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Abstract
Classical F-transform for lattice-valued fuzzy sets can be defined using monadic relation in Zadeh’s monad or, equivalently, 
as a special semimodule homomorphism. In this paper, we use an analogical approach and by choosing suitable monads 
and semimodule homomorphisms, we define F-transform for hesitant, intuitionistic or fuzzy soft sets. We prove that these 
F-transforms naturally extend classical lattice-valued F-transform for lattice-valued fuzzy sets.

Keywords F-transform · Powerset set monad · Monadic relation · Semiring · Semimodule · Hesitant fuzzy set · 
Intuitionistic fuzzy set · Fuzzy soft set

1 Introduction

Fuzzy transform (F-transform, shortly) represents a method 
in fuzzy set theory, which is used in many applications in 
signal and image processing [11, 13, 15], signal compres-
sions [45, 51], numerical solutions of ordinary and partial 
differential equations [27, 52, 54], data analysis [14, 16, 
46] and many other applications. This concept was intro-
duced for the first time in [44] both for classically defined 
[0, 1]-valued fuzzy sets and L-valued fuzzy sets, where L 
is a complete residuated lattice. The F-transform method 
represents a special transformation map based on a sys-
tem of fuzzy sets defined on a given universe, which is 
called a fuzzy partition. In general, any variant of a fuzzy 
partition then represents a pair (X,A) , where X is a set 
and A = {Ai ∶ i ∈ I} is a set of fuzzy sets in X. Based on 
a fuzzy partition (X,A) , the F-transform is then a special 
map [0, 1]X → [0, 1]I transforming fuzzy sets from a set X 
to fuzzy sets in the index set I of a fuzzy partition A  . This 
procedure makes it possible to significantly reduce the work 
with the original fuzzy sets, especially in those areas, such 
as methods for image processing, where the original set X is 
huge, while the index set I from the fuzzy partition can be 
significantly smaller.

Fuzzy sets, both classical and with values in lattices, are 
not the only tool that allows us to work with uncertainty, 
both theoretically and with a number of practical applica-
tions. Currently, there is a whole range of theories and theo-
retical structures which are based on principles of fuzzy set 
theory but create their own tools and methods for solving 
theoretical and practical problems. These theories undoubt-
edly include the theory of intuitionistic fuzzy sets, the theory 
of fuzzy soft sets and the theory of hesitant fuzzy sets. The 
common feature of these three theories is, among other 
things, a large number of current publications dealing with 
theoretical properties and application possibilities of these 
theories. For a basic overview of these theories and their 
applications, see, e.g., [1, 4, 6, 29, 57, 60] for intuitionistic 
fuzzy sets, [2, 20, 31–34, 37, 42] for fuzzy soft sets and [50, 
55, 56, 59] for hesitant fuzzy sets.

In our previous paper [39], we tried to unify some of 
methods used in all these theories. For this purpose, we 
used a special tool from the theory of categories, namely 
the theory of monads (see, e.g., [35, 38, 47, 48]), which 
allows to unify not only various types of relations but also 
transformation operators defined by these relations. In the 
present paper, we use these results concerning monads from 
[39] and we focus on the F-transform method and its pos-
sible modifications in these structures. For such F-transform 
variants, we will require that their definitions are based on 
the same principles as the F-transforms for classical L-fuzzy 
sets, where L is a complete residuated lattice. It is clear that 
there are several equivalent definitions of the F-transform 
which can be used (see, e.g., [38, 40]). For our purposes, 
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we choose two seemingly different principles which can be 
used to define the F-transform for L-fuzzy sets. These two 
principles are based on the following methods which are 
equivalent for L-fuzzy sets: 

 (I) The definition of the F-transform as a complete 
semimodule homomorphism for appropriate semi-
ring R and R-semimodules,

 (II) The definition of the F-transform as a mapping 
defined by a special monadic relation in the monad 
based on the power set structure Z(X).

These two methods of defining F-transforms then represent 
general possibilities how the definition of the F-transform 
can be extended to other fuzzy type structures. In the paper, 
we apply these two methods of defining F-transforms to 
fuzzy soft sets, hesitant fuzzy sets and intuitionistic fuzzy 
sets and we prove that F-transforms for these fuzzy type 
structures can be equivalently defined as extensions of spe-
cial monadic relations or complete semimodule homomor-
phisms, respectively.

These results are a contribution to the unification of 
methods and theories of various fuzzy type structures. This 
unification makes it possible not only to use the same meth-
ods and tools in different types of these structures, but also 
brings the possibility to use hitherto unused tools and meth-
ods in various fuzzy type structures.

This paper is structured as follows: Sect. 2 presents some 
basic structures and methods we use in this work, includ-
ing basic definitions of monads, semirings and semimodule 
homomorphisms. Section 3 describes basic ideas how to 
use monads and semimodule homomorphisms for a con-
struction of the F-transform in some categories, or how the 
F-transform can be defined by general semimodule homo-
morphisms. Section 4 presents new theoretical results con-
cerning equivalent constructions of the F-transform methods 
in hesitant, intuitionistic or fuzzy soft sets. In Sect. 5, we 
present a possible application of F-transform for these fuzzy 
type structures, namely we introduce a general fuzzy type 
inference mechanism based on IF–THEN fuzzy type rules as 
an application of fuzzy type F-transform for hesitant, intui-
tionistic or fuzzy soft sets. In Sect. 6 we present a matrix cal-
culation of the F-transform for these fuzzy type structures.

2  Materials and Methods

This section introduces structures we use in lattice-valued 
fuzzy theory and some methods we use in fuzzy transform 
constructions.

The basic membership structure of fuzzy sets in the 
paper is a complete residuated lattice (see, e.g., [43]), i.e. 
a structure L = (L,∧,∨,⊗,→, 0L, 1L) such that (L,∧,∨) is 

a complete lattice, (L,⊗, 1L) is a commutative monoid with 
operation ⊗ isotone in both arguments and → is a binary 
operation which is residuated with respect to ⊗ . Recall that 
a negation of an element a in L  is defined by ¬a = a → 0L.

Although intuitionistic fuzzy sets are currently defined 
for much more general membership value structures, to 
simplify the technical side of this paper, we will use the 
classical membership value structure based on a complete 
MV-algebra with classically defined involutive negation. For 
an overview of current lattices used in the theory of intui-
tionistic fuzzy sets, see [7].

Hence, in the case of intuitionistic fuzzy sets we use a 
special example of a residuated lattice L  , namely, an MV-
algebra [10], i.e., a structure L = (L,⊕,⊗,¬, 0L, 1L) satisfy-
ing the following axioms: 

 (i) (L,⊗, 1L) is a commutative monoid,
 (ii) (L,⊕, 0L) is a commutative monoid,
 (iii) ¬¬x = x , ¬0L = 1L,
 (iv) x⊕ 1L = 1L , x⊕ 0L = x , x⊗ 0L = 0L,
 (v) x⊕ ¬x = 1L, x⊗ ¬x = 0L,
 (vi) ¬(x⊕ y) = ¬x⊗ ¬y , ¬(x⊗ y) = ¬x⊕ ¬y,
 (vii) ¬(¬x⊕ y)⊕ y = ¬(¬y⊕ x)⊕ x,

for all x, y ∈ X.
If we put

then (L,∧,∨,⊗,→, 0L, 1L) is a residuated lattice. MV-algebra 
is called a complete, if that lattice is a complete lattice. A 
standard example of an MV-algebra is the Lukasiewicz alge-
bra LL = ([0, 1],⊕,⊗,¬, 0, 1) , where

If L  is a complete residuated lattice, an L -fuzzy set in a 
crisp set X is a map f ∶ X → L . The set of all L-fuzzy sets 
in X is denoted by Z(X).

We recall a basic definition of a F-transform for L -fuzzy 
sets defined by a fuzzy partition.

Definition 1 [44]  

1. A set A = {Ay ∶∈ Y} ⊆ Z(X) is called an L -fuzzy parti-
tion of a set X.

2. A mapping FX,A ∶ Z(X) → Z(Y) is  called the 
F-transform based on A  , if for s ∈ Z(X), y ∈ Y  , 
FX,A(s)(y) =

⋁
x∈X s(x)⊗ Ay(x).

Remark 1 The notion of the fuzzy partition for lattice-val-
ued fuzzy sets can be defined in various ways. The above 

x ∨ y = (x⊕ ¬y)⊗ y, x ∧ y = (x⊗ ¬y)⊕ y,

x → y = ¬x⊕ y,

x⊗ y = 0 ∨ (x + y − 1), ¬x = 1 − x,

x⊕ y = 1 ∧ (x + y).
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definition is based on the original definition of this term 
given in the [45]. An overview of possible definitions of 
fuzzy partitions was presented in [41].

2.1  Monads in Categories

For basic information about the category theory, see [23, 
30]. As we mentioned in the introduction, the main tool from 
the category theory we will use is the monad in a category. 
Due to the type of fuzzy structures that we will use, we will 
focus only on monads in the category ��� , consisting of sets 
as objects and mappings as morphisms. We use the follow-
ing version of the monad in the category ��� , which is called 
the monad in a clone form.

Definition 2 [39] A structure � = (T ,◊, �) is called a monad 
(in clone form) in the category ��� , if 

1. T ∶ obj(���) → obj(���) is mapping between objects of 
���,

2. For morphisms f ∶ X → T(Y) and g ∶ Y → T(Z) there 
exists their composition g◊f ∶ X → T(Z) , (called the 
Kleisli composition) which is associative,

3. � is a system of morphisms �X ∶ X → T(X) , for any 
object X of ���,

4. For any morphism f ∶ X → T(Y) , �Y◊f = f  holds,
5. ◊ is compatible with composition of morphisms, i.e., 

for morphisms f ∶ X → Y  , g ∶ Y → T(Z) , we have 
g◊(�Y .f ) = g.f .

Let us consider the following classical example of a 
monadic theory.

Example 1 [49] Let L  be a complete residuated lattice. The 
monad � = (Z,⊞,𝜒) is defined by 

1. Z ∶ ��� → ��� is an object function defined by 
Z(X) = LX,

2. For each X ∈ ��� , �X ∶ X → Z(X) is the characteristic 
map of elements from X ,  i .e.,  for x, y ∈ X  , 
�X(x)(y) = �X

{x}
(y),

3. For each f ∶ X → Z(Y) and g ∶ Y → Z(V) in ��� , 
g⊞ f ∶ X → Z(V) is defined by 

  ◻

With the help of the monadic theory in a category, we can 
now recall the concept of a monadic relation. This construc-
tion was first explicitly mentioned in the paper of Manes 
[36] and has recently proven to be a universal construction 

(g⊞ f )(x)(z) =
⋁
y∈Y

f (x)(y)⊗ g(y)(z).

of relations for many fuzzy type structures (e.g., see [38]). 
We use the following form of a monadic relation in the cat-
egory ���.

Definition 3 [36] Let � = (T ,◊, �) be a monad in the cat-
egory ��� . 

1. A �-relation R from an object X to an object Y in ��� , in 
symbol R ∶ X ⇝ Y  , is a morphism R ∶ X → T(Y) in the 
category ���.

2. If R ∶ X ⇝ Y  and S ∶ Y ⇝ Z are �-relations, their com-
position is a �-relation S◊R ∶ X ⇝ Z.

In fuzzy mathematics and its applications, various types 
of approximation and transformation operators are very 
often used, which convert fuzzy objects defined over the 
basic structure X to fuzzy objects over the other structure Y. 
Many of these transformation operators are special examples 
of a general transformation operator defined by �-relations 
as it is defined in the following definition.

Definition 4 [38] Let � = (T ,◊, �) be a monad in the cate-
gory ��� and let R ∶ X ⇝ Y be a �-relation from X to Y. Then 
a R-transformation of objects from T(X) is the morphism

2.2  Semirings and Semimodules

Another tool that we will use for the construction of F-trans-
forms for general fuzzy type structures is based on the theory 
of semirings and semimodules. The semiring appears for the 
first time in [8] and this notion was elaborated in [21]. For 
more information about semimodules and their applications 
see, e.g., [22, 58].

Definition 5 [8] A semiring R = (R,+,×, 0R, 1R) is an alge-
braic structure with the following properties: 

 (i) (R,+, 0R) is a commutative monoid,
 (ii) (R,×, 1R) is a monoid,
 (iii) x × (y + z) = x × y + x × z holds for all x, y, z ∈ R,
 (iv) 0R × x = x × 0R = 0R holds for all x ∈ R.

A semiring is called commutative, if (R,×, 1R) is a com-
mutative monoid. A semiring is called complete, if the sum 
+R is defined for arbitrary set X ⊆ R of elements. In that 
case this sum is denoted by 

∑R
x∈X

 . An important example of 
a semiring which seem to be very useful for the F-transform 
theory was published in the paper of Di Nola and Gerla [18].

R◊1T(X) ∶ T(X) → T(Y).
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Example 2 

(1) Let L  be a residuates lattice. Then, the reduct 
L
∨ = (L,∨,⊗, 0L, 1L) is a commutative semiring.

(2) Let L  be a MV-algebra. Then, the reduct 
L
∧ = (L,∧,⊕, 1L, 0L) is a commutative semiring.

  ◻

The notion of a semimodule over a semiring is taken from 
[21]. We use the commutative version of this notion only.

Definition 6 [21] Let R = (R,+,×, 0R, 1R) be a commuta-
tive semiring. An R-semimodule is a commutative monoid 
M = (M,⊕M , 0M) for which the external multiplication 
R ×M → M , denoted by r.m, is defined and which, for all 
r, r� ∈ R and m,m� ∈ M , satisfies the following equations: 

 (i) (r × r�).m = r.(r�.m),
 (ii) r.(m⊕M m�) = r.m⊕M r.m�,
 (iii) (r + r�).m = r.m⊕M r�.m,
 (iv) 1R.m = m , 0R.m = r.0M = 0M.

In the paper [17] the following examples of semimodules 
were presented.

Example 3 [17] (1) Let X ≠ ∅ , L  be a residuated lattice 
and let L∨ = (L,∨,⊗, 0L, 1L) be its semiring reduct. For all 
f , g ∈ M = LX define

Then LX = (M,⊕M , 0M) is an L∨-semimodule.
(2) Let X ≠ ∅ ,  L  be a MV-algebra and let 

L∧ = (L,∧,⊕, 1L, 0L) be its semiring reduct. For all 
f , g ∈ M = LX define

Then, LX = (M,⊕M , 0M) is an L∧-semimodule.   ◻

Definition 7 Let R = (R,+,×, 0R, 1R) be a semiring and 
M = (M,⊕M , 0M) and N = (N,⊕N , 0N) be R-semimod-
ules. Then, G ∶ M → N  is an R-homomorphism from M  
to N  , if G ∶ M → N is a mapping such that the following 
conditions hold: 

 (i) G(m⊕M m�) = G(m)⊕N G(n�) , for all m,m� ∈ M,
 (ii) G(r × m) = r × G(m) , for all m ∈ M, r ∈ R.

(f ⊕M g)(x) = f (x) ∨ g(x),

p.f (x) = p⊗ f (x),

0M ∈ M, 0M(x) = 0L, x ∈ X, p ∈ L.

(f ⊕M g)(x) = f (x) ∧ g(x),

p.f (x) = p⊕ f (x),

0M ∈ M, 0M(x) = 1L, x ∈ X, p ∈ L.

If a R-semimodule M = (M,+M , 0M) is such that for any 
subset N ⊆ M , there exists the sum of elements x ∈ N , then 
M  is called a complete  R-semimodule. A sum of elements 
x ∈ N is denoted by 

⨁M
x∈N

x . If M  and P are complete R
-semimodules, then a R-homomorphism G ∶ M → P is 
called complete, if

3  F‑transform for Fuzzy Type Structures: 
Basic Ideas

As we mentioned in Introduction, the F-transform for fuzzy 
type structures can be based on methods (I) and (II). We 
describe basic ideas how it can be done in a general case. 
Concrete applications of these methods for fuzzy soft sets, 
hesitant fuzzy sets and intuitionistic fuzzy sets will be pre-
sented in the next section. For all these concrete applica-
tions, we prove that both methods (I) and (II) are equivalent.

3.1  F‑transform Defined by a Monad

The idea how to use monads for a construction of the 
F-transform for some fuzzy type structures is based on the 
following equivalent formulation of the standard F-trans-
form for L -valued fuzzy sets, which was proven in [38]:

Let � = (Z,⊞,𝜒) be the monad in a category ��� from 
Example 1 and let A = {Ai ∶ i ∈ |A|} be a L-fuzzy parti-
tion of a set X. We can define a �-relation ZA ∶ X ⇝ |A| , 
such that

Then, it can be easily proven that for the F-transform 
FX,A ∶ Z(X) → Z(|A|) , it holds

This equivalent formulation can be now used to define a 
more general form of the F-transform for various fuzzy type 
structures. To realize this construction for a given fuzzy type 
structure, in the category ��� we need a monad � = (T , �,◊) , 
which is based on power set objects of this fuzzy type struc-
ture. Moreover, to be able to use a general construction of 
the F-transform, we need to realize the following steps: 

1. For an arbitrary object X ∈ � , we need to define a sub-
set A = {qi ∶ i ∈ |A|} ⊆ T(X) , called a �-partition of X. 

∀N ⊆ M, G(

M⨁
x∈N

x) =

P⨁
x∈N

G(x).

x ∈ X, i ∈ |A|, ZA(x)(i) = Ai(x).

FX,A = ZA ⊞ 1Z(X).
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For a �-partition A  , by |A| we denote the index set of A
.

2. For a �-partition A  of X we need to define a �-relation 
TA ∶ X ⇝ |A| with some appropriate properties.

Then, the F-transform in the category ��� based on a �-parti-
tion A  of an object X can be defined as a morphism

Morphisms defined in (1) by steps 1.–2., will be called 
F-transforms of a fuzzy type structure defined by the monad 
� . It should be noted that this procedure is not intended 
for very general categories and monads, although it can be 
formally implemented for them as well. The goal of this 
procedure is to create meaningful variants of F-transforms 
for various fuzzy type objects, which would be analogous to 
the F-transform for classical L -fuzzy sets. This means that 
we cannot describe a universal procedure how, for example, 
to choose a concrete definition of a �-partition A  or a �
-relation TA  , which will always depend on the choice of a 
particular fuzzy type structure.

On the other hand, if a fuzzy type structure is an exten-
sion of L -fuzzy sets, it is natural to assume that the F-trans-
form of this fuzzy type structure in the category ��� based 
on a �-partition A  is an extension of the standard F-trans-
form of L -fuzzy sets. To verify it, we can use the following 
definition.

Definition 8 Let � = (T ,◊, �) be a monad in a category ��� . 
Then the standard F-transform of L -fuzzy sets is called to 
be a special case of the F-transform defined by the monad 
� , if 

1. For each set X ∈ ��� and each L -fuzzy partition A  in 
X, there exists a �-partition AX ⊆ T(X) of X such that 
|AX| = |A|,

2. There exists a natural transformation 

 where for a morphism f ∶ X → Y  , T(f ) ∶ T(X) → T(Y) 
is defined by T(f ) = �Y .f◊1T(X).

3. For each object X ∈ ��� , the following diagram com-
mutes: 

(1)TA◊1T(X) ∶ T(X) → T(|A|).

Φ ∶ T → Z,

3.2  F‑transform Defined as a Semimodule 
Homomorphism

The idea how the F-transform of classical L -fuzzy sets can 
be defined by semimodule homomorphisms was presented 
in [40]. Roughly speaking, the F-transforms of L -fuzzy sets 
from Z(X) can be identified with complete L∨-semimodule 
homomorphisms G ∶ LX

→ LY between L∨-semimodules 
from Example 3(1). Hence, the F-transform of L -fuzzy sets 
from Z(X) is a mapping G ∶ Z(X) → Z(Y) , such that for arbi-
trary set {fi ∶ i ∈ I} ⊆ Z(X) and arbitrary � ∈ L, f ∈ Z(X) , 
we have

where we use notations from Definition 7 and Example 3. 
To be able to use this procedure with another fuzzy type 
structure, we must first define a new semiring R and a new 
R-semimodules corresponding this fuzzy type structure, 
which would be the basis for a new R-semimodule homo-
morphisms. This R-semimodule homomorphism can then 
be defined as the F-transform of this fuzzy type structure.

4  F‑transforms for Soft, Hesitant 
and Intuitionistic L ‑Fuzzy Sets

We will show how to use both methods mentioned in the 
previous section to define the F-transforms operators for the 
given fuzzy type structure. For this purpose, we will mainly 
use the monads for these fuzzy type structures, the exist-
ence of which was proven in [38] and which will allow us to 
define the F-transform using the method given in Sect. 3.1. 
For each of the mentioned fuzzy type structures and its 
monad � , we define a �-partition A  and, in accordance with 
the method presented in Sect. 3.2, for each of these fuzzy 
type structures, we define a new example of a semiring R 
and an R-semimodule M . Using these two types of con-
structions, we prove that both generate the same F-transform 
morphisms.

Finally, we prove that this F-transform is a generalization 
of the standard F-transform for L -fuzzy sets.

4.1  F‑transform for Hesitant L ‑Fuzzy Sets

We recall the definition of hesitant L -fuzzy sets, which was 
presented in [56]. In this section L  is a complete residuated 
lattice.

G

⎛⎜⎜⎝

LX�
i∈I

fi

⎞
⎟⎟⎠
=

LY�
i∈I

G(fi),

G(𝛼 ⊗ f ) = 𝛼 ⊗ G(f ),
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Definition 9 [56] A hesitant L -fuzzy set in a set X is a map-
ping h ∶ X → 2L , i.e., for x ∈ X , h(x) ⊆ L.

In this part we deal with the construction of the hesitant 
F-transform (i.e., F-transform for hesitant L -fuzzy sets) 
using a monad and semimodule homomorphisms. For this 
purpose, we use the monad defined by the power set struc-
ture of all hesitant L-fuzzy sets in a set X, the existence 
of which was proven in the [39] and which is presented in 
the following definition.

Definition 10 [39] The monad � = (H, ⋄, �) in the category 
��� is defined by 

1. The object function H ∶ obj(���) → obj(���) is defined 
by H(X) = {h|h ∶ X → 2L}.

2. If f ∶ X → H(Y) and g ∶ Y → H(Z) are ���-morphisms, 
for arbitrary x ∈ X, z ∈ Z we set 

 where for A,B ⊆ L , A⊗ B = {𝛼 ⊗ 𝛽|𝛼 ∈ A, 𝛽 ∈ B} and 
A⊗ � = �.

3. For X ∈ ��� , �X ∶ X → H(X) is defined by 

According to Sect. 3.1, for a definition of the hesitant 
F-transform defined by this monad we need to define �
-partitions (which are also called hesitant partitions of a 
set X) for a monad �.

Definition 11 A subset A = {hy ∶ y ∈ Y} ⊆ H(X) is a called 
a �-partition of X.

According to Sect. 3.2, let us consider the following 
propositions, introducing new semiring R and a complete 
R-semimodule M  . In what follows, by ⊗ we understand 
a multiplication from a residuated lattice L .

Proposition 1 Let L  be a complete residuated lattice and 
let R = (R,+,×, 0R, 1R) be a structure such that 

1. R = 2L = {A ∶ A ⊆ L},
2. A,B ∈ R, A + B ∶= A ∪ B,
3. A,B ∈ R, A × B ∶= A⊗ B = {a⊗ b ∶ a ∈ A, b ∈ B}, A × � = �,
4. 0R = �, 1R = {1L}.

(2)g ⋄ f ∶ X → H(Z),

(3)g ⋄ f (x)(z) =
⋃
y∈Y

f (x)(y)⊗ g(y)(z) ⊆ L,

x, z ∈ X, �X(x)(z) =

{
{1L}, x = z

�, x ≠ z
.

Then, R is a semiring.
The proof is straightforward and it will be omitted.

Proposition 2 Let X ∈ ���  and let the structure 
H(X) = (H(X),⊕H , 0H) be defined by 

1. Let R be the semiring from Proposition 1 and let the 
external multiplication . ∶ R × H(X) → H(X) be defined 
for arbitrary A ∈ R, h ∈ H(X), x ∈ X by 

2. h, g ∈ H(X), (h⊕H g)(x) ∶= h(x) ∪ g(x),
3. 0H ∈ H(X) is such that 0H(x) = � for all x ∈ X.

Then, H(X) is a complete R-semimodule. The sum of ele-
ments {hi ∶ i ∈ I} in H(X) will be denoted by 

⨁H(X)

i∈I
hi.

The proof represents only a simple calculations and it 
will be omitted.

To define a variant of the F-transform for hesitant fuzzy 
sets we need the following lemma which enables to describe 
elements from an R-semimodule H(X) in a uniform way.

Lemma 1 Let X ∈ ��� . 

1. The set {�X(x) ∶ x ∈ X} is a R-base of H(X).
2. For an arbitrary element h in the R-semimodule H(X) , 

we have 

Proof In fact, for z ∈ X , we have

  ◻

The following theorem describes equivalent definitions 
of the F-transform for hesitant L -fuzzy sets.

Theorem 1 Let X, Y ∈ ��� and let G ∶ H(X) → H(Y) be a 
mapping. Then, the following statements are equivalent. 

(1) There exists a �-partition A = {py ∶ y ∈ Y} such that 

A.h(x) ∶= A⊗ h(x) = {𝛼 ⊗ 𝛽 ∶ 𝛼 ∈ A, 𝛽 ∈ h(x)},

h =

H(X)⨁
x∈X

h(x).�X(x).

(
H(X)⨁
x∈X

h(x).𝜎X(x)

)
(z) =

⋃
x∈X

h(x)⊗ 𝜎X(x)(z)

= h(z)⊗ {1L} = h(z).
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(2) For the monad � , there exists a �-relation S ∶ X ⇝ Y  
such that 

(3) G ∶ H(X) → H(Y) is a complete R-semimodule homo-
morphism,

Proof (1)⇒(2). Let A = {py ∶ y ∈ Y} be a �-partition such 
that (4) holds. Let S ∶ X → H(Y) be defined by

Then, S ∶ X ⇝ Y is a �-relation and according to (2) and (3) 
from Definition 10, we have

(2)⇒(3). Let S ∶ X ⇝ Y  be a �-relation which satisfies (5). 
We prove that G is a complete R-semimodule homomor-
phisms H(X) → H(Y) . In fact, let {hi ∶ i ∈ I} ⊆ H(X) . Then 
for y ∈ Y  , we have

Further, for A ∈ R, h ∈ H(X) , we have

(4)h ∈ H(X), y ∈ Y , G(h)(y) =
⋃
x∈X

h(x)⊗ py(x).

(5)G = S ⋄ 1H(X) ∶ H(X) → H(Y).

x ∈ X, y ∈ Y , S(x)(y) = py(x).

S ⋄ 1H(X)(h)(y) =
⋃
x∈X

1H(X)(h)(x)⊗ S(x)(y)

=
⋃
x∈X

h(x)⊗ S(x)(y)

=
⋃
x∈X

h(x)⊗ py(x) = G(h)(y).

G

(
H(X)⨁
i∈I

hi

)
(y) = (S ⋄ 1H(X))

(
H(X)⨁
i∈I

hi

)
(y)

=
⋃
x∈X

1H(X)

(
H(X)⨁
i∈I

hi

)
(x)⊗ S(x)(y)

=
⋃
x∈X

(⋃
i∈I

hi(x)

)
⊗ S(x)(y)

=
⋃
i∈I

(⋃
x∈X

hi(x)⊗ S(x)(y)

)

=

H(Y)⨁
i∈I

(S ⋄ 1H(X))(hi)(y) =

H(Y)⨁
i∈I

G(hi)(y).

G(A.h)(y) = (S ⋄ 1H(X))(A.h)(y)

=
⋃
x∈X

1H(X)(A.h)(x)⊗ S(x)(y)

=
⋃
x∈X

A⊗ h(x)⊗ S(x)(y) = A⊗
⋃
x∈X

h(x)⊗ S(x)(y)

= A⊗ (S ⋄ 1H(X))(h)(y) = A⊗ G(h)(y) = A.G(h)(y).

Therefore, G is a R-semimodule homomorphism with the 
required property.

(3)⇒ (1). Let G ∶ H(X) → H(Y) be a R-semi-
module homomorphism. For x ∈ X, y ∈ Y  we define 
py ∈ H(X), y ∈ Y , such that

Hence, A = {py ∶ y ∈ Y} is a �-partition of X. Let 
h ∈ H(X), y ∈ Y  . According to Lemma 1, we obtain

Therefore, G satisfies the equality (4).   ◻

Remark 2 The mapping G ∶ H(X) → H(Y) from (4) will be 
called the hesitant F-transform based on a hesitant partition 
A  and it will be denoted by HX,A .

We show that the classical F-transform of L -fuzzy sets 
is a special case of the hesitant F-transform. For this, we 
use Definition 8.

Proposition 3 The standard F-transform of L -fuzzy sets is 
a special case of the hesitant F-transform.

Proof Let A = {Ai ∶ i ∈ |A|} be a fuzzy partition of 
a set X. Let AH = {hi ∶ i ∈ |A|} ⊆ H(X) be such that 
hi(x) = {Ai(x)} . Then, AH is a �-partition of X, |AH| = |A| 
and we can consider hesitant F-transform HX,AH

 . Let us 
consider a Z-morphism ΦX ∶ H(X) → Z(X) , such that for 
h ∈ H(X), x ∈ X  , ΦX(h)(x) =

⋁
{�∈h(x)} � . It is clear that 

Φ = {ΦX ∶ X ∈ ���} ∶ H → Z is a natural transformation 
between hesitant L -fuzzy sets power set functor and clas-
sical L -fuzzy sets power set functor. It can be proven easily 
(and the proof will be omitted) that the following diagram 
commutes. From this diagram, it follows that FX,A  is a spe-
cial case of the hesitant F-transform. 

  ◻

py(x) = G(�X(x)(y)).

G(h)(y) = G(

H(X)⨁
x∈X

h(x).𝜎X(x))(y)

=

H(Y)⨁
x∈X

G(h(x).𝜎X(x))(y)

=

H(Y)⨁
x∈X

h(x).G(𝜎X(x))(y) =
⋃
x∈X

h(x)⊗ py(x).
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4.2  F‑transform for Intuitionistic L ‑Fuzzy Sets

As we mentioned in Sect. 2, for simplicity in this section, 
we suppose that L  is a complete MV-algebra. We recall 
the definition of intuitionistic L -fuzzy sets, which was 
presented in [5] in a modified but equivalent form.

Definition 12 [5] An intuitionistic L -fuzzy set in a set X is 
a pair (u, v) of L -fuzzy sets on X, such that ¬u ≥ v.

In this section, we deal with the construction of the 
intuitionistic F-transform (i.e., F-transform for intuition-
istic L -fuzzy sets) using a monad and semimodule homo-
morphisms. For this purpose, we use the monad defined by 
the power set structure of all intuitionistic L -fuzzy sets in 
a set X, the existence of which was proven in the [39] and 
which is defined in the following definition.

Definition 13 [39] Let L  be a complete MV-algebra. The 
monad � = (J,⊠, 𝜚) in the category ��� is defined by 

1. J ∶ obj(���) → obj(���) is a mapping defined by 

2. If f ∶ X → J(Y) and g ∶ Y → J(Z) are ���-morphisms, 
g⊠ f ∶ X → J(Z) is defined by 

 where for z ∈ Z , 

 where for arbitrary mapping f ∶ X → J(Y) , 
f (x) = (f x, fx) ∈ J(Y).

3. For X ∈ ��� , �X ∶ X → J(X) is defined by 

According to Sect. 3.1, for a definition of the intuition-
istic F-transform defined by this monad, we need to define 
�-partitions (which are also called intuitionistic partitions 
of a set X) for a monad � . We use the following notation:

J(X) = {(u, v)|u, v ∈ LX , (∀x ∈ X)¬u(x) ≥ v(x)}.

(6)x ∈ X, g⊠ f (x) = ((g⊠ f )x, (g⊠ f )x) ∈ J(Z),

(7)(g⊠ f )x(z) =
⋁
y∈Y

f x(y)⊗ gy(z),

(8)(g⊠ f )x(z) =
⋀
y∈Y

fx(y)⊕ gy(z),

(9)x ∈ X, �X(x) = (�X
{x}

,¬�X
{x}

).

(u, v) ∈ J(X), x ∈ X, (u, v)(x) ∶= (u(x), v(x)) ∈ L2.

Definition 14 A subset A = {(uy, vy) ∶ y ∈ Y} ⊆ J(X) is 
called a �-partition of X.

Now, analogously to hesitant L -fuzzy sets, we intro-
duce a new semiring R and a complete R-semimodule, 
which will be used to define intuitionistic F-transform 
according to the method from Sect. 3.2.

Proposition 4 Let L  be a complete MV-algebra and let 
R = (R,+,×, 0R, 1R) be defined by 

1. R = {(�, �) ∈ L2 ∶ ¬� ≥ �},
2. (�, �) + (�1, �1) ∶= (� ∨ �1, � ∧ �1),
3. (𝛼, 𝛽) × (𝛼1, 𝛽1) ∶= (𝛼 ⊗ 𝛼1, 𝛽 ⊕ 𝛽1),
4. 0R = (0L, 1L), 1R = (1L, 0L).

Then, R is a semiring.
Proof It is only a simple calculation, where we use a dis-
tributivity between ⊗ and ∨ and between ⊕ and ∧ , which 
hold in any MV-algebra.   ◻

Proposition 5 Let X ∈ ��� and let R be the semiring from 
Proposition 4. Let the structure J(X) = (J(X),⊕J , 0J) be 
defined by 

1. The external multiplication . ∶ R × J(X) → J(X) is 
defined for arbitrary (�, �) ∈ R, (u, v) ∈ J(X) by 

2. F o r  (u, v), (u1, v1) ∈ J(X)  , 
(u, v)⊕J (u1, v1) ∶= (u ∨ u1, v ∧ v1),

3. 0J = (0
L
, 1

L
) , where � ∈ LX is such that �(x) = � , for all 

x ∈ X.

Then, J(X) is a complete R-semimodule.
Proof First, we prove that the above definitions are correct. 
For example, we have

and it follows (�, �).(u, v) ∈ J(X) . Analogously we prove the 
correctness of other definitions.   ◻

Analogously to hesitant fuzzy sets, to define a variant 
of F-transforms for intuitionistic fuzzy sets we need the 

(𝛼, 𝛽).(u, v) = (𝛼 ⊗ u, 𝛽 ⊕ v).

¬(𝛽 ⊕ v) = ¬𝛽 ⊗ ¬v ≥ 𝛼 ⊗ u,
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following lemma which enables to describe elements from 
an R-semimodule J(X) in a uniform way.

Lemma 2 Let X ∈ ��� . 

1. The set {�X(x) ∶ x ∈ X} is a R-base of J(X).
2. For arbitrary (u, v) ∈ J(X) we have 

Proof For z ∈ X , we have

  ◻

The following theorem describes three equivalent defini-
tions of the intuitionistic F-transform.

Theorem 2 Let X, Y ∈ ��� and let G ∶ J(X) → J(Y) be a 
mapping. Then the following statements are equivalent. 

(1) There exists a �-partition A = {(sy, ty) ∶ y ∈ Y} such 
that for arbitrary (u, v) ∈ J(X), y ∈ Y  , 

(2) For the monad � , there exists a �-relation S ∶ X ⇝ Y  
such that 

(3) G ∶ J(X) → J(Y) is a complete R-semimodule homo-
morphism

Proof (1)⇒(2). Let A = {(sy, ty) ∶ y ∈ Y} be a �-partition 
such that (10) holds. Let S ∶ X → J(Y) be defined by

(u, v) =

J(X)⨁
x∈X

(u, v)(x).�X(x).

(
J(X)⨁
x∈X

(u, v)(x).𝜚X(x)

)
(z)

=

J(X)⨁
x∈X

(u(x)⊗ 𝜒X
{x}

, v(x)⊕ ¬𝜒X
{x}

)(z)

=

(⋁
x∈X

u(x)⊗ 𝜒X
{x}

,
⋀
x∈X

v(x)⊕ ¬𝜒X
{x}

)
(z) = (u(z), v(z)).

(10)G(u, v)(y) =

(⋁
x∈X

u(x)⊗ sy(x),
⋀
x∈X

v(x)⊕ ty(x)

)
.

(11)G = S⊠ 1J(X) ∶ J(X) → J(Y).

x ∈ X, S(x) = (sx, tx) ∈ J(Y),

y ∈ Y , sx(y) ∶= sy(x), tx(y) = ty(x).

Then, S ∶ X ⇝ Y  is a �-relation and according to (6)–(9) 
from Definition 13, we have

Therefore, (11) holds.
(2)⇒(3). Let S ∶ X ⇝ Y  be a �-relation which sat-

isfies (11). We prove that G is a complete R-semi-
module homomorphisms J(X) → J(Y) . In fact, let 
{(ui, vi) ∶ i ∈ I} ⊆ J(X) . Then for y ∈ Y  , we have

Further, for (�, �) ∈ R, (u, v) ∈ J(X) , we have

Therefore, G is a R-semimodule homomorphism with the 
required property.

S⊠ 1J(X)(u, v)(y)

= ((S⊠ 1J(X))
(u,v)(y), (S⊠ 1J(X))(u.v))(y)

=

(⋁
x∈X

1
(u,v)

J(X)
(u, v)(x)⊗ Sx(y),

⋀
x∈X

1J(X),(u,v)(u, v)(x)⊕ Sx(y)

)

=

(⋁
x∈X

u(x)⊗ sx(y),
⋀
x∈X

v(x)⊕ tx(y)

)

=

(⋁
x∈X

u(x)⊗ sy(x),
⋀
x∈X

v(x)⊕ ty(x)

)
= G(u, v)(y).

G

(
J(X)⨁
i∈I

(ui, vi)

)
(y) = (S⊠ 1J(X))

(
J(X)⨁
i∈I

(ui, vi)

)
(y)

= (S⊠ 1J(X))

(⋁
i∈I

ui,
⋀
i∈I

vi

)
(y)

=

(⋁
x∈X

(⋁
i∈I

ui

)
(x)⊗ S(x)(y),

⋀
x∈X

(⋀
i∈I

vi

)
(y)⊕ S(x)(y)

)

=

(⋁
i∈I

(⋁
x∈X

ui

)
(x)⊗ S(x)(y),

⋀
i∈I

(⋀
x∈X

vi

)
(y)⊕ S(x)(y)

)

=

J(X)⨁
i∈I

(S⊠ 1J(Y))(ui, vi)(y) =

J(Y)⨁
i∈I

G(ui, vi)(y).

G((𝛼, 𝛽).(u, v))(y) = (S⊠ 1J(X))((𝛼, 𝛽).(u, v))(y)

= (S⊠ 1J(X))

(
𝛼 ⊗

⋁
x∈X

u(x)⊗ S(x)(y),

𝛽 ⊕
⋀
x∈X

v(x)⊕ S(x)(y)

)

= (𝛼, 𝛽).(S⊠ 1J(X))(u, v)(y) = (𝛼, 𝛽).G(u, v)(y).
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(3)⇒ (1). Let G ∶ J(X) → J(Y) be a R-semimodule 
homomorphism. For x ∈ X, y ∈ Y  we define (sx, tx) ∈ J(Y) 
such that

and we defined (sy, ty) ∈ J(X) , such that

Then, A = {(sy, ty) ∶ y ∈ Y} is a �-partition of X. Let 
(u, v) ∈ J(X), y ∈ Y  . According to Lemma 2, we obtain

Therefore, G satisfies the equality (10).   ◻

Remark 3 A mapping G ∶ J(X) → J(Y) from (10) will be 
called the intuitionistic F-transform based on a intuitionistic 
partition A  and it will be denoted by JX,A  .   ◻

Analogously to hesitant L -fuzzy sets, it holds that the 
F-transform of classical fuzzy sets is a special case of the 
intuitionistic F-transform according to Definition 8.

Proposition 6 The standard F-transform of L -fuzzy sets is 
a special case of the intuitionistic F-transform.

Proof Let A = {Ai ∶ i ∈ |A|} be a fuzzy partition of a set X. 
Let AJ = {(Ai,¬Ai) ∶ i ∈ |A|} ⊆ J(X) . Then, AJ is a �-parti-
tion of X and we can consider the intuitionistic F-transform 
JX,AJ

 . According to Definition 8, we need to define a natural 
transformation Φ ∶ J → Z . For X ∈ ��� and (s, t) ∈ J(X) , 

(sx, tx)(y) ∶= G(�X(x))(y),

x ∈ X, y ∈ Y , sy(x) ∶= sx(y), ty(x) ∶= tx(y).

G(u, v)(y) = G

(
J(X)⨁
x∈X

(u, v)(x).𝜚X(x)

)
(y)

=

J(Y)⨁
x∈X

G((u, v)(x).𝜚X(x))(y)

=

J(Y)⨁
x∈X

(u, v)(x).G(𝜚X(x))(y)

=

J(Y)⨁
x∈X

(u, v)(x).(sx, tx)(y)

=

J(Y)⨁
x∈X

(u(x)⊗ sx(y), v(x)⊕ tx(y))

=

(⋁
x∈X

u(x)⊗ sy(x),
⋀
x∈X

v(x)⊕ ty(x)

)
.

we set ΦX(s, t) = s . According to [39]; Theorem 3, for a 
���-morphism f ∶ X → Y  and (s, t) ∈ J(X), y ∈ Y  , we have 
f→
J
(s, t)(y) = (

⋁
x,f (x)=y s(x),

⋀
x,f (x)=y t(x)) and it follows that 

the diagram 

 commutes. Hence, Φ is a natural transformation. Using 
Theorem 2, it follows immediately that the following dia-
gram commutes: 

 Hence, the standard F-transform is a special case of the 
intuitionistic F-transform.   ◻

4.3  F‑transform for L ‑Fuzzy Soft Sets

In this section, L  be a complete residuated lattice. The 
notion of fuzzy soft sets was introduce in [31] and we recall 
a lattice variant of this notion.

Definition 15 [31] Let K be a fixed set of criteria and 
X ∈ ��� . A pair (E, s) is called an L -fuzzy soft set in a X, 
if ∅ ≠ E ⊆ K and s ∶ E → LX . By T(X), we denote the set of 
all L -fuzzy soft sets in X.

For simplicity of notations, in the rest of the paper, we 
use the fixed set of criteria K. For general constructions of 
fuzzy soft sets monads with various criteria sets see [39].

In this section, we show how F-transforms can be 
defined for L-fuzzy soft sets by the monad or semimodule 
homomorphisms.

In what follows, K is the fixed set of criteria and we use 
the following notation. If  f ∶ X → T(Y) is a map, for x ∈ X 
we denote



International Journal of Computational Intelligence Systems          (2021) 14:164  

1 3

Page 11 of 19   164 

F o r  (E, s) ∈ T(X)  a n d  e ∈ E, x ∈ X  w e  s e t 
(E, s)(e)(x) ∶= s(e)(x).

To construct a monad � for fuzzy soft sets, we use the 
monad �̃ , which was defined in [39]. For this monad, how-
ever, we limit ourselves to the case where the set of cri-
teria of fuzzy soft sets is the constant set � . In this case, 
the reduced monad � will be defined in the category ��� as 
follows.

Definition 16 [39] The monad � = (T ,▵, �) in the category 
��� is defined by 

1. T ∶ obj(���) → obj(���) is a mapping defined by 
T(X) = {(E, s) ∶ ⋆ ∈ E ⊆ K, s ∶ E → LX} ∈ ���,

2. If f ∶ X → T(Y) and g ∶ Y → T(Z) are morphisms in 
��� , using the notation (12), the Kleisli composition ▵ 
is defined by 

 for arbitrary k ∈ K
g▵f
x , z ∈ Z.

2. For X ∈ ��� , the ���-morphism �X ∶ X → T(X) is 
defined by �X(x) = (K, �X

x
) , where �X

x
∶ K → LX  is 

defined by �X
x
(k)(z) =

{
1L, x = z,

0L, x ≠ z.

According to Sect. 3.1, for a definition of the fuzzy soft 
F-transform we need to define �-partitions (which are also 
called soft partitions) of a set X.

The notions of a �-partition of a set X are defined by

Definition 17 A subset A = {(K, py) ∶ y ∈ Y} ⊆ T(X) is 
called a �-partition of X.

(12)f (x) = (Kf
x
, fx) ∈ T(Y),Kf

x
⊆ K, fx ∶ Kf

x
→ LY .

(13)
g ▵ f ∶ X → T(Z),

(g ▵ f )(x) = (Kg▵f
x

, (g ▵ f )x),

(14)Kg▵f
x

= Kf
x
∩
⋃
y∈Y

Kg
y
,

(15)
(g ▵ f )x(k)(z)

=
⋁

{y|k∈Kg
y }

fx(k)(y)⊗ gy(k)(z),

Now, analogously to hesitant or intuitionistic L -fuzzy 
sets we introduce a new semiring R and a complete R
-semimodule, which will be used to define soft F-transforms 
according to the method from Sect. 3.2. These structures are 
presented in the following propositions.

Proposition 7 Let K be the fixed set of criteria and let 
R(K) = (R(K),+,×, 0R, 1R) be defined by 

1. R = LK,
2. �,� ∈ R(K), � + � = � ∨ �  , where ∨ is defined 

point-wise from L ,
3. 𝜑,𝜓 ∈ R(K), 𝜑 × 𝜓 = 𝜑⊗ 𝜓  , where ⊗ is defied 

point-wise from a residuated lattice L ,
4. 0R(K) = 0

L
, 1R(K) = 1

L
 , where �(k) = � for arbitrary 

k ∈ K , � ∈ L.

Then R(K) is a semiring.
The proof is straightforward and will be omitted.

Proposition 8 Let R(K) be the semiring from Proposition 7. 
Let X ∈ ��� and let the structure T(X) = (T(X),⊕T , 0T ) be 
defined by 

1. The external multiplication . ∶ R(K) × T(X) → T(X) is 
defined for arbitrary � ∈ R(K), (E, s) ∈ T(X) by 

2. (E, s), (F, t) ∈ T(X), (E, s)⊕T (F, t) = (E ∩ F, s ∨ t),
3. 0T = (K, 0),

where 0(e)(x) = 0L for arbitrary e ∈ K, x ∈ X . Then, T(X) 
is a complete R(K)-semimodule.
P r o o f  F o r  � , � ∈ R(K)  ,  {𝜓i ∶ i ∈ I} ⊆ R(K)  a n d 
{(Ej, sj) ∶ j ∈ J} ⊆ T(X) , we have

𝜓 .(E, s) =

{
(E,𝜓 ∗ s), 𝜓 ≠ 0R(K)
(K, 0), 𝜓 = 0R(K)

,

e ∈ E, x ∈ X, (𝜓 ∗ s)(e)(x) = 𝜓(e)⊗ s(e)(x),
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Therefore, T(X) satisfies axioms of a complete R(K)-semi-
module.   ◻

Analogously to hesitant or intuitionistic fuzzy sets, to 
define a variant of the F-transform for L -fuzzy soft sets, 
we need the following lemma which enables to describe 
elements from an R(K)-semimodule T(X) in a uniform 
way. Recall that for E ⊆ K , by �E

{e}
 we denote the charac-

ter is t ic  mapping E → L  such that  for  e� ∈ E  , 

�E
{e}

(e�) =

{
1L, e = e�

0L, e ≠ e�.

Lemma 3 

1. The set {(K, �X
x
) ∶ x ∈ X} is a R(X)-base of T(X).

2. For arbitrary (E, s) ∈ T(X) , we have 

(
R(K)⨁
i∈I

�i

)
.(E, s) =

(
E,

(⋁
i∈I

�i

)
∗ s

)

=

(
E,

⋁
i∈I

�i ∗ s

)
=

T(X)⨁
i∈I

�i.(E, s),

� .(�.(E, s)) = � .(E, � ∗ s)

= (E,� ∗ � ∗ s) = (E, (� × �) ∗ s)

= (� × �).(E, s),

� .

(
T(X)⨁
j∈J

(Ej, sj)

)
= � .

(⋂
j∈J

Ej,
⋁
j∈J

sj

)

=

(⋂
j∈J

Ej,� ∗
⋁
j∈J

sj

)

=

(⋂
j∈J

Ej,
⋁
j∈J

� ∗ sj

)
=

T(X)⨁
j∈J

(Ej,� ∗ sj)

=

T(X)⨁
j∈J

� .(Ej, sj),

1R(K).(E, s) = (E, 1
L
∗ s) = (E, s),

0R(K).(E, s) = (K, 0) = 0T = � .(K, 0) = � .0T .

(E, s) =

T(X)⨁
e∈K,x∈X

((E, s)(e)(x)⊗ 𝜒E
{e}

).(K, 𝜂X
x
),

Proof Let a ∈ E, z ∈ X  . Because (E, s)(e)(x)⊗ 𝜒X

{e}
=

s(e)(x)⊗ 𝜒E

{e}
∈ R(E) , it follows that

  ◻

The following theorem describes three equivalent defi-
nitions of the soft F-transform for L -fuzzy soft sets.

Theorem 3 Let X, Y ∈ ��� and let G ∶ T(X) → T(Y) be a 
mapping. Then, the following statements are equivalent. 

(1) There exists a �-partition A = {(K, py) ∶ y ∈ Y} of X 
such that for all (E, s) ∈ T(X) , 

(2) For the monad � , there exists a �-relation S ∶ X → T(Y) 
such that 

(3) G ∶ T(X) → T(Y) is a complete R(K)-semimodule 
homomorphism

Proof (1)⇒(2): Let A = {(K, py) ∶ y ∈ Y} be a soft partition 
of X. We define a �-relation S ∶ X → T(Y) such that

According to (13),(14) and (15) from Definition 16, for 
(E, s) ∈ T(X) we obtain

(
T(X)⨁

e∈K,x∈X

((E, s)(e)(x)⊗ 𝜒E
{e}

).(K, 𝜂X
x
)

)
(a)(z)

=

T(X)⨁
e∈K,x∈X

(K, (s(e)(x)⊗ 𝜒E
{e}

) ∗ 𝜂X
x
)(a)(z)

=
⋁

e∈E,x∈X

(s(e)(x)⊗ 𝜒E
{e}

⊗ 𝜂X
x
)(a)(z) = s(a)(z)

= (E, s)(a)(z).

(16)G(E, s) = (E, s) ∈ T(Y),

(17)∀e ∈ E, y ∈ Y , s(e)(y) =
⋁
x∈X

s(e)(x)⊗ py(e)(x),

(18)G = S ▵ 1T(X) ∶ T(X) → T(Y), .

x ∈ X, S(x) = (K, qx) ∈ T(Y),

y ∈ Y , e ∈ K, qx(e)(y) = py(e)(x).
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and the equality (18) holds.
(2)⇒(3): Let the condition (18) holds for the monad � . 

We prove that G = S ▵ 1T(X) ∶ T(X) → T(Y) is a R(K)-semi-
module homomorphism. Let {(Ei, si) ∶ i ∈ I} ⊆ T(X) . For 
simplicity, if (E, s) ∈ T(X) , instead of (S ▵ 1T(X))(E,s) which 
is used in (13), we simply write s . Therefore,

For e ∈
⋂

i∈I Ei and y ∈ Y  , according to (13–15), analo-
gously as in the previous implication, we obtain

On the other hand, we have

Further, for � ∈ R(K), (E, s) ∈ T(X) and for e ∈ E, y ∈ Y  , 
we have

(S ▵ 1T(X,K))(E, s)

= (K
S▵1T(X,K)
(E,s)

, (S ▵ 1T(X,K))(E,s)) ∈ T(Y),

K
S▵1T(X)
(E,s)

= E ∩
⋃
x∈X

K = E,

∀e ∈ E, y ∈ Y , (S ▵ 1T(X))(E,s)(e)(y)

=
⋁
x∈X

1T(X),(E,s)(e)(x)⊗ S(x)(e)(y)

=
⋁
x∈X

(E, s)(e)(x)⊗ py(e)(x) = G(E, s)(e)(y),

(E, s) ∶= (S ▵ 1T(X))(E, s).

G

(
T(X)⨁
i∈I

(Ei, si)

)
(e)(y) = G

(⋂
i∈I

Ei,
⋁
i∈I

si

)
(e)(y)

= (S ▵ 1T(X))

(⋂
i∈I

Ei,
⋁
i∈I

si

)
(e)(y) =

(⋂
i∈I

Ei, s

)
(e)(y)

=
⋁
x∈X

(⋂
i∈I

Ei,
⋁
i∈I

si

)
(e)(x)⊗ S(x)(e)(y)

=
⋁
x∈X

⋁
i∈I

si(e)(x)⊗ S(x)(e)(y)

=
⋁
i∈i

⋁
x∈X

si(e)(x)⊗ S(x)(e)(y).

(
T(Y)⨁
i∈I

G(Ei, si)

)
(e)(y)

=

(
T(Y)⨁
i∈I

(S ▵ 1T(X)

)
(Ei, si))(e)(y)

=

(
T(Y)⨁
i∈I

(Ei, si)

)
(e)(y)

=

(⋂
i∈I

Ei,
⋁
i∈I

si

)
(e)(y) =

⋁
i∈I

si(e)(y)

=
⋁
i∈I

⋁
x∈X

si(e)(x)⊗ S(x)(e)(y).

Therefore,  G  is  a complete R(K)-semimodule 
homomorphism.

(3)⇒(1): Let G ∶ T(X) → T(Y) be a complete R(K)-sem-
imodule homomorphism. For y ∈ Y  we define a function 
py ∶ K → LX such that

Let A = {(K, py) ∶ y ∈ Y} ⊆ T(X) . Therefore, A  is a soft 
partition of (X, K).

Let (E, s) ∈ T(X) . According to Lemma  3, for 
a ∈ E, y ∈ Y  we have

Therefore, conditions (16), (17) hold for G.   ◻

Remark 4 A mapping G ∶ T(X) → T(Y) defined in (20), (21) 
will be called the soft F-transform of X based on a soft parti-
tion A  and it will be denoted by TX,A .

Analogously to hesitant or intuitionistic L -fuzzy sets, 
it holds that F-transform of classical fuzzy sets is a special 
case of soft F-transform.

Proposition 9 The standard F-transform of L -fuzzy sets is 
a special case of the soft F-transform.

Proof According to Definition 6, we set
(1) For a fuzzy partition A = {sy ∶ y ∈ Y} of a set 

X, we consider a �-partition AX ⊆ �(X) , such that 
AX = {(K, ty) ∶ y ∈ Y} , where ty(k)(x) = sy(x) for arbitrary 
x ∈ X.

(3) We define a natural transformation Φ ∶ � → Z 
such that for X ∈ ��� , ΦX ∶ T(X) → Z(X) is such that for 
(E, t) ∈ T(X) , ΦX(E, t)(x) =

⋁
k∈K t(k)(x) . We show that Φ 

G(𝜓 .(E, s))(e)(y) = G(E,𝜓 ∗ s)(e)(y)

= (E,𝜓 ∗ s)(e)(y) = 𝜓 ∗ s(e)(y)

=
⋁
x∈X

(𝜓 ∗ s)(e)(x)⊗ S(x)(e)(y)

=
⋁
x∈X

𝜓(e)⊗ s(e)(x)⊗ S(x)(e)(y)

= 𝜓(e)⊗
⋁
x∈X

s(e)(x)⊗ S(x)(e)(y) = 𝜓 ∗ s(e)(y)

= (𝜓 .G(E, s))(e)(y).

e ∈ K, x ∈ X, py(e)(x) = G(K, �X
x
)(e)(y) ∈ L.

G(E, s)(a)(y) = G

( ⋁
e∈E,x∈X

(E, s)(e)(x)⊗ 𝜒E
{e}

)
.(K, 𝜂X

x
))(a)(y)

=
⋁

e∈E,x∈X

s(e)(x)⊗ 𝜒E
{e}

(a)⊗ G(K, 𝜂X
x
)(a)(y)

=
⋁
x∈X

s(a)(x)⊗ py(a)(x).
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is a natural transformation, i.e., we prove that the diagram 
commutes: 

 for arbitrary morphism f ∶ X → Y . According to [39]; The-
orem 1, identities (7)–(9), for arbitrary (E, s) ∈ T(X), y ∈ Y  
we have

and Φ is a natural transformation.
(4) Then, the following diagram commutes: 

 For (E, s) ∈ T(X), y ∈ Y  , we obtain

and the diagram commutes. Therefore, FX,A  is a special case 
of TX,AX

.
  ◻

5  IF–THEN Rules: Possible Application 
of Generalized F‑transform

One of the key advantages of fuzzy mathematics is its abil-
ity to model real-world phenomena that are inaccurate and 
vague. Due to their complexity and vagueness, an exact 
description of the behavior of these systems cannot be real-
ized in most cases using the tools of the classical mathemat-
ics. On the other hand, in many cases, the behavior of these 
systems can be expressed by a verbal description expressing 
their causality. A typical example of such a description are 

Z(f ).ΦX(E, s)(y) =
⋁

x,f (x)=y

ΦX(E, s)(x)

=
⋁

x,f (x)=y

⋁
k∈K

s(k)(x) =
⋁
k∈K

T(f )(E, s)(k)(x)

= ΦY .T(f )(E, s)(y)

Φ|A|.TX,AX
(E, s)(y) = Φ|A|(S ▵ 1T(X))(E, s)(y)

=
⋁
k∈K

S ▵ 1T(X)(E, s)(k)(y) =
⋁
k∈K

⋁
x∈X

s(k)(x)⊗ S(x)(k)(y)

=
⋁
k∈K

⋁
x∈X

s(k)(x)⊗ su(x)

= FX,A(ΦX(E, s))(y) = FX,A.ΦX(E, s)(y).

IF–THEN rules, expressing the output response of a system 
if a value is entered at the input of this system. The advan-
tage of these linguistic models is, among other things, that 
they make it possible to describe input values using linguis-
tic expressions representing values of input quantities.

A typical example of structures of this type are the so-
called  fuzzy systems. In general, a fuzzy system is any 
system whose variables (or, at least, some of them) range 
over states that are fuzzy numbers rather than real numbers. 
These fuzzy numbers may represent linguistic terms such as 
very small, medium and so on, as interpreted in a particular 
context. If they do, the variables are called linguistic vari-
ables. In a linguistic variable, linguistic terms representing 
approximate values of a base variable, relevant to a particu-
lar application, are expressed by fuzzy sets in sets of input 
or output values. A typical example of the IF–THEN rules 
can be described as

If at the input of a system described by the IF–THEN rule 
R ∶ IF X = A THEN Y = B the input variable has the lin-
guistic value X = A� , where A′ is some linguistic expression 
or directly fuzzy set in the input set X, then using the so-
called fuzzy inference mechanism, it is possible to determine 
the output value as a fuzzy set B′ in Y. Hence, the fuzzy 
inference is a mapping Z(X) → Z(Y) that transforms the 
input fuzzy sets in X to the output fuzzy sets in Y according 
the rule R. IF–THEN rules and the fuzzy inference mecha-
nism are typically used in fuzzy decision systems or fuzzy 
expert systems, or fuzzy control systems. For illustrative 
references of this applications see [3, 24, 25, 28, 53].

IF–THEN rules have so far been used mainly for classic 
fuzzy sets. The use of this method for applications using 
fuzzy soft sets, intuitionistic fuzzy sets or hesitant fuzzy sets 
was more or less based on ad hoc modifications of existing 
methods for classical fuzzy sets. For illustration of these 
modifications see [9, 19, 26].

In this section, we show how using fuzzy transform 
the fuzzy inference mechanisms for these structures can 
be defined, which allow to create, e.g., fuzzy type expert 
systems, fuzzy control systems or fuzzy type decision sys-
tems, whose values of input and output variables are fuzzy 
soft sets, hesitant fuzzy sets or fuzzy soft sets. In this way, 
the application potential of these fuzzy type structures is 
extended.

Let us consider any of hesitant, intuitionistic or fuzzy soft 
type structures and let � = (Q,◊, �),R = (R,+,×, 0R, 1R) 
and Q(X) = (Q(X),⊕X , 0X) be the monad, semiring and R
-semimodule, respectively, corresponding to this structure 
and defined in previous sections. It follows from the con-
struction of these structures that any element s ∈ Q(X) is 
a mapping s ∶ X → R.

R ∶ IF X = high THEN Y = very_low.
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For simplicity, we assume that the fuzzy system we deal 
with has only one input variable X and one output variable 
Y. For description of input and output values we use fuzzy 
type elements of a given type, i.e., input or output element 
could be hesitant fuzzy sets or intuitionistic fuzzy sets of 
fuzzy soft sets. In that case, the i-th IF–THEN rule Si has 
the following form:

where si ∈ Q(X) and ti ∈ Q(Y) . Instead of fuzzy type struc-
tures si and ti , we can alternatively use linguistic values 
describing, e.g., a size. In that case, we must interpret these 
linguistic values as fuzzy type objects in the respective uni-
verse of variables X and Y. Using these rules Si, i ∈ I , we 
can define a monadic relation

such that for arbitrary x ∈ X, y ∈ Y ,

According to any of Theorem 1–3, this monadic relation 
defines the mapping

which represents the fuzzy type inference mechanism 
transforming input values X = s ∈ Q(X) to output values 
Y = t ∈ Q(Y) according to rules Si, i ∈ I . Using results from 
Lemmas 1–3 , the fuzzy type inference mechanism S→ can be 
simplified according to the following proposition.

Proposition 10 Let �,R,Q(X) and the IF–THEN rules Si be 
defined as above. Then the fuzzy type inference mechanism 
defined by these fuzzy type rules Si is such that for arbitrary 
s ∈ Q(X) , y ∈ Y ,

where py ∈ Q(X) are elements of the �-partition 
{py ∶ y ∈ Y} defined by

Therefore, the fuzzy type inference mechanisms R→ 
defined by fuzzy type rules Ri is a fuzzy type transform 
defined by a �-partition.

Example 4 Let L  be the Lukasiewicz algebra and let us 
consider the intuitionistic fuzzy type inference mechanism 

Si ∶ IF X = si THEN Y = ti,

S ∶ X → Q(Y),

S(x)(y) =

R∑
i∈I

si(x) ×R ti(y).

S→ = S◊1Q(X) ∶ Q(X) → Q(Y),

S→(s)(y) =

R∑
x∈X

py(x) ×R s(x),

x ∈ X, py(x) =

R∑
i∈I

si(x) ×R ti(y) = S(x)(y).

with input variable X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and output 
variable Y = {1, 2, 3, 4, 5, 6} defined by the following intui-
tionistic fuzzy type IF–THEN rules:

The linguistic values Very_big, Small, Medium,Big are 
interpreted in sets X, Y, respectively, as L -valued intui-
tionistic fuzzy sets from J(X) defined by the following 
tables:

• Intuitionistic fuzzy sets in X: 

X Very_big Medium

1 (0,1) (0.1,0.8)
2 (0,0.9) (0.2,0.7)
3 (0.1,0.7) (0.4,0.4)
4 (0.3,0.6) (0.8,0.1
5 (0.4,0.4) (1,0)
6 (0.4,0.4) (0.9,0.1)
7 (0.6,0.3) (0.6,0.3)
8 (0.8,0.1) (0.4,0.5)
9 (0.9,0) (0.1,0.9)
10 (1,0) (0,1)

• Intuitionistic fuzzy sets in Y: 

Y Small Big

1 (1,0) (0,1)
2 (0.7,0.2) (0.3,0.6)
3 (0.3,0.6) (0.5,0.4)
4 (0.1,0.6) (0.8,0.1)
5 (0,0.9) (0.9,0)
6 (0,1) (1,0)

Let us consider the input value described as the intuitionistic 
fuzzy sets (u, v) ∈ J(X) defined by the following table.

X (u, v)

1 (0,0.7)
2 (0.2,0.6)
3 (0.5,0.3)
4 (0.8,0.2)
5 (1,0)
6 (0.9,0.1)
7 (0.5,0.4)
8 (0.2,0.7)
9 (0.1,0.8)
10 (1,0)

S1 ∶ IF X = Very_big THEN Y = Small,

S2 ∶ IF X = Medium THEN Y = Big.
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We want to determine the response of our system described 
by these IF–THEN rules. This reaction is the intuitionistic 
fuzzy set S→(u, v) in the set Y. Using definitions of the semir-
ing R and the R-semimodule J(X) from Propositions 4 and 
5 , the output value S→(u, v) is the intuitionistic fuzzy set in Y 
is defined by Proposition 10 with operations from R , i.e., for 
yk ∈ Y we obtain

If we denote values of corresponding intuitionistic fuzzy 
sets by

for y3 ∈ Y  we obtain

Hence, the output value y3 corresponds to the reaction of 
the system on the input value (u, v) with the intuitionistic 
membership value (0.5, 0.3).

6  Matrix Calculations of F‑transforms 
H
X ,A, JX ,A  and T

X ,A

In this section, we show how we can calculate the 
F-transform of these generalized fuzzy sets using matri-
ces in semirings and semimodules. Let us consider 
any of hesitant, intuitionistic or fuzzy soft type struc-
tures and let � = (Q,◊, �),R = (R,+,×, 0R, 1R) and 
Q(X) = (Q(X),⊕X , 0X) be the same monad, semiring and 
R-semimodule that were mentioned in previous sections.

Let A = {sy ∶ y ∈ Y} be a �-partition of X and let 
FX,A ∶ Q(X) → Q(Y) be the F-transform defined by a �
-partition A  according to the part (1) of corresponding 
Theorems 1,2 or  3. According to Lemmas 1–3, the set 
BX = {�X(x) ∈ Q(X) ∶ x ∈ X} is a base of the R-semimodule 

S→(u, v)(yk) =

R∑
i=1,…,10

[Very_big(xi) ×R Small(yk)+R

Medium(xi) ×R Big(yk)] ×R (u, v)(xi).

Very_big(xi) = (�i, �i), Medium(xi) = (�i, �i),

Small(yk) = (�k, �k), Big(yk) = (�k, �k),

S
→(u, v)(y3)

=

R∑
i

((𝛼
i
⊗𝜔3) ∨ (𝛾

i
⊕ 𝜌3),

(𝛽
i
⊕ 𝜏3) ∧ (𝛿

i
⊕ 𝜎3)) ×R

(u(x
i
), v(x

i
))

=

(
10⋁
i=1

((𝛼
i
⊗𝜔3) ∨ (𝛾

i
⊗ 𝜌3))⊗ u(x

i
),

10⋀
i=1

((𝛽
i
⊕ 𝛿3) ∧ (𝛿

i
⊕ 𝜎3))⊕ v(x

i
)

)
= (0.5, 0.3).

Q(X) . Hence, for arbitrary object f ∈ Q(X) there exist coef-
ficients fx ∈ R such that

where . is the external multiplication in Q(X) . Using the R
-matrix notation, we can write

where �X it the matrix of the base BX of the type |X| × 1 , 
with elements from R , � is a matrix of the type 1 × |X| and 
the external multiplication of the R-matrix � = ‖Axy‖xy and 
Q(X)-matrix � = ‖Bx‖x of the type |X| × |Y| and 1 × |X| , 
respectively, is defined by

where the operation ⊕ and external multiplication “.” are 
defined in Q(X).

It is easy to see that for arbitrary x ∈ X, y ∈ Y  , 
FX,A(�X(x))(y) = sy(x) . Let us define the R-matrix � of the 
type |X| × |Y| by

Therefore, for f ∈ Q(X) , the F-transform FX,A(f ) can be cal-
culated by

The matrix � can be called the matrix of the �-partition 
A  and × is the matrix multiplication defined by operations 
from R , i.e.,

On the other hand, for arbitrary R-matrix � = ‖�xy‖ 
of the type |X| × |Y| , � is the matrix of a �-partition 
A = {py ∶ y ∈ Y} of X, where py(x) = �xy for arbitrary y ∈ Y

.
Let us consider the following illustrative example.

Example 5 Let L  be the Lukasiewicz algebra and let us 
consider the F-transform for hesitant fuzzy sets. Let R and 
H(X) be from Propositions 1 and 2 , respectively, where 
X = {1, 2, 3, 4} . Let Y = {1, 2} and let us consider the R
-matrix of the type 4 × 2

f =

Q(X)⨁
x∈X

fx.�X(x),

f = ‖fx‖x ⋆ �X = � ⋆ �X ,

� ⋆ � = � = ‖Cy‖y∈Y ,

Cy =

Q(X)�
x∈X

Bx.Axy,

� = ‖�xy‖x,y, �xy = sy(x).

FX,A(f ) = � ⋆ (� ⋆ ��)

= (� ×�) ⋆ ��.

� ×� = ‖
R�
x∈X

(fx × �xy)‖y.
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The matrix � defines a �-partition A = {h1, h2} ⊆ H(X) , 
such that h1(x) = �x,1 and h2(x) = �x,2 for arbitrary x ∈ X . 
Let h = � ⋆ �� ∈ H(X) be defined, e.g., by the R-matrix

Then the hesitant F-transform of h can be calculated by

  ◻

In the next example, we show that the analogy of Zadeh’s 
extension principle for hesitant, intuitionistic of fuzzy soft 
sets can be calculated using F-transform from Theorems 
1,2,3. For illustration, we show how the Zadeh’s extension 
can be calculated for fuzzy soft sets only.

Example 6 Let L  be the Lukasiewicz algebra. Let 
f ∶ X → Y  be a mapping and. Let K be a fixed set of criteria 
and let us consider the semiring R(K) and the R(K)-semi-
module T(X) of L -fuzzy soft sets from Propositions 7 and 
8. Let the R(K)-matrix � = ‖�xy‖x,y of the type |X| × |Y| 
be defined by

Matrix � represents a �-partition A  of X and the F-trans-
form TX,A  is the Zadeh’s extension f→ of a mapping f, i.e.,

� = ‖�xy‖x,y =
⎡⎢⎢⎢⎣

{1, 0.9} {0.6}

{1, 0.7} {0.5, 0.4}

{0.3} {1}

{0.5} {1, 0.9}

⎤⎥⎥⎥⎦
.

� = ‖h(x)‖x = ‖{0.3}, {0.4}, {0.9}, {0.9, 0.8}‖.

HX,A(h) = (� ×R �) ⋆ ��

=

������

R�
x∈X

h(x)⊗ 𝜆xy

������y
=

������

R�
x∈X

h(x)⊗ 𝜆xy

������y
=
��
{0.3} {0.4} {0.9} {0.9, 0.8}

�

×R

⎡⎢⎢⎢⎣

{1, 0.9} {0.6}

{1, 0.7} {0.5, 0.4}

{0.3} {1}

{0.5} {1, 0.9}

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
⋆

�
𝜎Y (y1)

𝜎Y (y2)

�

=
�
{0.1, 0.2, 0.3, 0.4}, {0, 0.8, 0.9, 0.7}

�

⋆

�
𝜎Y (y1)

𝜎Y (y2)

�

�xy =

{
1R(K) f (x) = y,

0R(K) f (x) ≠ y.
.

  ◻

7  Conclusions

The issue of lattice-valued F-transform of lattice-valued 
fuzzy sets appears to be an important tool not only for the 
theory of fuzzy sets but above all as a method with a wide 
range of applications. On the other hand, there are many 
generalizations of classical fuzzy sets that are used in many 
applications. It is, therefore, natural to deal with the prob-
lem of connecting these two approaches and to deal with 
the F-transform method applied to these generalizations of 
fuzzy sets. In this paper, we dealt with this issue for hesitant, 
intuitionistic and fuzzy soft sets, which have an important 
position in terms of applications. To introduce the concept 
of F-transform in these structures, we used three different 
methods, which for classical fuzzy sets lead to an equiva-
lent definition of the F-transform, and we have generalized 
these methods for any of these structures. These methods 
are based on the general definition of a fuzzy partition, the 
definition of F-transform using a monad, and the definition 
of F-transform as a special semiring homomorphism.

The advantage of this procedure is, among other things, 
that it allows the application to other fuzzy structures based 
on classical fuzzy sets, such as various combinations of the 
three structures.

To further extend the F-transform method for various 
fuzzy type structures, it will be necessary to deal with, 
among other things, the issue of upper and lower variants 
of F-transform for these structures and especially the issue 
of inverse lattice-valued F-transform, which forms a direct 
link to applications.

Just as the lattice-valued F-transform is important 
for researching the theory of this method, the integral 

f→ = TX,A ∶ T(X) → T(Y),

(E, s) ∈ T(X), f→(E, s) = ((�, �) ×R(K) �) ⋆ ��

=

‖‖‖‖‖‖

T(X)∑
x∈X

(𝜆xy ×R(K) (E, s)(e)(x))

‖‖‖‖‖‖e∈K,y∈Y
⋆ ��

=
‖‖‖‖‖
⋁
x∈X

𝜆xy(e)⊗ (E, s)(e)(x)
‖‖‖‖‖e∈K,y∈Y

⋆ ��

=

‖‖‖‖‖‖
⋁

x∈X,f (x)=y

(E, s)(e)(x)

‖‖‖‖‖‖e∈K,y∈Y
⋆ ��.
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F-transform method for [0, 1]-valued fuzzy sets is important 
for practical applications. It would be therefore appropriate 
to deal with this variant of F-transform for these generaliza-
tions of fuzzy sets.
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