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Abstract
People counting has been investigated extensively as a tool to increase the individual’s safety and to avoid crowd hazards 
at public places. It is a challenging task especially in high-density environment such as Hajj and Umrah, where millions of 
people gathered in a constrained environment to perform rituals. This is due to large variations of scales of people across 
different scenes. To solve scale problem, a simple and effective solution is to use an image pyramid. However, heavy com-
putational cost is required to process multiple levels of the pyramid. To overcome this issue, we propose deep-fusion model 
that efficiently and effectively leverages the hierarchical features exits in various convolutional layers deep neural network. 
Specifically, we propose a network that combine multiscale features from shallow to deep layers of the network and map 
the input image to a density map. The summation of peaks in the density map provides the final crowd count. To assess 
the effectiveness of the proposed deep network, we perform experiments on three different benchmark datasets, namely, 
UCF_CC_50, ShanghaiTech, and UCF-QNRF. From experiments results, we show that the proposed framework outperforms 
other state-of-the-art methods by achieving low Mean Absolute Error (MAE) and Mean Square Error (MSE) values.
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1 Introduction

Automated crowd analysis is crucial for efficient crowd man-
agement. Crowd analysis has numerous application, such as 
panic detection [64], crowd behavior understanding [44, 57], 
crowd tracking [2], crowd flow segmentation [1], crowd con-
gestion detection [33], and crowd counting [46, 62]. Among 
these application, crowd counting problem has received tre-
mendous attention from different researchers. This is due 
to reason that crowd counting can have potential applica-
tions in crowd surveillance and scene understanding. For 
effective crowd surveillance, it is imperative to predict the 
actual count and location of individuals in the scene. Crowd 
counting provides support in managing massive crowd, for 
example, during Hajj and Umrah, where millions of Muslims 
(from all over the world) gather in Holy city of Makkah to 

perform obligatory rituals [18]. It is the priority of the Saudi 
government to ensure smooth conduct of Hajj and Umrah. 
Therefore, researchers have proposed different automated 
methods [32] for efficient crowd management. For efficient 
crowd management, one of the priorities is to estimate crowd 
count and know distribution of people in the environment, 
which is the prime goal of this paper.

The goal of a crowd counting system is to count pedes-
trians in given images/videos irrespective of the scene and 
density. However, crowd counting is a difficult job, as it 
offers many challenges, such as variations in scales, clut-
ter background, perspective distortions, and low-resolution 
images [56], as shown in Fig. 1. Among these challenges, 
scale variations are a challenging problem [65] and have not 
been effectively addressed so far for crowd counting prob-
lem. Scale variations refers to the variations in object’s size 
(in our case, heads). These variations are due the perspective 
distortions caused by the location of the camera relative to 
the scene.

Several attempts have been made to solve the scale prob-
lem. A simple and straightforward solution is to re-size the 
image to different scales and learn multiple object detec-
tors. Each detector will detect an object that falls in its scale 
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range. Another simple way is to generate hand-crafted fea-
ture pyramid to detect different objects of different scales 
[16]. However, processing all scales of the pyramid leads to 
computational cost.

Due to the success of Deep Convolutional Neural Net-
works (DCNNs) in various tasks of computer vision, for 
example, object detection, classification and segmentation, 
researchers employ various CNN architectures to learn 
non-linear function from images to crowd count. However, 
CNN cannot implicitly handle the scale variations [25]. To 
make CNN adaptive to scale variations, it must be trained to 
capture scale variations to a certain extent. For example, a 
scale-aware network is proposed in [37] that resizes the input 
image in a way to bring all objects to similar scale and then 
trained a single-scale detector. Other recent methods [23, 26, 
48] utilize the feature maps of the top layers to detect objects 
of different sizes. Generally, the receptive field of the top-
most layers is large and contains little or no details about the 
small objects. Therefore, it compromises the performance 
of a detector in detecting small objects, especially people in 
high-density crowds. Furthermore, these networks require 
more parameters and have complex architecture to obtain 
desirable performance.

To handle the scale problem, we propose a framework 
that fuses feature maps from different layers for crowd 
counting. Specifically, the proposed framework consist of 
two parts, i.e., encoder and decoder. In the encoder part, 
the framework adopts fusion strategy that combines features 
from multiple layers to capture the details of heads of multi-
ple scales. The decoder part estimates the crowd count and 

generates density map, where high peaks indicate the pres-
ence of human heads in that particular location.

The contribution of the proposed framework can be sum-
marized as follows:

• To capture the information of human heads of multiple 
scales, we proposed a fusion strategy that combines the 
information from different layers of the network.

• The framework estimates the crowd density and crowd 
count simultaneously. The framework predicts density 
and count both in low- and high-density crowded scenes 
irrespective of the scene and density.

• The propose method has been tested on different public 
benchmark datasets. From experiment results, we dem-
onstrate that the effectiveness of proposed framework 
achieves superior performance compared to other refer-
ence methods.

2  Related Works

Crowd counting or density estimation methods can be 
broadly categorize into two main groups: holisticapproach 
and localapproach . In a holistic approach, global features of 
the image, i.e., textures, edges, and foreground pixels, are 
extracted from the image and a classifier/regression-based 
model is trained to learn the mapping between the features 
and actual crowd size. On the contrary, local approach uti-
lizes the local features of image which are specific to indi-
viduals or group of people. We provide details of these 
approaches in the following subsections.

2.1  Holistic Approaches

Holistic approaches estimate the crowd size by utilizing the 
global image features. Features utilized by these methods 
include textures [42], foreground pixels [17], and edge fea-
tures [34]. The methods proposed in [40, 42] utilize gray 
level co-occurrence matrix (GLCM) for estimating the 
crowd density. Minkowski fractal dimension method is pro-
posed in [41] for extracting texture features. Xiaohua et al. 
[61] achieve classification accuracy of 95% by employing 
the wavelet descriptors and SVM to classify the crowd den-
sity into four classes. However, this method performs well in 
low-density crowds, however, faces challenges when applied 
on high-density crowded scenes. Rahmalan et al. [27] pro-
posed a method that achieved a superior performance on 
afternoon scene, due to less variations in illumination when 
compared to the morning dataset. This highlights the draw-
backs of using texture features when employed in real-time 
situations, since texture features are not robust to illumina-
tion changes.

Fig. 1  Sample frames from the datasets
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Other approaches utilize foreground pixels and edges to 
estimate the crowd size. For example, Regazzoni et al. [47] 
combined multiple edge detectors, such as vertical edges for 
detecting the legs and arms of the individuals. Davies et al. 
[17] found the correlation between the size of crowd and 
pixels belonging to foreground to establish a principle that 
the number of people is linearly proportional to foreground 
pixels and number of edges. Such features are also used in 
[11–13], where crowd size is estimated by employing a feed-
forward neural network. The above-mentioned approaches 
rely on the static background, where the scenes are relatively 
captured at a high camera angle.

However, foreground pixels alone cannot provide suffi-
cient information about the number of people in the scene, 
since the objects in the distance are smaller and will be 
represented by less number of pixels from the foreground. 
Therefore, as a solution, Ma et al. [38] propose a crowd esti-
mation framework that incorporates perspective distortions. 
However, this method cannot handle partial or full occlu-
sions. Similarly, Roqueiro et al. [50] applied the Median 
Background computing technique to define the foreground 
pixels. A threshold value is applied on the pixels followed by 
a morphological operations to smooth the results. A classi-
fier was then trained to categorize the images as either con-
tain zero persons or one or more persons. Similarly, [6–9] 
adopt holistic approaches to count the number of people in 
scene and account for occlusion and other non-linearities.

To summarize the discussion, holistic approaches tend 
to estimate the crowd size by exploiting global features of 
image. However, due to high variations in crowd dynamic, 
distribution, and density, crowd size is difficult to estimate. 
Therefore, as a solution, local approaches are proposed to 
overcome the limitations of global approaches.

2.2  Local Approaches

These methods use local features that are associated with 
pedestrian or groups of pedestrians with an image. These 
approaches can further be sub-categorized into two groups: 
(i) detection-based approaches use head, face to localize the 
individual in an image, where total number of detections 
represent the crowd count; (ii) localization-based method 
divides image into overlapping [24, 29, 62] or non-overlap-
ping patches [10, 51, 63], and then, features are computed 
from each patch and crowd size is predicted by applying 
regression model.

Detection-based approaches are suitable to the scenes 
where the crowd is spare, i.e., the people in the scene are 
well separated and their bodies are fully visible. There-
fore, pedestrian detectors/head detectors [16, 19, 21] are 
employed to get the crowd count. These methods work well 
in low- density crowds, where pedestrians are not occluded; 
however, in the real-time environment, pedestrians are 

always occluded and their bodies are not visible enough 
that can be detected by pedestrian detection methods. There-
fore, as alternative, localization-based methods are proposed 
which divide the input image into a number of overlapping/
non-overlapping sub-regions, where counting is done in 
each region by employing regression model. For example, 
localization is performed by employing key points cluster-
ing method in [14, 14, 14, 15]. In these methods, SURF 
features are extracted from an input image. Stationary points 
are removed by taking the mask of features points with opti-
cal flow. The remaining features are clustered into different 
groups by employing K-means algorithm. The group size 
is then estimated by employing a regression model. The 
shortcoming of these approaches is that these methods are 
restricted to moving objects and could not count the people 
who are stationary in the scene.

2.3  Convolution Neural Networks (CNN)

Deep Convolutional Neural Networks have achieved remark-
able success in various fields of computer vision such as 
detection, classification, and semantic segmentation. Some 
researchers made proposed different deep learning frame-
works for crowd counting in the recent two years. For crowd 
counting, Wang et al. [60] proposed first regression base 
CNN model. Fu et al. [22], on the other hand, proposed a 
deep convolutional network that classifies the input image 
into five classes. Shang et al. [53] leverage contextual infor-
mation at both local and global levels estimate the crowd 
count by employing end-to-end CNN. Zhang et al. [63] pro-
posed architecture that consists of multiple column, where 
each column implements a CNN each having different recep-
tive fields to capture scale variations caused by perspective 
distortions. The network takes an input image of arbitrary 
size and predicts corresponding density map. Onoro-Rubio 
et al. [45] proposed a scale-aware crowd density estima-
tion model, Hydra CNN that estimates crowd densities in 
complex crowded scenes without the need of geometric 
information of the scene. Sang et al. [52] propose a method, 
namely, SaCNN that estimates high-quality density maps, 
where crowd count is obtained by the integrating these den-
sity maps. Sindagi et al. [55] proposed end-to-end cascaded 
CNN that simultaneously estimate the crowd count and den-
sity maps. Liu et al. [36] proposed DecideNet that separately 
generates different density maps. Attention module is used 
to obtain final crowd count from these two different den-
sity maps. Zhang et al. [63] estimated the number of people 
in a single image using a Convolutional Neural Networks 
(CNNs) regression model with two configurations. One is a 
network to estimate head count from a given image, while 
the other one is to construct the density map of the crowd. 
The final count was obtained by integrating both output. 
Kang et al. [31] proposed a crowd segmentation approach by 
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constructing a fully convolutional neural network (FCNN) 
based on both appearance features and motion features. They 
used one layer of a convolution kernel instead of the fully 
connected layers in the original CNNs to define the labels 
at each pixel in the segmentation map. The output is a seg-
mentation map with different probabilities of the crowd on 
each pixel. Boominathan et al. [4] use fully convolutional 
network and combine both deep and shallow to estimate the 
crowd density from crowded images. The shallow network 
was designed with three convolutional layers to detect the 
small head blobs arising from people away from the camera. 
They concatenated the predictions from both networks to 
predict the crowd density. Crowd count was then obtained 
by a linear summation of the peaks of the predicted density 
map.

3  Proposed Methodology

In this section, we provide the details of proposed framework 
for estimating crowd count in complex scenes. The proposed 
crowd counting architecture shown in Fig. 2 uses feature 
maps from different levels that represent features at differ-
ent scales that are fused together for crowd counting task. 
Generally, the proposed architecture follows the pipeline of 
popular crowd density estimation methods [35, 59, 60] that 
comprise of two networks. The first network is an encoder 

that takes the input image, and extracts multilevel features 
from the input image, and second network is a decoder stage 
that generates density map. The final density map represents 
the count of people per-pixel in the input image (Fig. 3).

The goal of counting framework is to estimate the distri-
bution of people in input image by optimizing a defined loss 
function. Similar to other crowd counting framework, our 
also follows the architecture of VGG-16 [54]. VGG-16 is a 
popular state-of-the-art CNN and received tremendous suc-
cess in numerous image classification tasks. The architecture 
of VGG-16 is divided into five covolutional blocks, where 
each convolutional block is followed by a max-pooling layer. 
The receptive field size of all convolutional layers is set to 
smallest size of 3 × 3 pixels with stride of 1. The size of 
max-pooling layer is 2 × 2 with stride of 2.

The first convolutional block is represented by conv1_x 
comprising of two convolutional layers with filter size of 
3 × 3 and containing 64 channels each. The first covolutional 
block is succeeded by a max-pooling layer. The second covo-
lutional block is represented by conv2_x and also consists 
of two convolutional layers with the same filter size ( 3 × 3 ) 
and the number of channels in each convolutional layer of 
block conv2_x is 128. The second convolutional block is fol-
lowed by another max-pooling layer of size 2 × 2 and stride 
of 2. The third convolutional block conv3_x comprises of 
three convolutional layers, each with filter size of 3 × 3 and 
256 channels. A Max-pooling layer is applied after fourth 

Fig. 2  Architecture of proposed framework for crowd counting and density estimation. The input is the arbitrary size image and output is density 
map. The summation of density map provides the final crowd count in the given image
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convolutional block (conv4_x) that consists of set of three 
convolutional layers of filter size 3 x 3 and consist of 512 
channels. The fifth convolutional block (conv5_x) is similar 
to conv4_x, followed by the 5th max-pooling layer. The stack 
of five convolutional blocks is followed by three fully con-
nected layers. The spatial resolution is reduced by 1/2 after 
passing through each convolutional block; however, the spa-
tial resolution of the feature map is intact inside the block.

Crowd counting methods [59, 60] utilize the features from 
the last ( 5th ) convolutional layer. However, the last layers of 
deep neural networks contain rich contextual information, 
but less details about the small objects due to large recep-
tive fields. These higher order layers can be used to capture 
the global context of the scene. Furthermore, the resolution 
of feature maps after subsequent convolutional and pool-
ing layers is reduced that results in poor localization. On 
the other hand, the shallow layers contains rich informa-
tion about small objects due to small receptive field. The 
resolution of feature maps of these layers is large; however, 
the feature maps are noisy and require further processing 
to make them suitable for feature extraction. Since existing 
crowd counting methods use the last convolutional layer for 
feature extraction, they are, therefore, unable to capture the 
details of small objects in high-density crowds.

Unlike other methods that use the feature map of the last 
convolutional layer for crowd counting, we use multiple fea-
ture map from different layers to capture the details of small, 
medium, and large objects. For this purpose, we use fusion 
strategy of features that fuses the feature maps from the shal-
low and top layers. We also incorporate the feature maps of 
mid-level convolutional layers. We assume that utilization of 
feature maps from different convolutional layers assists the 
crowd counting task to achieve higher accuracy as possible.

We adopt the fusion strategy adopted in [39] and fuse the 
feature maps of conv3_x, conv4_x, and conv5_x. The size 
and number of channels of these feature maps are different. 

More precisely, the size of feature map of conv5_x is 1/2 of 
the feature map of conv4_x. Similarly, the size of feature 
map of conv4_x is 1/2 of the size of conv3_x. To effectively 
fuse feature maps of different resolutions, we perform two 
steps. First, we need to up-sample the resolution of higher 
order layers, i.e., conv4_x, and conv5_x by employing trans-
posed convolutional layer. Second, to make the number of 
channels of different feature maps equal, we apply 1 × 1 con-
volutional layer after transposed convolutional layer.

To combine conv4_x and conv5_x, we apply transposed 
convolutional layer of size 2 × 2 to conv5_x to make its size 
equal to conv4_x. Let F1 represents the fused feature map. 
We then apply 2 × 2 transposed convolutional layer to F1 
map to make its size equal to feature map of conv3_x. To 
make the number of channels equal, we apply 1 × 1 convo-
lutional layer to conv3_x with 512 number of channels. We 
then fuse the feature maps of conv3_x and F1 . Let F2 is the 
resultant fused feature map. To further suppress the alias-
ing effect, we apply 1 × 1 convolution layer to fused feature 
map. The feature map now combines rich semantic from 
the deeper layers and also fine-grained information about 
the small objects from shallow layers. The final feature map 
is provided as input to prediction layer which employ 1 × 1 
convolution and generates density value for each pixel of the 
feature map. We then up-sampled the final feature map by 
employing bi-linear interpolation to make its size equal to 
the size of input image.

3.1  Training and Implementation Details

We now discuss implementation and training details of the 
framework. Let S = {s1, s2,… , sn} represents n number of 
training images. We divide each image si into patches, each of 
size l x m. Let P = {p1, p2,… , pm} , represents the m number 
of patches involved in training the network. With each patch 
pi , we associate a density level di , that represents total number 

Fig. 3  a Original image. b Points (location of pedestrians) overlaid over the image. c Ground-truth density map generated using Eq. 2



 International Journal of Computational Intelligence Systems  (2021) 14:168

1 3

 168  Page 6 of 12

of people in each patch pi . We randomly choose patches for 
training and provide then as input to the proposed CNN. We 
employ a regression method to the learn features that represent 
crowd count in patch. However, during the training phase, we 
observed data imbalance problem. This is due to reason that in 
crowd counting datasets, the ground truth is always provided 
in the point annotations. Each point corresponds to the loca-
tion of pedestrian in the scene. Usually, high-density crowds 
contains few thousands of people. This means that we can 
generate few thousands of positive samples, while most of 
pixels will belong to the background. In this way, the number 
of negative samples will be thousand times greater than posi-
tive samples. This creates data imbalance problem which will 
lead to poor generalization of the crowd counting model.

To address this problem, we employ methods in [5, 55, 
63] to generate density map for training the network. Let hi is 
the position of pedestrian in the image. Then, delta function 
�(h − hi) for all positions of pedestrians in the image and can 
be expressed by Eq. 1

where � is the variance of the kernel G. The above density 
function is feasible for the scenes captured from the orthogo-
nal view. Such scenes do not suffer from perspective distor-
tions due to which the size of the analyzed objects is con-
stant. However, these pedestrian crowd scenes do not hold 
this assumption, where camera is usually installed at tilted 
position. Such configuration of the camera causes perspec-
tive distortions due to which the size of same objects appears 
different in disparate locations of the scene. To address this 
problem, we use a Gaussian kernel that compensates per-
spective distortions to generate density map [63]. To obtain 
continuous density function, we convolve H with G as in 
Eq. 2

The sum of the peaks of the density map represents crowd 
count in the given image. Figure shows the original image 
and their corresponding true crowd density maps.

We then define the training loss LE function through which 
the network learns set of parameters � . The loss function LE is 
the euclidean loss that measure the distance between the true 
density and predicted density maps and formulated as follows:

where � represents the parameter of the network learn during 
the training process, N represents the number of images used 

(1)H(h) =

n∑

j=1

�(h − hj),

(2)H(h) =

n∑

j=1

�(h − hj) ∗ G�(h).

(3)LE(�) =
1

N

N∑

j=1

∣∣ Kd(Sj;�) − Dj ∣∣
2,

for training, Sj is the current image, and Dj is the ground 
truth density map of image j. The optimization of Eq. 3 pro-
vides high-quality density map that obtains accurate crowd 
count.

4  Experiment Results

In this section, we evaluate and compare the performance 
of the proposed framework with other existing methods on 
three publicly available datasets, namely, UCF_CROWD_50 
[29], UCF_QNRF [30], and ShanghaiTech [63] datasets. The 
proposed network is implemented in the Pytorch framework 
and trained on NVIDIA TITAN Xp GPU. The experimental 
setup included 64-bit Ubuntu 16.04, Anaconda 3, CUDA 
Toolkit 10.2, and Pytorch 1.4.

4.1  Datasets

We provide the details of each dataset as follows:

UCF_CROWD_50 is the first high-density crowd dataset 
proposed by Idrees et al. [29] for evaluating crowd count-
ing models. The dataset contains 50 images of extremely 
varying densities and provide 63,974 point annotations. The 
count in an image ranges from 94 people per image to 4543 
people per image and makes an average of 1280 people per 
image. The images cover different challenging scenes with 
varying resolutions, camera view points, and backgrounds.

UCF_QNRF dataset is proposed by Idrees et al. [30] and 
is considered as the most suitable dataset for evaluating 
crowd counting models. The dataset consists of high-res-
olution images with diverse background, mainly collected 
from Web search, Flickr, and Hajj recording archives. The 
dataset consists of 1535 images covering different scenes 
of diverse variations in camera view points, illumination, 
densities, and resolution. The dataset contains 1251,642 
point annotations, where each point represent a single head. 
The dataset is divided into a training and testing sets. The 
training set contains 1201 images and testing set contains 
334 images.

ShanghaiTech dataset is first introduced by Zhang et al. 
[63]. The dataset contains 1198 annotated images with 
330,165 total point annotations. At that time, the dataset was 
considered as one of the largest due to large number of anno-
tations. The dataset is divided into two parts, i.e., Part A and 
Part B. There are 482 images in Part A, which are collected 
from different sources over the Internet. On the other hand, 
there are 716 images in Part B, which are collected from the 
busy metropolitan areas of Shanghai. There is significant 
variation among the densities of two parts. Generally, part A 



International Journal of Computational Intelligence Systems  (2021) 14:168 

1 3

Page 7 of 12   168

contains the images with higher densities than part B. This 
significant variation in crowd densities of two parts poses 
a challenge for a crowd counting models to accurately esti-
mate the count in images of varying densities. For training 
and testing, we follow the same convention adopted in [63]. 
The authors divided part A into 300 training images and 
the remaining 182 images are used for testing. The training 
set of Part B contains 400 images, while 316 images are 
reserved for testing. Figure 4 shows different sample images 
from each dataset.

4.2  Evaluation Metrics

To quantitatively evaluate the performance of crowd counting 
models, we use mean absolute error (MAE) and mean square 
error (MSE) by following the convention adopted in [30, 63]. 
MAE and MSE are formulated in Eqs.  4 and 5, respectively, 
as follows:

(4)MAE =
1

N

N∑

n=1

|�n − Gn|,

where N represents the number of training images, �n is 
the predicted crowd count, and Gn is ground-truth crowd 
count of pedestrians at image n. We use the above evaluation 
metrics to compare proposed approach with other reference 
methods on all three benchmark datasets.

4.3  Comparison with State‑of‑the‑Art Methods

We compare proposed framework with four most related 
methods, i.e., Rodriguez et al. [49], Idrees et al. [28], Lem-
pitsky et al. [35], and Zhang et al. [62] on UCF_CROWD_50 
dataset. We report quantitative results of each method in 
Table 1. The table demonstrates that proposed method out-
performs other reference methods by producing lowest MAE 
and MSE scores. From the table, it is obvious that Rodriguez 
et al. [49] perform lower compare to other methods. This is 
due to fact that method is detection based and relies on the 
performance of the detector [20] used in the framework. 
However, we observe that detection is not a viable solution 
for crowd counting in high-density crowds. Since, it is chal-
lenging to detect heads in high-density crowds due to intra-
class variations in scales, appearance, and poses of human 
heads. Lempitsky et al. [35] learned a density regression 
model using SIFT features and optimize MESA distance 
between the predicted density map and ground truth. On 
the other hand, Zhang et al. [62] achieve comparable values 
of MAE and MSE, since the authors propose CNN-based 
crowd counting model that rely on hierarchical features 
instead of hand-crafted features. However, the proposed 
model is patch-based and causes much computational com-
plexity during training and testing.

In Table 2, we compare the proposed framework with 
other reference methods on the ShanghaiTech dataset. From 
the table, it is obvious that the proposed framework beats 
other reference methods by achieving low values of MAE 
and MSE. Chen et al. [10] achieve relatively higher val-
ues of MAE and MSE. The method uses traditional Local 

(5)MSE =
1

N

N∑

n=1

(�n − Gn)
2,

Fig. 4  Sample images of three datasets. a Sample image OF UCF_
CROWD_50, b sample image of UCF_QNRF, c sample image of 
ShanghaiTech part A, and d shows the sample image of Shangha-
iTech part B

Table 1  Evaluation of different methods on UCF_CROWD_50 data-
set in terms of MAE and MSE values

The lower is the better

Mthod MAE MSE

Rodriguez et al. [49] 655.7 697.8
Idrees et al. [28] 468.0 590.3
Lempitsky et al. [35] 493.4 487.1
Zhang et al. [62] 467.0 498.5
Proposed 402.3 434.1
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binary pattern (LBP) to extract texture features from the 
input image and then employ ridge regression to learn the 
crowd count. This is due to the fact that Chen et al.’s [10] 
model achieves lower performance, since the model uses 
LBP features which are blind and cannot distinguish human 
from the background. Zhang et al. [62] also achieve high 
values of MAE and MSE relative to other reference meth-
ods; however, the method achieves good results compare to 
Chen et al. [10]. Zhang et al. [63] use multicolumn CNN to 
solve the multiscale problem and achieve better results than 
previous approach [62]. Marsden et al. [43] explore fully 
convolutional network (FCN) for crowd counting. The net-
work takes arbitrary size image and outputs a crowd density 
map, where high peaks are integrated to produce final crowd 
count. Sindagi et al. [55] propose a cascaded convolutional 
network to learn two tasks, i.e., crowd count and density 
map estimation. The network takes arbitrary size image and 
outputs a density map. Tang et al. [58] propose fusion CNN 
that has two key stages. The first stage adopts deep-fusion 
network to estimate the crowd density and the second stage 
employs regression to estimate the count. Han et al. [24] left 
behind proposed framework by a slight margin. The authors 
adopt divide-and-conquer strategy, and instead of estimat-
ing the count from the whole image, they divide the image 
into multiple overlap patches. Then, from each patch, they 
hierarchical features are extracted by CNN which is then fol-
lowed by a fully connected network that regress the count in 
each patch. Markov random field is then applied to smooth 
the counting results in adjacent patches.

From Table 2, we further observe that deep learning 
methods produce better results than the traditional statis-
tical models. However, among deep learning models, our 
proposed framework achieves best results on both Part_A 
and Part_B, which highlights the fact that multilayer fusion 
is effective for accurately estimating the crowd count. 
Since multilayer fusion combines both high-level semantic 
information from higher layers and information about the 
small objects from lower layers. From the table, we further 

observed that Part_A is more challenging than Part_B, as 
most of the methods produce higher MAE and MSE values 
on Part_A than Part_B.

Table 3 shows comparison results of different methods 
on UCF_QNRF dataset. It is obvious from the table that 
the proposed method beats other state-of-the-art methods 
by producing lower values of MAE and MSE. Switching 
CNN [51] produces comparable results. The method adopts 
a unique way for handling multiscale variations by leverag-
ing variation of crowd densities in different locations of the 
input image. The method uses multiple regressors, each of 
different receptive field to capture scale variations in the 
image. The switch classifier routes the patches to best CNN 
regressor based on density level. We also report visualiza-
tion of the predicted results and corresponding ground truth 
on three datasets in Figs. 5, 6, and  7.

4.4  Discussion

From experiment results, we observe that distance of 
camera from the scene and camera view point is the main 
cause of scale problem. Due to the scale problem, the size 
of humans near camera appears large than size of human at 
far distance. To capture such variations in sizes of human 
heads, it is important to model a network that can han-
dle such scale variations in the image. Zhang et al. [63] 
propose a CNN network that addresses the scale problem 
using three column CNN structures. The model produces 
good results; however, training three column of the net-
work independently causes computational cost. Other 
reference methods use limited and fixed scale range and, 
therefore, loss the abilities to learn a generalized model. 
Furthermore, these methods employ regression techniques 
to regress the crowd county or crowd density map directly 
from the image. The performance of these approaches is 
limited by the following two main reasons: (1) These 
approaches utilize the feature map of the last convolu-
tional layer that contains rich contextual information about 
the scenes and, however, do not contain much informa-
tion about small objects. (2) These approaches use CNNs 
that consist of subsequent pooling layers that reduce the 

Table 2  Comparison of different methods on ShanghaiTech part A 
and part B dataset in terms of MAE and MSE

Method Part A Part B

MAE MSE MAE MSE

Chen et al. [10] 303.2 371.0 59.1 81.7
Zhang et al. [62] 181.8 277.7 32.0 49.8
Zhang et al. [63] 110.2 173.2 26.4 41.3
Marsden et al. [43] 126.5 173.5 23.76 33.12
Sindagi et al. [55] 101.3 152.4 20.0 31.1
Tang et al. [58] 89.2 141.9 14.7 25.4
Han et al. [24] 79.1 130.1 17.8 26.0
Proposed 77.58 129.7 14.1 21.10

Table 3  Evaluation of different methods on UCF_QNRF dataset 
using MAE and MSE

Methods MAE MSE

Idrees et al. [28] 315.0 508.0
Sindagi et al. [55] 252.0 514.0
Switching CNN [51] 228.0 445.0
Encoder-Decoder [3] 270.0 478.0
MCNN [63] 277.0 426.0
Proposed 218.2 357.4
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Fig. 5  Visualization of ground truth and predicted density maps of samples frames selected from ShanghaiTech dataset

Fig. 6  Visualization of ground truth and predicted density maps of samples frames selected from UCF_CC_50 dataset
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resolution of final crowd density map that leads to the loss 
of crucial information especially in images that consist of 
high-density crowds with large variations in scales. By 
contrast, the proposed framework addresses the shortcom-
ings of previous models by adopting affordable and effec-
tive way of dealing with scale variations. We assume that 
higher layers contain rich information about the person 
near to camera, while lower layers contain information 
about the person far away from the camera. We fuse the 
feature map of these multiple layers (of different depths) 
to adapt the scale variations in the input image. We use 
the final fused map to learn a mapping function between 
the heads in image and crowd count. From empirical evi-
dences, we observe that proposed fusion strategy learns 

multiscale discriminative features and effective to achieve 
better results compared to other state-of-the-art methods.

5  Conclusion

We presented a deep convolutional neural network that over-
comes the problem of scale variations by fusing information 
from shallow to deep layers. The framework estimated den-
sity map and obtained final crowd count by the integration 
of peaks in density map. We evaluated proposed framework 
on different publicly available benchmark datasets. From 
experiment results, we demonstrated the effectiveness of 
proposed approach. However, we observed the accuracy of 

Fig. 7  Visualization of ground truth and predicted density maps of samples frames selected from UCF-QNRF dataset
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proposed framework still far behind the ground truth. This 
is due to the fact that in the analyzed high-density crowd 
datasets, humans are hard to recognize in some images due 
to low resolution and extremely small size of human head. 
In future, we plan to propose a network that handles these 
challenges to achieve high accuracy.
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