2.1  2D Coverage Path Planning

Early topographic coverage studies assume that target area 
terrains are ideal planes [18]. 2D path planning model 
and strategy are widely used, such as the spiral model, the 

spiral-like model, the Lawnmower model, the Zamboni 
model, the Dubins path model, and the modified Lawn-
mower/Zamboni path planning strategy [19]. However, 
most of the terrain is rugged. Obstacles affect the coverage 
of UAV camera sensors. If we only consider terrain cover-
age in 2D space, it is difficult to guarantee sensor quality.

2.2  Traditional 3D Coverage Path Planning

With the improvement of computing power, the latest 
research focuses on 3D space coverage path planning. Dai 
et al. [8] indicate that more images should be taken than in 
an ideal flat terrain case to achieve full coverage of all the 
spots inside a target area. During a coverage mission, [20] 
plan information-rich trajectories in continuous 3D space by 
building the terrain maps online to optimize initial solutions 
obtained.  Scott et al. [21] propose an occlusion-aware UAV 
coverage technique by finding the best set of waypoints for 
taking pictures in a target area. The selected waypoints are 
then assigned to the UAV by solving a vehicle routing prob-
lem (VRP). Based on the matrix completion, [22] first select 
the dominator sampling points, and then select the virtual 
dominator sampling points. Finally, the optimal simulated 
annealing algorithm is used to plan the path of UAV based 
on the selected sampling points. In [23], the authors pro-
pose a coverage algorithm through the hexagonal tiling of 
a target region. But this method cannot be extended to 3D 
space. In [24], the authors develop a general preference-
based multi-objective evolutionary algorithm to converge 
to preferred solutions, and preferences of a decision maker 
are elicited through reference point(s). However, this method 
cannot effectively deal with the environment where obstacles 
exist.  Zhang et al. [25] exploit a newly defined individual 
cost matrix, which leads to an efficient multiple UAVs path 
planning algorithm. However, this algorithm is prone to fail-
ures in the relatively complex terrain environment. In [26], 
an integer linear programming formulation of the coverage 
path planning problem is shown to provide almost optimal 
strategies at a fraction of the computational cost of brute 
force methods. Bircher et al. [27] are capable of computing 
short inspection paths via an alternating two-step optimiza-
tion algorithm. In this method, viewpoints are first found 
and then connected to form links. The path obtained by this 
method is often not the optimal path.

2.3  Intelligent 3D Path Planning

DNN has excellent learning ability and memory ability. 
Recent improvements in DRL have allowed solving prob-
lems in many 2D domains, such as Atari games [28, 29]. 
Wang et al. [30], based on the deep Q-Network framework, 
the raw depth image is taken as the only input to estimate the 

Fig. 1  UAV horizontally sample topography elevation mapping
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Q values corresponding to all moving commands. Combin-
ing deep learning (DL) with reinforcement learning (RL), 
complex 3D terrain path planning has achieved better results 
than before. In recent years, DRL methods have been used 
in navigation [31, 32] and path planning [33–35] applica-
tions. In [36], DNN is used for real-time path planning. The 
study focuses on avoiding collisions with obstacles. Planning 
for autonomous unmanned ground vehicles, [37] proposes 
constrained shortest path search with graph convolutional 
neural networks (CNN).

3  DRL GIS Training Environment

DRL algorithms have demonstrated progress in learning to 
find a goal in challenging environments. The experiments in 
[16] show that the DRL algorithms are not memorizing the 
maps at the testing stage, but, rather, at the training stage. 
We propose using GIS as the DRL training environment to 
overcome the inconsistency between the training environ-
ment and the test environment [38]. UAV is trained in GIS 
and has the ability to make intelligent decisions so that the 
UAV can make accurate decisions in the real world. The steps 
to establish the GIS terrain training environment include ter-
rain sampling, waypoint generation, and visibility analysis.

3.1  Complex GIS Terrain Sampling

We transform the terrain into a discrete set of geographic 
coordinate points B = {b1, ..., bn} , bi = (xi, yi, zi) . xi denotes 
longitude, yi denotes latitude, and zi denotes altitude. Along 
with longitude and latitude on the ground plane, we sample 
the 2D coordinates on the ground plane with a step size of Bs . 
We can obtain the terrain elevation of each sampling point.

3.2  UAV Waypoint Generation and Visibility 
Analysis

It is possible to generate waypoints (photograph loca-
tion) on the top of each terrain sampling point with dif-
ferent altitudes [8]. The collection of optional waypoint 
set is R = {p1, ..., pm} . Our goal is to find an ordered set 
of waypoints Wk = [p1

k
, ..., p

j

k
] from R, Wk ⊆ R . A cov-

ering flight path l is formed when the UAV flies along 
with this ordered set of geographical coordinate points, 
l = p1

k
→ ⋯ → p

j

k
 . p1

k
 is the starting position. pj

k
 is the ter-

mination position.
The problem of measuring the visible range of a point 

on GIS can be transformed into two points visual judg-
ment problem. We use the interpolation visibility analysis 
method to judge whether two points are visible.

The detail of the interpolation visibility analysis method 
shows as Algorithm 1. GIS can calculate the elevation 
(lat1, long1, e1)...(latn, longn, en) according to latitude and 
longitude. eti represents elevation data obtained by GIS 
computation. If ∃ ti, tj , hti ≥ eti and htj ≤ etj ; a, b invisible. 
When the interpolation density reaches a specific number, 
we can effectively judge whether a and b are visible in the 
line of sight. We can see in Fig. 2. In the horizontal direc-
tion, interpolation is performed every 5 m along the line 
segment l. From A to B, hA→B > eA→B . Therefore, we can 
see B from A. From A to C, hA→C′ > eA→C′ , hC′

→C′′ < eC′
→C′′ , 

hC′′
→C > eC′′

→C . Therefore, we cannot see C from A.

4  UAV Intelligent Coverage Navigation 
Based on DRL

We present a UAV intelligent navigation method based on DRL. 
A UAV is an agent in the DRL structure. We use a four-rotor 
UAV to perform the coverage mission. The UAV continuously 
improves its strategy to maximize the covering tasks cumulative 

Fig. 2  Interpolation visibility analysis
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rewards by collecting samples (states, actions, and rewards) 
from its interactions with complex terrain environments. We use 
a neural network to simulate the E(l) function. Input the state 
into the neural network and output the UAV flight action value. 
At each discrete time step, the UAV selects an action from the 
action space (up, down, latitude+ , latitude−, longitude+ and lon-
gitude−). We creatively use the UAV flown path as the current 
UAV state, which is the input neural network state.

4.1  UAV Coverage Navigation State

We creatively save the flight path in the form of an image 
and use the image as the input of DNN. The DNN has an 
excellent ability to analyze and understand data in image 
form. If the UAV path information is converted into the 

image form, the DNN will be better for feature extraction 
and classification. We propose the elevation compression 
method to convert 3D GPS path data into a 2D image.

To illustrate the algorithm, we take Fig. Convert3DGP-
Spathdatainto2Dimage as an example. Suppose Fig. 3a is the 
initial state. With the elevation compression method, we get 
a two-dimensional map of the path, Fig. 3e. Starting from 
Fig. 3a, after 20 actions, the status of the UAV is shown in 
Fig. 3b. Figure 3(f) is the two-dimensional map of Fig. 3b. Fig-
ure 3c, d is the UAV path at intervals of 20 actions. Figure 3g, 
h is the mapping of 3c, d. We see that as the path increases, the 
total of gray rectangle decreases. The DNN can effectively rec-
ognize the change of image grayscale and distinguish the path.

The elevation compression method is shown in Algorithm 2. 
The step 2 stores waypoints in the 3D matrix M. We convert 

(a) (b)

(d)(c)

(e) (f) (g) (h)

Fig. 3  Convert 3D GPS path data into 2D image
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the z-axis data on the same xy axis into a binary sequence. 
Each binary data are stored in decimal form in the matrix V. 
Convert matrix V to gray image. For example, we take the z 
column where the X − axis is i and the Y − axis is j. Assume 
that M[i][j] = [0, 1, 0, 1, 1] . Let us view [0, 1, 0, 1, 1] as binary 
number 01011. Converts the binary number 01011 to the deci-
mal number, 11. We store 11 in a two-dimensional matrix 
V[i][j] = 11 . Calculate all z columns using Algorithm 2 step 
3–10. A two-dimensional matrix V is obtained to store image data.

4.2  UAV Coverage Navigation Reward Based 
on TK‑MCTS

Flying over previously uncovered areas as much as pos-
sible can yield more simulated flight results in a limited 
time. Based on the path coverage performance comparison, 
we determine the action reward value. The search space 
for UAV waypoints is vast, and we need to optimize our 
search. Depending on the terrain and the coverage state, 
drones flying in the no coverage direction can more effec-
tively cover the entire mission. We propose the terrain 
knowledge − based Monte Carlo tree search (TK-MCTS) 
algorithm. The combination of the TK-MCTS method and 
local search method can not only effectively avoid fall-
ing into local search but also ensure learning the optimal 
search direction under the limitation of computing power. 
The TK-MCTS is much better than traditional MCTS in 
exploitation. The TK-MCTS algorithm uses map knowl-
edge to guide the UAV to fly as far as possible to the previ-
ously uncovered area. Different from the traditional MCTS 
algorithm, position guide points (PGP) are used to guide 
the UAV flight direction. PGP is a random subset of the 
optional flight points set R. PGP = {g0, ..., gl},PGP ⊆ R . 

The visible terrain area of gi is ti . PGPT = {t0, ..., tl} . We 
calculate the probability of flying in different directions. 
Use the formula 1 to calculate the scores in each direction:

where ni is the number times of i has been simulated. 
� ∈ (0, 1] . If the vector s → i is going in the same direc-
tion as s → gi on x, y or z axis, � ∈ (0, 1) . Otherwise, � = 1 . 
Choose the minimum score in different directions as the 
simulation node.

The specific algorithm is Algorithm 3. According to the 
results of flight simulation in different directions, we set the 
reward value of the direction with the best simulation results 
to be 1, the other direction is 0.

4.3  UAV Coverage Navigation DRL Implementation

The core of reinforcement learning is the discovery of the 
optimal action-value function Q∗(s, a) by maximizing the 
expected return, starting from state s taking action a:

(1)score = (ni + 1) ∗ rand(0, 1) ∗ �
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The total future reward until the termination is Rt . The � 
represents DRL policy. With future reward discounted factor 
is � , the total future estimated reward is

The essential assumption in DRL is the Bellman equa-
tion, which transfers the target to maximize the value of 
r + �Q∗(s�, a�) as

where s′ is the next state. DRL estimates the action-value 
equation by convolutional neural networks with weights � , 
so that Q(s, a, �) ≈ Q∗(s, a) . Set the training batch size to be 
b, the loss function is

where yk is the target output evaluation network. It is calcu-
lated by future expectation estimated. If the sampled transi-
tion is not a fly way sample, the evaluation for this (sk, ak) 
pair is set as termination reward r

ter
.

In this paper, the shape of the input terrain image is 
10 × 10 × 3 . The structure is depicted in Fig. 4. We use two 
3D convolutional layers to extract the path image features. 
We apply a 10 × 10 × 4 (the number of channels = 4) and 
10 × 10 × 64 (the number of channels = 64) convolution 

(2)Q∗(s, a) = max� E[Rt|st = s, at = a,�]

(3)Rt =

T∑

t=0

� tr

(4)Q∗(s, a) = Es�∼e[r + � maxQ∗(s�, a�)|s, a
a�

]

(5)L(�
i
) =

1

b

b∑

i=1

(yk − Q(sk, ak;�i))
2

filter on images. The role of the convolution layer is local 
perception. That is, each feature in the picture is first per-
ceived locally, and then the local comprehensive operation 
is carried out at a higher level, to obtain global informa-
tion. Each convolution layers calculation results are input 
to the pooling layer. The main role of the pooling layer is 
to reduce the feature dimension. In Fig. 4, long short-term 
memory (LSTM) cannot only solve that RNN cannot deal 
with long-distance dependence but also solve that gradient 
explosion or gradient disappearance. We use an additional 
two fully connected layers for exploration policy learning. 
Finally, the neural network outputs the UAV action values. 
Each Conv or Fullyconnected layer is followed by a Rectified 
Linear Unit (ReLU) activation function layer to increase the 
non-linearity. The number under each layer is the output data 
channels of the cubes.

Algorithm 4 shows the workflow of our revised DRL pro-
cess. We set the number of iterative rounds episode to M. 
As shown in steps 4–16, perform an action at in state st , get 
the next state tt+1 and the current reward rt . Adds the four 
tuples (st, at, rt, st+1) to the experience pool D. Take m ran-
dom samples (si, ai, ri, si+1) from the empirical pool D, where 
i = 1, 2, 3....,m , calculate the target value yi . Step 20 uses the 
mean square error loss function 1

m

∑m

i=1

�
yi − Q

�
si, ai,�

��2 
to update the Q network parameters. We use the memory 
replay method and the � − greedy training strategy to control 
the dynamic distribution of training samples. At the begin-
ning of every repeated exploration loop, the UAV is set to 
a random start point. It extends the randomization of the 
UAV locations from the whole simulation world and keeps 
the diversity of the data distribution saved in memory replay 
for training.

Fig. 4  UAV coverage navigation DRL
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The time complexity of training the neural network is 
O(E × D∕B × T) , where E is episode, D is the memory size, B 
is the batch size, and T is the time complexity of a single iter. 
T can continue to be decomposed into O(T) ≈ O

(
L × nlayer

)
 , 

L is the average time complexity of each layer and nlayer is 
the number of layers. The L can be further decomposed into 
O(L) ≈ O

(
MinputNoutputHmapWmapK

)
 , where the time to com-

pute the convolutional layers is assumed to be the average 
time per layer. Minput and Noutput are the number of input and 
output channels, respectively, K is the size of the convolu-
tional kernel, and Hmap and Wmap are the spatial dimensions 
of the output feature map, respectively.

5  Experiment and Result

5.1  Terrain Data Sampling and Visibility Analysis

On the Cesium platform [39], we chose the geographic 
location N86.8◦ − 87.0◦ , E27.5◦ − 28.02◦ as the area for 
the terrain coverage task. We sample the 2D coordinates 
along longitude − axes and latitude − axes on the ground 
plane with a step size of 0.628 km. We obtain each terrain 
sampling point elevation corresponding by Cesium. Each 
optional waypoint does visibility analysis. On the Cesium, 
we use Algorithm  1 (interpolation visibility analysis 
method) to obtain visibility set vi of each optional waypoint 
pi . We randomly pick 10 waypoints, as shown in Fig. 5. The 
average visual distance of optional waypoints to the whole 
terrain sampling points is more than 2000 m. We set the 
effective visibility distance threshold value as 1500 m. Each 
optional waypoint can only see a few numbers of terrain 
sample points.

5.2  The TK‑MCTS Performance

We use different algorithms in the same flight terrain space 
to verify the advantages of the TK-MCTS algorithm. We 
compare the total number of searches and the number of 
valid searches with the exhaustive method and traditional 
MCTS algorithm [40, 41]. As we can see from Fig. 6(a), the 
Exhaustion method performs a broader range of searches in 
the same time frame. However, the successful full cover-
age terrain path searches account for only 0.0388% of the 
total searches. The traditional MCTS search has the small-
est search range in the same period. The traditional MCTS 
method successfully searches the full coverage terrain path 
more times than the Exhaustion method in the same time 
frame. We see that although the TK-MCTS method does not 
have the most searches in the same time frame, it is the most 
efficient way to find the full coverage path. The number of 
successful full coverage terrain path searches accounts for 
47.29% of the total searches.

The space complexity of Algorithm 4 is closely related 
to the neural network layers. Therefore, we need to analyze 
the space complexity layer by layer. Assume that the con-
volution kernel size is H ×W  , the input channel is I and the 
out channel is O. The total number of filters in the convo-
lutional layer is H ×W × I . Each filter will be mapped to O 
new channels. Plus a bias for each filter’s calculation. There-
fore, the total number of parameters is (H ×W × I + 1) × O . 
Pooling Layer is a fixed operation with no weighting fac-
tor. A fully connected layer is an ninput,moutput dimensional 
input and output with (n + 1) × m parameters. The LSTM 
will maintain a total of 4 sets of parameters, correspond-
ing to input gates, output gates, oblivion gates and candi-
date states. Therefore, the total number of parameters is 
4 × (nhiddenminput + n2

hidden
+ nhidden) . nhidden is the hidden size 

and minput is the input size.
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5.3  A Combination of Local and Global Search

The spatial complexity of the coverage path planning 
search is approximately O(n!). Although the TK-MCTS 
approach significantly improves the effectiveness of the 
simulation, it is not possible to conduct extensive searches 
in nearly infinite search spaces. On a mediocre computer, 
the average number of valid searches is 326.89 when 
the search time is 10 s. Finding the full coverage path is 
153.12 times. The limited number of simulation samples 
will bring high errors to evaluate the effectiveness of the 
current motion direction.

Starting from the current waypoint, we calculate the 
time and coverage to view all paths within n steps using an 
exhaustive method.

Figure 7a shows the impact of the different steps on cov-
erage. Figure 7a shows that merely increasing the number 
of exhaustive searches does not improve the simulation. The 
n − step exhaustive method can only determine whether it is 
a locally optimal solution. We cannot simulate the optimal 
global solution by increasing n. As n − step increases the 
exhaustion time index increases as well.

For the above problems, we design a method combin-
ing local search and global search to determine the simula-
tion reward value. Through the TK-MCTS method, we can 
roughly estimate the optimal global direction. By n − step 
exhaustion, we determine the direction of the optimal local 
solution. The simulated reward design is shown in Table 1.

Negative no waypoint can fly to in the current state;
TK −MCTS positive only through TK-MCTS gets a posi-

tive reward;
Exhaustive positive only through Exhaustive gets a posi-

tive reward;
Exhaustive and TK −MCTS positive through Exhaustive 

and the TK-MCTS Positive get a positive reward;
Other no simulation results are obtained. Through 

Exhaustive and the TK-MCTS does not obtain a valid path 
coverage method

5.4  DRL Intelligent Path Planning

We initialize each layer weights from a normal distribution 
(mean 0 and variance 0.3), and the biases are set as 0.1. The 
training parameters are shown in Table 2. All models are 
trained and tested with TensorFlow on a single NVIDIA 
GeForce GTX 1050ti. The impact of batch size on training 
is as follows: if it is too small, it will lead to great gradient 
change, loss oscillation, and network difficult convergence; 
if it is too large, the gradient is very accurate, loss oscilla-
tion is small, and it is easy to fall into local optimum. Plenty 
of practice shows that the best training results are always 
achieved when the batch size is between 2 and 32. The effect 
of learning rate on training is as follows: too small means it 

takes longer to converge; too large may not converge or the 
loss may explode. The initial learning rate is usually set at 
0.01–0.001. Replay memory breaks the correlation between 
data by storage-sampling. There is no particular requirement 
for the replay memory size. discountfactor = 0.9 , which bal-
ances the current and future rewards.

We have analyzed the validity of DRL intelligent path 
planning through experiments. We evaluate the proposed 
work in terms of coverage quality and path planning quality 
in Cesium. With varying step sizes, we compare the cover-
age percentage of our proposed algorithm with the exhaus-
tion algorithm and MCTS algorithm. The computation 
results help to determine the appropriate step size to ensure 
terrain full coverage with the generated waypoints.

5.4.1  Varying Step Size Coverage Performance

The distance between the terrain sample point and waypoint 
directly affects the resolution of the terrain image obtained 
by the UAV. We set the visual range threshold from a way-
point to the terrain sampling point as 1000 m. The total UAV 
step number can approximately represent the UAV carry 
out task time. The coverage results for the target area are 
shown in Fig. 8. The vertical axe presents the percentage of 
areas that can be covered with the given image resolution 
requirement. The step size in the horizontal axes represents 
the number of blocks. We step through the environment in 
each iteration while searching for waypoints, and step size 
values ranging from 1000 to 1900 are tested. In Fig. 8, the 
UAV starts from different positions to verify the effective-
ness of the DRL method in training UAV intelligent navi-
gation. DRL algorithm, Exhaustion algorithm and MCTS 
algorithm are adopted to calculate the average coverage of 
different steps. The search time of Exhaustion and MCTS is 
300 s. The UAV performs multiple searches of a given step 
length within the 300 s.

Fig. 5  An example of optional waypoint visibility analysis
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We can see that when step = 1700, the terrain coverage 
obtained by the DRL method can reach 100% . From 1000-
step to 1900-step, DRL can always achieve better cover-
age than the Exhaustion algorithm and MCTS algorithm. 
Moreover, from 1000-step to 1900-step, the MCTS algo-
rithm can obtain a better coverage effect than the Exhaustion 
algorithm. During the initial training process, DRL selects 
the action calculated by the DNN with a 50% probability 
for each step, and randomly selects action with a 50% prob-
ability. The method allows a full exploration of UAV naviga-
tion in various situations. Through experiments, we prove 
that DRL could learn excellent results with the TK-MCTS 
simulation.

5.4.2  Terrain Average Coverage

In coverage missions, we are concerned about the UAV 
effective coverage. All area’s effective coverage requires 
high resolution of every terrain data collected by UAV. We 
have heat maps to visually describe the performance of the 
DRL algorithm in improving UAV terrain coverage quality. 
Figure 9a–c is the heat maps of the DRL algorithm, MCTS 

Fig. 6  Performance comparison of TK-MCTS, MCTS, and Exhaus-
tion

Fig. 7  Exhaustive iterative search time and coverage

Table 1  UAV state and reward 
design

State Reward

Negative −20.0

TK-MCTS positive 0.2
Exhaustive positive 0.1
Exhaustive and TK-

MCTS Positive
0.4

Other 0
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algorithm and Exhaustive method, respectively. We use 
shades of color to indicate distance. Darker the color, the 
larger the distance is.

The horizontal axis represents the latitude, and the verti-
cal axis represents longitude. First, we see that the DRL 
heat map Fig. 9a is generally lighter in color than the other 
two, and the MCTS heat map Fig. 9b is lighter in color than 
Fig. 9c. We can see that the maximum distance from the 
waypoint to the terrain sampling point can be less than 200 
m with the coverage effect of navigation by the DRL algo-
rithm. With the coverage effect of navigation by the MCTS 
algorithm, the maximum distance from the waypoint to the 
terrain sampling point is 600–700 m. The maximum dis-
tance from the waypoint to the terrain sampling point will be 
larger when it uses the Exhaustive method navigation. Sec-
ond, we see that the coverage achieved by the DRL method 
is very even for each piece of terrain. Since some parts are 
light and some parts are dark, the coverage effect of each 
piece of terrain by other methods is uneven. Especially the 

Table 2  The training parameters Parameter Value

Batch size 32
Replay memory size 1000
Discount factor � 0.9
Learning rate 0.01
Gradient momentum 0.9

Fig. 8  Coverage performance with varying step sizes

Fig. 9  Performance comparison in terrain effective coverage reso-
lution distance. x0=27.9596◦ N, x1=27.9660◦ N, x2=27.9723◦ N, 
x3=27.9787◦ N, x4=27.9851◦ N, x5=27.9914◦ N, x6=27.9978◦ N, 
x7=28.0042◦ N, x8=28.0105◦ N, x9=28.0169◦ N, y0=86.8965◦ E, 
y1=86.9029◦ E, y2=86.9092◦ E, y3=86.9156◦ E, y4=86.9220◦ E, 
y5=86.9283◦ E, y6=86.9347◦ E, y7=86.9410◦ E, y8=86.9474◦ E, 
y9=86.9538◦E

▸
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coverage resolution by Exhaustive method is quite differ-
ent. In the training stage, DRL uses the TK-MCTS method 
to calculate the optimal simulation results of the next step. 
DRL can fully consider local best and global best.

6  Conclusion

In this work, we develop a DRL framework for UAV naviga-
tion in large-scale complex environments. We can use GIS 
with accurate and rich data as the training environment by 
converting GPS path data into image data. This method can 
effectively overcome the huge errors caused by the inconsist-
ency between the training environment and using environ-
ment. The combination of the TK-MCTS search method and 
local search method cannot only effectively avoid falling 
into local search, but also ensure to learn the optimal search 
direction under the limitation of effective computing force. 
The results show that CNNs can learn important features 
from GPS path information of the 3D environment, and 
learn a navigation policy from the TK-MCTS simulation. 
The integration of visual navigation and GPS navigation is 
the research direction to improve navigation accuracy. For 
the unknown terrain environment, the combination of online 
3D terrain generation and GPS navigation is also an impor-
tant issue to be studied in the future.
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