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Abstract 

Earthquakes pose significant risks in Taiwan, necessitating effective risk assessment and preventive measures 
to reduce damage. Obtaining complete building structure data is crucial for the accurate evaluation of earthquake‑
induced losses. However, manual annotation of building structures is time‑consuming and inefficient, resulting 
in incomplete data. To address this, we propose YOLOX‑CS, an object detection model, combined with the Convo‑
lutional Block Attention Module (CBAM), to enhance recognition capabilities for small structures and reduce back‑
ground interference. Additionally, we introduce the Illustration Enhancement data augmentation method to improve 
the recognition of obscured buildings. We collected diverse building images and manually annotated them, resulting 
in a dataset for training the model. YOLOX‑CS with CBAM significantly improves recognition accuracy, particularly 
for small objects, and Illustration Enhancement enhances the recognition of occluded buildings. Our proposed 
approach advances building structure recognition, contributing to more effective earthquake risk assessment systems 
in Taiwan and beyond.

Keywords Earthquake risk assessment, Building structure recognition, YOLOX, Object detection, Illustration 
enhancement

1 Introduction
In Taiwan, earthquakes are a common occurrence, 
including approximately three events each year surpass-
ing a magnitude of 6.0. These significant seismic events 
have a profound impact on both the economy and public 
safety. A key aspect of seismic engineering is to evaluate 
earthquake risks and implement preventive strategies. 
This involves analyzing building characteristics such as 
structure, age, and height to determine their resilience 
to earthquakes. Consequently, compiling comprehen-
sive building data is vital for effective earthquake risk 
assessment.

However, acquiring structural details of buildings poses 
a greater challenge compared to other types of building 
information. Structural components include the founda-
tion, walls, columns, beams, and trusses, all bearing the 
load of the building. Manually annotating these details is 
an expert-intensive and time-consuming task. While gov-
ernments often provide this data, the level of detail and 
completeness can vary, especially in developing coun-
tries, and may not always keep pace with new construc-
tion. Therefore, creating a system for swiftly identifying 
building structures is critical.

Remote sensing offers a rapid and broad approach to 
gather building data, but it falls short in identifying spe-
cific structural information. Acevedo et  al.   (2017) have 
combined satellite imagery with Google Street View to 
manually identify building heights and types, and to ana-
lyze roof shapes for wider data collection. Remote sens-
ing is adept at capturing regional attributes such as the 
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density of buildings but still depends on manual pro-
cesses for identifying specific structural details of indi-
vidual buildings (Huo 2019)

With the rapid evolution of computer technology, 
machine learning has become increasingly prevalent 
in image recognition, extending to the identification 
of building structures. Techniques like SVM, used by 
researchers such as Pittore and Wieland (2012) in con-
junction with satellite images, enable detailed recognition 
at the pixel level. However, to further refine and auto-
mate the identification of building structures, additional 
imagery detailing the exterior of buildings is necessary. 
Traditional machine learning approaches, when applied 
directly to architectural images, face numerous chal-
lenges, including varying angles and lighting conditions 
(Chen et al. 2017; Zhang 2018; Bilal and Hanif 2019).

Convolutional Neural Networks (CNNs) have become 
a cornerstone in building recognition, leveraging their 
capability to extract complex, high-dimensional fea-
tures (Shi  2021). With the advancement of deep learn-
ing, CNNs have found applications in areas like object 
detection, semantic segmentation (Wei 2016), and image 
classification (Ezat et  al.  2020). Since 2017, they have 
been integrated into building recognition models. For 
example, Yibo Liu and his team developed a deep learn-
ing-based framework for hierarchical building detection 
using CNNs to identify buildings from remote sensing 
data (Liu 2018). Similarly, Kang and colleagues employed 
CNNs with OpenStreetMap data to identify eight build-
ing types in North America (Kang  2018). However, 
CNNs encounter unique challenges in building recogni-
tion. They often overemphasize background features in 
building images, where buildings constitute just about 
10% of the image, diminishing the model’s accuracy. The 
architectural diversity and density in certain regions fur-
ther impact CNNs’ efficacy.

CNN-based object detection has proven effective in 
identifying building structures, efficiently recogniz-
ing multiple buildings within a single image and swiftly 
predicting a range of building structures. This approach 
is especially beneficial for images containing numerous 
buildings. However, challenges persist, such as variations 
in foreground-background ratios, difficulties in detecting 
small targets, and occlusions.

In response to the incomplete building structure data in 
Taiwan, we propose using Google Street View and object 
detection technologies for rapid, automated structure 
recognition. The high density and variety of buildings in 
Taiwanese cities, often leading to images with multiple, 
variably sized, and occluded buildings, pose a significant 
challenge. To overcome these hurdles, we introduce the 
YOLOX-CS model. This model incorporates Convolu-
tional Block Attention Module (CBAM) (Woo  2018) 

convolutional blocks to better detect smaller structures 
and uses Illustration enhancement for data augmenta-
tion, improving the recognition of obstructed buildings.

2  Datasets
Google Street View offers comprehensive street-level 
imagery across the globe, complemented by an API 
Google (2021) that allows developers to craft custom 
applications. This capability is pivotal for us to employ 
object detection models on Street View images, aiming to 
swiftly compile a structural map of buildings in Taiwan to 
facilitate earthquake risk assessment.

To enhance the accuracy of our model in discerning 
various building structures, it’s crucial to amass a diverse 
collection of building images for training purposes. Uti-
lizing the Google Street View API, we acquire these 
images based on specific latitude and longitude coordi-
nates. The subsequent phase involves meticulous manual 
filtering and annotation to categorize the structural types 
of the buildings. The coordinates and structural data 
for this endeavor are sourced from official records like 
“Taipei City Historical Usage License Summary” (Taipei 
City Government Open Data Platform  2020) and “Tai-
chung City Buildings_WGS84” (Taichung City Govern-
ment Open Data Platform  2019) data, provided by the 
government.

2.1  Taipei City Historical Usage License Summary
The “The Taipei City Historical Usage License Summary,” 
curated by the Taipei City Construction Management 
Office, encompasses building data of Taipei City span-
ning from 1949 to 2019. This dataset, available in XML 
format, includes 24 fields and undergoes annual updates 
(Fig. 1). However, we had to discard some older records 
that no longer align with Taiwan’s current address sys-
tem, ultimately retaining 60,387 valid data entries.

In these valid data sets, two critical fields were 
extracted: the structure of the building and its address. 
The structural data assists in further annotation tasks, 
while the address information is converted into geo-
graphical coordinates using the geolocation services 
provided by Taiwan Geospatial One Stop. During this 
conversion process, we encountered several challenges: 
7520 entries couldn’t be precisely geolocated (due to 
multiple possible coordinates), 6347 entries lacked a 
definitive location, and 17,350 entries faced issues with 
duplicated locations. After filtering out these discrepan-
cies, 29,170 entries remained viable for use.

A closer analysis of these remaining entries revealed a 
highly skewed distribution of building types. Reinforced 
concrete structures dominate, comprising 82.4% of the 
dataset, followed by strengthened brick constructions at 
11.9%, with other types constituting less than 2%. This 
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imbalance necessitates the acquisition of additional data 
to enhance the diversity and balance of the dataset.

2.2  Taichung City Buildings_WGS84
The “Taichung City Buildings_WGS84” dataset, com-
piled by the Urban Development Bureau of Taichung 
City Government, offers comprehensive details on the 
region’s buildings and is updated annually. Presented in 
Shapefile format, each entry in this dataset includes 13 
fields (Fig. 2). The description field, formatted in HTML, 
provides the essential building structure information we 
require. Additionally, the geometry field in GeoJSON 
MultiPolygon format delineates the polygonal shapes of 
the buildings. Given the straightforward nature of build-
ing shapes, we opted to use the centroids of these poly-
gons to represent their geographical coordinates. The 
dataset encompasses a total of 300,183 records.

This dataset showcases a varied array of building struc-
tures: reinforced concrete accounts for 64.9%, steel frame 
constructions for 22.1%, and brick constructions for 
10.6%. After filtering out entries without specified build-
ing structures, we utilized the geometry and structure 
data to generate a distribution map of Taichung City’s 
building structures (Fig. 3).

2.3  Image retrieval and annotation
Upon analyzing the two datasets, we identified that four 
building structures—Reinforced Concrete (RC), Steel 
Frame Reinforced Concrete (SRC), Brick Building (BB), 
and Steel Frame (SB)—are prevalent in Taiwan and repre-
sent common construction types. We thus targeted these 
structures for our model training. Representative exam-
ples of these structures are illustrated in Fig. 4.

We then utilized latitude and longitude data to acquire 
Street View images. Considering the costs associated 
with the Google Street View API, we employed a sys-
tematic approach to randomly extract data from these 
four structural types to minimize expenses and image 
requests. Our image capture settings included param-
eters like size = 640 x 640, field of view (fov) = 120, and 
pitch = 30, which we validated as optimal for build-
ing recognition. The photo orientation was determined 
based on the closest street to the target building, focus-
ing on capturing the building itself. We discarded images 
that either did not feature the target building or where 
background structures predominated, resulting in a data-
set of 6,394 records. The breakdown of these records is 
as follows: 1763 for Reinforced Concrete, 295 for Steel 
Frame Reinforced Concrete, 1392 for Brick Building, and 
2944 for Steel Frame.

Fig. 1 Example data from the Taipei City Historical Usage License Summary
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In the final step, we handpicked images depicting the 
target buildings and annotated them with their corre-
sponding building structure types, thereby finalizing 
our dataset for training the model.

3  YOLOX‑CS
YOLO (You Only Look Once) (Redmon et  al.  2016), a 
widely popular object detection model in recent years, 
has been acclaimed for its rapid prediction speed and 

Fig. 2 Example data from Taichung City Buildings_WGS84 (a) Original Shapefile format (b) Example of data in the description field in HTML format
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high accuracy, making significant strides in various fields. 
Unique in its approach, YOLO employs a single neural 
network to tackle regression problems instead of clas-
sification, enhancing its training efficiency and ability to 
detect a diverse range of objects. Notably, YOLO’s swift 
inference capabilities, operating at milliseconds, make it 
ideal for real-time image recognition, vastly broadening 
its application scope.

From its inception, YOLO has evolved through mul-
tiple iterations. Versions like YOLOv4 and beyond have 
shown outstanding performance in both speed and 
accuracy, with YOLOX (Ge  2021) particularly excelling. 
YOLOX amalgamates elements from YOLOv3 (Redmon 
and Farhadi  2018), YOLOv4 (Bochkovskiy et  al.  2020), 
YOLOv5 (Jocher et  al.  2021), and incorporates tech-
niques such as the Anchor-free framework and Simplified 
Optimal Transport Assignment (SimOTA), optimizing 
the model’s effectiveness. Catering to different require-
ments, YOLOX offers a range of models—YOLOX-S, 
YOLOX-L, YOLOX-M, etc., based on YOLOv5. For our 
research, we selected YOLOX-S as our principal train-
ing model for its excellent balance between speed and 
accuracy.

However, challenges arise due to the varied angles of 
street view images and the dense building structures in 
Taiwan. Target buildings in these images are frequently 
obscured by elements like trees and streetlights, result-
ing in incomplete and inconsistent building outlines. 

Moreover, the presence of multiple buildings in a single 
image, some occupying smaller portions with less promi-
nent features, poses a risk of being overlooked by the 
model, thus affecting its accuracy.

To boost the model’s proficiency in detecting smaller 
targets, we introduced YOLOX-CS. This innovation inte-
grates the CBAM module into the YOLOX-S network 
structure, preserving its performance while enhancing its 
capability to discern smaller objects. Figure  5 illustrates 
the network architecture of YOLOX-CS.

3.1  YOLOX‑S
YOLOX-S, built upon YOLOv5-S, incorporates a stand-
ard network structure with three primary components: 
Cross Stage Partial Darknet (CSPDarknet), Feature Pyr-
amid Network (FPN), and YOLOHead. The CSPDark-
net serves as the primary feature extraction network 
in YOLOX-S, utilizing residual convolutions to boost 
accuracy effectively. This network also integrates Cross 
Stage Partial Network (CSPnet) and Focus structures, 
along with the Spatial Pyramid Pooling (SPP) net-
work, to broaden its receptive field. The FPN enhances 
feature extraction by amalgamating effective feature 
maps from the core network, enriching the represen-
tation of multi-scale features. YOLOHead, functioning 
as YOLOX-S’s classifier, employs a Decoupled Head 
architecture and introduces an Anchor-free approach, 
improving both convergence speed and accuracy. The 

Fig. 3 Taichung City building structure distribution map. The X‑axis represents longitude, and the Y‑axis represents latitude
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SimOTA method is employed to ensure the best pos-
sible prediction outcomes.

Compared to YOLOv5-S, YOLOX-S introduces sev-
eral key enhancements: 

1. Activation Function: YOLOX-S adopts the Sigmoid 
Linear Unit (SiLU) activation function in its back-
bone and neck, slightly slowing inference speed but 
providing enhanced non-linear fitting capabilities.

2. Decoupled Head: YOLOX-S’s YOLOHead uses a 
Decoupled structure, segregating the classification 
(Cls), bounding box localization (Reg), and fore-
ground-background differentiation (Obj) branches 
for operations prior to concat. This design expedites 
model convergence and boosts overall performance.

3. Loss Function: YOLOHead has three distinct 
branches, each with its specific loss function: Binary 
Cross Entropy (BCE) for Cls and Obj branches and 
Intersection Over Union (IoU) for the Reg branch. 
The final Loss function is as follows: 

 The aggregate loss, balanced by a reg_weight for the 
reg loss, averages across positive samples.

4. Anchor-free: Post-Decoupled Head, YOLOX-S gen-
erates feature vectors, replacing the original feature 
maps and markedly reducing parameter needs. It 
also incorporates scale data from the original feature 
maps via downsampling.

(1)L =
Lcls + regweight · Lreg + Lobj

Npos

Fig. 4 Representative images of the four building structure types in the dataset: a reinforced concrete b steel reinforced concrete c brick building 
d steel building
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5. SimOTA: This technique assigns labels to poten-
tial positive samples and pinpoints the predicted 
boxes closest to the label boxes. By transforming 
label assignment into an optimal transport problem, 
SimOTA enhances the detection algorithm’s infer-
ence speed and training efficiency without compro-
mising accuracy, and it does so without requiring 
extra parameters.

3.2  Convolutional block attention module
CBAM, a versatile and lightweight model, seamlessly 
integrates into various CNN architectures, effectively 
enhancing the model’s focus on significant regions 

within the feature maps. Du et al. (2021) Ding and Zhang 
(2021) In our research, we incorporated CBAM into the 
YOLOX-S framework to bolster its capacity for detecting 
smaller architectural targets. Figure  6 depicts the struc-
tural layout of the CBAM model.

At its core, CBAM is composed of two distinct mod-
ules: the channel attention module and the spatial atten-
tion module. The channel attention module is designed 
to pinpoint and accentuate meaningful features, whereas 
the spatial attention module focuses on identifying the 
specific locations of these significant features within 
the feature map. The computation of feature maps in 
Fig.  6 can be expressed by formula (2). A feature map 
F ∈ RC×H×W  is given as input, and CBAM infers a 1D 

Fig. 5 YOLOX‑CS network structure, with the CBAM module embedded in the original YOLOX‑S

Fig. 6 Convolutional block attention module (CBAM) module structure
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channel attention map Mc ∈ RC×1×1 as well as a 2D spa-
tial attention map Ms ∈ R1×H×W  in a sequential manner. 
Where ⊗ represents element-wise multiplication.

4  Illustration enhancement
To boost the model’s proficiency in detecting build-
ings partially concealed by obstructions, we introduced 
the “Illustration Enhancement” data augmentation 
technique. This method introduces obstructions in 
some training data and uses post-processing to syn-
thesize images of buildings obscured by these obstruc-
tions, thus improving the model’s ability to identify 
occluded objects. Our analysis of the YOLOX-S model’s 

(2)
F ′ = Mc(F)⊗ F

F ′′ = Ms(F
′)⊗ F ′

recognition abilities revealed its shortcomings in iden-
tifying buildings obscured by trees. Consequently, we 
aim to use the “Illustration Enhancement” technique to 
improve the model’s detection of buildings masked by 
foliage. We have decided to forgo additional data aug-
mentation methods on images that have already been 
processed using Illustration Enhancement to accurately 
assess its effectiveness.

Tree images sourced from textures.com (Tex-
ture  2022) were used as synthetic obstructions. These 
were then digitally composited with building images 
using Photoshop CS6. To ensure a balanced represen-
tation of obscured buildings across the four building 
structure types, we randomly selected images from 
each type for this compositing process. Figure  7 illus-
trates the before-and-after effects of applying Illustra-
tion Enhancement.

Fig. 7 Example of the illustration enhancement method
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5  Results
5.1  Training
Initially, we set out to evaluate the impact of our “Illus-
tration Enhancement” data augmentation method. This 
involved applying different data augmentation tech-
niques, namely Illustration Enhancement, horizontal 
flipping, random noise, and Gaussian blur, to the original 
dataset. We then assessed the efficacy of each method in 
terms of its ability to improve building structure recog-
nition. Following this, our focus shifted to assessing the 
proposed YOLOX-CS model. This evaluation entailed 
training the YOLOv4, YOLOX-S, and YOLOX-CS mod-
els with both the original dataset (without Illustration 
Enhancement) and the dataset processed with Illustra-
tion Enhancement.

The metric chosen for evaluation was mAP (mean 
Average Precision), a standard measure in object detec-
tion models. This metric calculates the average of the 
Average Precision (AP) for all classes. The AP is com-
puted by measuring the area under the precision/recall 
curve across 11 recall intervals, as shown below:

All model training sessions were conducted on an 
NVIDIA GEFORCEÂ® GTX 2080Ti 11GB graphics card. 
For a detailed overview of our training methodologies, 
refer to Table 1.

5.2  Comparison
The results from Table 2 reveal the distinct advantage of 
Illustration Enhancement in building structure identi-
fication compared to other common data augmentation 
techniques. From Table  3, it’s evident that embedding 
CBAM in YOLOX-CS led to a marginal decrease in pre-
cision for the BB and SRC types, yet overall, YOLOX-CS 
outshined YOLOX-S. This advantage is visually rep-
resented in Fig.  8, where YOLOX-CS detected many 
small-scale architectural targets that eluded YOLOX-S. 
Significantly, as depicted in Fig. 9, all three models dem-
onstrated improved mAP after being trained on the Illus-
tration Enhancement-enhanced dataset.

6  Discussion
The initial section of this chapter delves into a compre-
hensive analysis of the experimental outcomes associated 
with the Illustration Enhancement data augmentation 
technique and the YOLOX-CS object detection model. 
It emphasizes the enhancements these methodologies 
bring to the identification of architectural structures. The 
latter section addresses the inherent limitations in our 
study’s automated approach to architectural structure 

(3)AP =
1

11
r∈{0,0.1,...,1}

Pinterp(r)

Table 1 Detailed training strategies of the models

LR learning rate, SGD stochastic gradient decent

Model Batch size Optimizer LR Momentum Weight decay Epoch

YOLOX‑CS 4 SGD 1× 10
−2 0.937 5× 10

−4 100

YOLOX‑S 4 SGD 1× 10
−2 0.937 5× 10

−4 100

YOLOv4 4 SGD 1× 10
−2 0.937 5× 10

−4 100

Table 2 Training results of YOLOX‑CS using each data 
augmentation

Data augmentation mAP (%)

Illustration Enhancement 76.32

Horizontal Flip 74.89

Random Noise 73.96

Gaussian Blur 73.45

Table 3 The precision of the three models

The precision of the models for four building structures, expressed as percentages

To highlight the performance of YOLOX-CS, the model we have proposed, by using bold text for emphasis

Model BB1 RC1 SB1 SRC1 Overall mAP (%)

YOLOv4 75.68 80.53 75.93 100 54.58

YOLOX‑S 72.96 81.52 73.75 76.92 73.87

YOLOX‑CS 70.47 82.62 76.31 72.22 74.48
YOLOv4 with Illustration Enhancement 80.13 85.98 77.22 100 59.83

YOLOX‑S with Illustration Enhancement 73.10 82.39 76.41 72.34 75.51

YOLOX‑CS with Illustration Enhancement 73.01 84.27 75.61 84.62 76.32
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recognition, which could potentially impact the model’s 
performance and its applicability in real-world scenarios.

6.1  Analysis of empirical results
Primarily, the recognizability of buildings in images is 
often hindered by obstructions from other objects, a 
challenge more pronounced in the case of smaller struc-
tures. The Illustration Enhancement approach effec-
tively mitigates this issue. In comparison with alternative 
data augmentation strategies, Illustration Enhancement 
demonstrates superior performance in recognizing 
obscured buildings. Although there’s a slight decrement 

in recognizing unobstructed buildings, the overall accu-
racy rate sees a notable improvement. Integrating Illus-
tration Enhancement with other augmentation methods 
could potentially further amplify the model’s capabilities. 
The marked enhancement in recognition performance, as 
evidenced by training three distinct models on the Illus-
tration Enhancement dataset, underscores its efficacy for 
Taiwanese architectural datasets.

In the specific context of small-scale building recog-
nition, the incorporation of CBAM into YOLOX-S led 
to an improvement in the model’s mean Average Preci-
sion (mAP), albeit with a decline in precision for certain 

Fig. 8 Improved recognition of small objects after embedding the CBAM module. a Buildings detected by YOLOX‑S. b Buildings detected 
by YOLOX‑CS
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categories (refer to Table  3). Further analysis revealed 
that YOLOX-CS identified numerous unmarked smaller 
buildings, contributing to a relative precision drop com-
pared to YOLOv4. This issue likely stems from the inclu-
sion of unmarked structures in the dataset generated 
from street view imagery. To address this, more strin-
gent dataset processing is needed to minimize errors in 
marking and omissions, particularly in underrepresented 
categories.

Strategies for further enhancing model performance 
include expanding the architecture of the backbone net-
work and tailoring models specifically for architectural 

structure recognition. Beyond architectural imagery, 
incorporating additional attributes such as building 
height and age could provide supplementary insights 
for the modelâ€™s predictions. The overarching aim is 
to develop a rapid, automated system for architectural 
structure recognition, enabling efficient assessment of 
building-related risks prior to seismic events.

6.2  Limitations and improvement
This study encounters certain constraints and outlines 
avenues for future enhancements: 

Fig. 9 Enhanced recognition of buildings obstructed by trees after using Illustration Enhancement. From top to bottom, the building structures are 
RC, BB, and SRC. a YOLOX‑CS prediction results on the original dataset. b YOLOX‑CS prediction results on the Illustration Enhancement dataset



Page 12 of 13Zhuang et al. Terrestrial, Atmospheric and Oceanic Sciences            (2024) 35:6 

1. Image Dependence: Our methodology, tailored for 
Google Street View imagery, necessitates specific 
standards for image resolution, field of view (fov), 
and angle of elevation. For analogous outcomes 
using this model, it’s imperative that the images align 
closely with those from Taiwan’s Google Street View, 
including aspects like exposure and shooting direc-
tion.

2. Challenges in Image Selection: In sourcing images 
through the Google Street View API, issues such 
as absence of the target building, incomplete struc-
tures, or excessive background buildings were com-
mon. This necessitated manual image selection, a 
process not in line with the automation ethos. Future 
enhancements might include capturing multiple 
images of a target building from varying horizontal 
angles, thereby elevating the success rate of recogni-
tion.

3. Incorporating Additional Factors: While the study 
successfully established an architectural struc-
ture map, a comprehensive seismic risk assessment 
requires factoring in additional elements, such as 
building height and unauthorized extensions. Subse-
quent research could explore integration with remote 
sensing techniques to swiftly construct a detailed 
seismic risk assessment map, considering a broader 
range of influential factors.

7  Conclusion
The relentless evolution of object detection technol-
ogy has unlocked new avenues for swiftly identifying 
architectural structures. However, current object detec-
tion models grapple with certain challenges, notably 
in processing small and occluded targets. In response 
to these challenges, our study introduces the Illustra-
tion Enhancement data augmentation method and the 
YOLOX-CS model. The former significantly bolsters the 
model’s capacity to identify occluded targets, while the 
latter not only retains superior performance but also 
enhances the detection of small-scale targets. The experi-
mental findings indicate that both approaches exhibit 
commendable performance on the Taiwanese building 
dataset.

A key contribution of our research lies in the devel-
opment and validation of novel methods tailored for 
architectural structure recognition, confirming the effi-
cacy of both Illustration Enhancement and YOLOX-CS 
in boosting recognition precision. These advancements 
pave the way for the creation of a fast and accurate sys-
tem for architectural structure identification, aimed at 
enhancing the assessment of potential seismic risks. Fur-
thermore, we envisage the applicability of these method-
ologies in other regions with architectural styles akin to 

those in Taiwan, thus broadening their scope of practical 
deployment.
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