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Abstract 

On September 17th and 18th, 2022, shallow earthquakes with magnitudes of 6.6  (ML) and 6.8  (ML) occurred 
in the eastern Taiwan Longitudinal Valley, which marks the collision zone between the Philippine Sea plate 
and the Eurasian plate, and led to noticeable surface deformation and ruptures within 70 km. This study primarily 
focuses on the southernmost section of the rupture zone—the Pingting Terrace. Surface rupture locations and behav‑
iors correspond to changes in topography, providing mutual confirmation that the deformation behavior of Pingting 
Terrace is complex. Based on the distribution of surface ruptures and topography changes, this study roughly divides 
the Pingting Terrace into northern and southern segments, using the central concave feature as a boundary. The Rie‑
del shear model analysis results show that the principal shear directions in the northern and southern segments are 
N–S trending and azimuth 20°, respectively. The maximum principal stress orientations are around 135° for the north‑
ern and 155° for the southern segments. These findings align with the fault mechanical investigation of the Lichi 
Mélange in the northern Muken River area of the Pingting Terrace. This suggests spatial changes in shear zone ori‑
entations within the Lichi Mélange, which contribute to developing pressure ridges due to transpressional forces. As 
a result, the Pingting Terrace experiences rapid uplift, causing the Luliao River to migrate southward into the Beinan 
River, while the eastern Beinan River turns to the eastward edge of the Pingting Terrace.

Key points 

1. Co‑seismic surface rupture analysis using Riedel shear model.
2. Flower structure of the Pingting Terrace.
3. Relationship between the River channel change and the tectonic activity.
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1 Introduction
On September 17th and 18th, 2022, two shallow earth-
quakes occurred in Guanshan and Chihshang, measuring 
magnitudes 6.6  (ML) and 6.8  (ML), respectively (Fig.  1). 
The seismic events resulted in strong shaking observed 
from Guangfu to Guanshan, even extending to the Luye 
area, and were followed by thousands of aftershocks. 
Based on the seismic moment tensor solution and the 
distribution of aftershocks, as reported by the Central 
Weather Administration (CWA), these earthquakes 
were predominantly characterized by strike-slip motion 
along a fault striking 190° and dipping to the west, with 
the compression axis oriented along NW–SE (Fig. 1; data 

sourced from CWA Seismological Center’s catalog, as of 
November 30, 2022). This seismogenic fault is consistent 
with the proposed Central Range Fault (Biq 1965; Hsu 
1976a; Angelier et  al. 2000; Shyu et  al. 2005, 2006; Hsu 
2019).

Large shallow earthquakes typically result in surface 
ruptures and co-seismic deformation. This deformation 
not only reflects the surface trace of the seismogenic 
fault but also provides valuable insights into the struc-
tural characteristics of the fault at depth, while also being 
influenced by pre-existing tectonic environments (e.g., 
King 1986; Lin et  al. 2001, 2003, 2009a, b, 2011; Huang 
et  al. 2016; Wen et  al. 2017; Yen et  al. 2019; Hsu et  al. 

Fig. 1 Maps of 2022 Guanshan‑ Chihshang Earthquake sequence and aftershocks (data from the earthquake catalog of Central Weather 
Administration and as of November 30, 2022)
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2019). In the case of this specific earthquake event, the 
surface rupture and co-seismic deformation are widely 
distributed in the Longitudinal Valley, covering a dis-
tance of over 70  km from Hualien to Taitung. GPS and 
DInSAR data reveal co-seismic displacements, indicating 
that the Guanshan Earthquake led to surface deformation 
in the Chihshang-Luye area. The energy released by the 
Chihshang Earthquake primarily propagated northward, 
inducing surface deformation in the Rueisuei-Chihshang 
area (Tang et al. 2023). Besides the significant deforma-
tion near the epicenter, there is also evident deformation 
and severe rupture along the Yuli Fault and the Chih-
shang Fault. These observations indicate that existing 
active faults were crucial in controlling the co-seismic 
deformation during this earthquake, which occurred 
near the surface and triggered fault activity.

This study focuses mainly on the Pingting Terrace in 
the Luye area, Taitung, which is a river terrace charac-
terized by significant tectonic activity. This region is par-
ticularly noteworthy due to the overlapping area of the 
Chihshang Fault and the Lichi Fault. Interestingly, to the 
north of the Pingting Terrace, the Beinan River initially 
follows the Longitudinal Valley Fault at the front of the 
Coastal Range. However, within the Pingting Terrace, the 
river takes an eastward shift, entering the hanging block 
of the Longitudinal Valley Fault, highlighting the unique 
tectonic activity of the Pingting Terrace. During the 2022 
Guanshan Earthquakes, the Pingting Terrace exhibited 
extensive surface rupture, offering valuable insights into 
the activity characteristics of underground structures. 
Our objective is to investigate the influence of pre-exist-
ing active faults, specifically the Chihshang Fault and 
the Lichi Fault, on these surface ruptures. Through this 
research, we have a unique opportunity to observe how 
earthquake-induced stress affects pre-existing structures 
and to gain insights into the underlying structural and 
movement patterns beneath the Pingting Terrace by ana-
lyzing co-seismic surface ruptures.

Additionally, this study aims to explore the deformation 
mechanism of the Pingting Terrace. Our field investiga-
tions have revealed that the distribution of surface rup-
ture areas extends not only along the existing active faults 
but also on the front and back edges of the terrace. More-
over, the fractures include both compressional and shear 
failure, suggesting a more complex deformation behavior 
than the previous models, necessitating a reevaluation of 
the structural model of the Pingting Terrace. We utilized 
the Riedel shear model to analyze the co-seismic rup-
ture, which enabled us to consider both compressional 
and shear ruptures. The analysis results indicate that the 
Pingting Terrace is located at the bend of the left-lateral 
shear zone, exhibiting a distinctive pressure ridge resem-
bling a flower-shaped structure. This, in turn, led to the 

rapid uplift of the Pingting Terrace, impacting the chan-
nel evolution of the Beinan River.

This research holds immense significance in the fields 
of seismology and tectonics, offering a valuable opportu-
nity to explore the forming mechanisms and kinematics 
of co-seismic Riedel shear structures. By investigating the 
relationships between seismic events, pre-existing fault 
systems, and surface ruptures, we gain a better under-
standing of the intricate processes that shape the Earth’s 
crust during earthquakes. The findings from studying the 
tectonic activity of the Pingting Terrace and the specific 
behavior exhibited during the 2022 Guanshan Earth-
quakes are crucial for advancing our comprehension of 
regional seismic hazards and improving risk assessments.

2  Geological background
The 2022 Guanshan-Chihshang Earthquake occurred 
within the Longitudinal Valley, located at the colli-
sion boundary between the Philippine Sea Plate and the 
Eurasian Plate (Fig.  1a). Historical records indicate that 
numerous catastrophic earthquakes have occurred within 
the longitudinal valley, suggesting significant fault activ-
ity within. On the eastern side of the Longitudinal Valley, 
there is a prominent active fault known as the Longitu-
dinal Valley Fault. This fault is well-exposed and exhibits 
distinct topographical features. It experiences frequent 
seismic activity and measurable deformation. Research-
ers have conducted extensive works on the Longitudi-
nal Valley Fault over the past few decades (e.g., Lee et al. 
2001, 2003; Hsu et  al. 2003; Lin 2004; Kuo-Chen et  al. 
2004; Shyu et al. 2005, 2006). Seismic data reveals that the 
fault is a high-angle east-dipping reverse fault with a left-
lateral component. Geodetic monitoring has indicated a 
velocity difference of about 30 mm/year across the fault 
during the inter-seismic period (1993–1999) relative to 
the Penghu-Baisha station, reflecting energy accumula-
tion along the Longitudinal Valley Fault (Hsu et al. 2009). 
Based on geological conditions and fault activity charac-
teristics, the fault can be divided into four segments from 
north to south: Lingding Fault, Rueisuei Fault, Chih-
shang Fault, and Lichi Fault (Lin et  al. 2009a, b, 2021; 
Chen et al. 2008a). On the western side of the Longitu-
dinal Valley lies the Central Range Fault (Biq 1965; Hsu 
1976a; Angelier et al. 2000; Shyu et al. 2005, 2006; Chen 
et al. 2008b; Hsu 2019), which is also the causative fault 
for the 2022 Guanshan-Chihshang Earthquake. Previ-
ous research and recent seismic events have indicated 
that the Central Range Fault is a high-angle reverse fault 
dipping to the west, with a left-lateral component. It also 
exhibits clear segmentation characteristics, consisting of 
the Hualien-Rueisuei segment, Yuli-Chihshang segment, 
and Chihshang-Taitung segment (Wu et al. 2006; Chuang 
et al. 2014; Wen 2018; Kuo-Chen et al. 2019; Hsu 2019; 
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Huang and Wang 2022). The 2022 Guanshan-Chihshang 
Earthquake first occurred in the Chihshang-Taitung seg-
ment, followed by the Yuli-Rueisuei segment the next day 
(Hsu et  al. 2023). It also triggered the Yuli Fault within 
the Longitudinal Valley, as well as the Chihshang Fault 
and Lichi Fault within the eastern side of the Longitudi-
nal Valley (Lee et al. 2023).

The Pingting Terrace is located in the southern seg-
ment of the Longitudinal Valley, with the Luliao River to 
the south and the Beinan River to the east (Fig. 2a). From 
a topographical perspective, the Pingting Terrace exhibits 
two-floor terraces thus it’s also referred to as the Erceng-
ping (“two-floor terrace” in Chinese). Actually, it can be 
separated into the “Lower Terrace” and the “Higher Ter-
race” obviously (Fig.  2b). The eastern side is character-
ized by high and steep cliffs formed by erosion from the 
Beinan River, while the western side consists of the allu-
vial fan of the Luliao River. Beneath the Pingting Terrace 
primarily lies the Lichi Mélange, overlain by the river ter-
race conglomerates of the Luliao River and Beinan River 
(Tong et al. 2006; Chi 2007; Shyu et al. 2008). The Lichi 
Mélange is extensively distributed on the southwestern 
side of the Coastal Range and mainly comprises strongly 
sheared mudstone with occasional interbedded foreign 
rock fragments of varying lithologies (Hsu 1976b; Teng 
1981; Chen 1991, 1997; Chang et  al. 2000, 2001; Huang 
et al. 2008). In this area, the Longitudinal Valley Fault is 
divided into two widely separated fault systems with dis-
tinct characteristics: the Chihshang Fault and the Lichi 
Fault. Based on topographical features and surface geo-
logical surveys, these two faults trend approximately 
north-northeast and are reverse faults dipping to the 
east. The Lichi Fault passes through the Xinliang Terrace 
at the front edge of the Lower Terrace, while the Chih-
shang Fault location is situated on the western edge of 
the Higher Terrace (Fig. 2b). The inclination angle of the 
Lichi Fault is estimated to be around 70° based on drilling 
data from Xinliang (Chi 2007).

The Pingting Terrace can be subdivided into six ter-
race levels (Fig. 2c). The easternmost part of the Pingting 
Terrace is the T1 formed by erosion from the Beinan 
River. In the northern segment, the Lower Terrace of the 
Pingting Terrace is T2. However, the southern segment 
of the terraces is influenced by tectonic activity, allowing 
further division into T3 and T4. The Higher Terrace of 

the Pingting Terrace can be divided into T5 and T6 due 
to a lower valley in the middle (Fig. 2c; Shyu et al. 2008). 
Furthermore, extending southward from the Lower Ter-
race, a feature known as the Xinliang Lineament can be 
delineated. Obsequent fault-line scarp on both the Lower 
and Higher Terrace, indicating complex tectonic activ-
ity in the Pingting Terrace (Fig. 2c; Shen et al. 2006; Jiang 
2007; Lin et al. 2009a, b; Jiang et al. 2012; National Tai-
pei University of Technology 2011). According to GPS 
velocity data from 2001 to 2003, the Pingting Terrace is 
moving at an approximate rate of 28.6  mm/year in the 
northwest direction (ERPN station). There’s a significant 
velocity difference on both sides of the fault (approxi-
mately 16.9  mm/year), suggesting a slight left-lateral 
oblique motion (Chuang et  al. 2012). The MT-InSAR 
results from ALOS images taken between 2007 and 2010 
show a reverse slip velocity of about 7 mm/year for the 
Lichi Fault (PTF1) in the LOS direction, while the Chih-
shang Fault (PTF2) of the Higher Terrace has a reverse 
activity rate of 20  mm/year in the LOS direction (Def-
fontaines et  al. 2017). Considering the topographic fea-
tures and variations in fault activity rates, it is believed 
proposed that the Lichi Fault (PTF1) is a creeping reverse 
fault with a gentler angle, whereas the Chihshang Fault 
(PTF2) has a steeper inclination angle but is locked at the 
surface, causing deep-seated activity to result in folding 
of the overlying strata.

Based on the comprehensive research presented above, 
the Pingting Terrace can be considered a structural ter-
race formed by two reverse fault systems. However, when 
considering high-resolution terrain data and the co-seis-
mic surface rupture patterns and distribution range gen-
erated by the earthquake in the Pingting terrace (Fig. 2b), 
it becomes evident that the subsurface structure of the 
Pingting terrace may be more complex.

3  Method and results
3.1  Investigations of surface ruptures 

and geomorphological analysis
The co-seismic surface rupture on the Pingting Terrace 
was primarily triggered by the earthquake event that 
occurred on September 17th, 2022. Field investigations 
indicate that the co-seismic surface rupture is predomi-
nantly aligned with the scarp of Lower Terrace and the 
Xinliang Terrace, which follow the path of the Lichi Fault. 

Fig. 2 a Geological Map of the Southern Longitudinal Valley (adapted after geological maps of Taiwan 1/50,000, Geological Survey and Mining 
Management Agency, MOEA 2018). The black box indicates the location of the Pingting Terrace. b Terrain Map and Rupture Distribution 
of the Pingting Terrace. The red lines indicate active faults, including the Chihshang Fault and the Lichi Fault. The yellow dots represent the surface 
rupture locations of the September 17th, 2022 earthquake. c Structural and Terrain Map of the Pingting Terrace. The red lines represent surface 
structural lines identified from high‑resolution digital elevation data. The terrace subdivisions were modified after Shyu et al. 2008. The gray lines 
depict 10‑m contour lines

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Some ruptures are situated at the leading edge of the fault 
and above the scarp of Higher Terrace (corresponding 
to the location of the Chihshang Fault) and behind the 
terrace (as illustrated in Fig.  2b). The rupture pattern is 
primarily characterized by compression, with occasional 
lateral displacement. Our focus is analyzing the rup-
ture pattern, complemented by topographic features, to 
explore subsurface tectonic activity beneath the Pingting 
Terrace. Considering the distinct geomorphic attributes 
in the northern and southern portions of the Pingting 
Terrace, as well as the differing structural patterns on the 
eastern and western sides, we have divided the study area 
into three districts: the northern segment, the southern 
segment, and the eastern side (as depicted in Fig. 2b).

Within the northern segment of the Pingting Terrace 
(see Fig.  3), the surface rupture is concentrated on the 
scarp and terraced surfaces of the Lower Terrace. None-
theless, surface rupture or building damage can also be 
observed at the forefront of the Pingting Terrace and 
on the Higher Terrace. The dominant rupture pattern 
is characterized by compression texture, occasionally 
accompanied by lateral shearing (as shown in Fig.  3a). 
Along the access road at the northernmost part of the 
Pingting Terrace, it is evident that bridges have under-
gone uplift deformation due to compression (Fig.  3b), 
with a rupture direction of approximately 120°. Despite 
the absence of significant terrain variations at the lead-
ing edge of the Pingting Terrace, surface rupture is still 
apparent on roads and buildings. At the labeled loca-
tion ‘c’ (Fig. 3c), an observable compressional ridge with 
a direction of about 240° can be seen, along with a left-
slip fracture oriented at 220°. Further to the south, at 
Ercengping Bridge, a noticeable right-slip fracture with 
a direction of 060° is present, accompanied by approxi-
mately 30 cm of displacement (Fig. 3d). Along the roads 
of the Lower Terrace, a series of surface damages are 
observable, including left-slip fractures with compres-
sion textures at around 170° (Fig. 3e). Beneath the road, 
the retaining wall is visible as a thrusting with a right-
lateral, the orientation is 170°, 70°W (Fig. 3f ). Continuing 
southward of the Lower Terrace, a distinct reverse scarp 
terrain becomes evident. Alongside this reverse scarp, 
the road and landscaped features display compression 
textures with directions ranging from 040° to 070°, result-
ing in 20  cm of uplift on the western side. The rupture 
extends along the reverse scarp (Fig. 3g). Due to the slope 
effects on the Lower Terrace, intermittent subsidence 
phenomena can occur on the road surface. The fissures’ 
orientations parallel the slope direction, roughly aligned 
north–south. Adjacent to the road, retaining walls also 
show displacements ranging from 4 to 15 cm due to the 
earthquake’s impact, with both left-slip and right-slip 
fractures observable (Fig. 3h). Approaching the scarp of 

Lower Terrace, the road displays compression texture 
with a direction of 030° (Fig. 3i). On the Higher Terrace, 
surface rupture is relatively limited. Along the road of 
the Higher Terrace, thrusting rupture with an orienta-
tion of 130°, 30°S occurs (Fig. 3j). In the middle section 
of the Pingting Terrace, distinctive topographic features 
of small channels come into view. The drainage facilities 
within these channels exhibit characteristics of compres-
sion texture, with the cement at the bottom experiencing 
compression in a trend of 065° (Fig. 3k).

In the southern segment of the Pingting Terrace, the 
surface rupture appears to be more scattered (Fig.  4). 
Ruptures are concentrated at the forefront of the Xin-
liang Terrace, and Lower Terrace. However, no surface 
rupture is observed on the Higher Terrace (Fig.  4a). 
On the Lower Terrace surface, left-lateral ruptures are 
observable with 015° and 010° trends, resulting in a dis-
placement of around 5 cm (Fig. 4b). On the road of the 
reverse scarp, a noticeable compression texture with a 
direction of 010° is present (Fig. 4c). On the road of the 
Xinliang Terrace, continuous variations of compression 
texture are evident, with directions ranging from 030° to 
055°, rotating to 070°. On the ditch wall beside the road, 
thrusting with a left-slip fracture at 055°, 40°S is observ-
able (Fig. 4d). As one moves eastward to the scarp slope 
of the Lower Terrace, the direction of compression tex-
ture changes to 355° (Fig. 4e). The rupture trend on Xin-
liang Terrace continues to extend southward. On the 
cement wall of the fields, reverse damage with an orienta-
tion of 175°, 23°E is observed, resulting in a vertical dis-
placement of approximately 9 cm (Fig. 4f ). On the road, 
a left-slip fracture with a direction of 040, accompanied 
by compression texture, is visible, extending into the inte-
rior of the adjacent factory (Fig. 4g). On the surface of the 
Lower Terrace, compression texture with an orientation 
of 065°, 45°N is observed beside the distinct arc-shaped 
scarp, with the rupture pattern aligning with the terrain 
features (Fig.  4h). South of the Xinliang Terrace, at the 
foot of the hill, the cistern in front of the building dis-
plays left-slip with compression texture in a trend of 050° 
(Fig. 4i). On the western side of the Xinliang Wetland, a 
series of compression textures are still evident on roads 
and drainage ditches, with directions ranging from 070° 
to 085° (Fig.  4j). A concave terrain is observable at the 
southernmost part of the Higher Terrace of the Pingting 
Terrace. On the adjacent road, a continuous north–south 
left-slip fracture can be observed, accompanied by the 
collapse of the road slope (Fig. 4k).

Although active fault traces do not traverse the east-
ern side of the Pingting Terrace, surface ruptures are 
still observable in the aftermath of this earthquake 
in Houhu and on the access road of the Beinan River 
(Fig. 5). On the northeastern side of the Higher Terrace, 
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a series of left-slip fractures are observable on the access 
road, with rupture directions ranging from 005° to 025° 
(Fig.  5b–d). Right-slip fractures with a direction of 145° 

can also be observed along the roadside, and surface 
damage is accompanied by an approximate 3 cm subsid-
ence (Fig.  5e). At the northernmost part of the Higher 

Fig. 3 Fracture pattern of the co‑seismic surface ruptures in the northern segment of the west side of Pingting Terrace, as indicated in Fig. 2b. 
a Fracture pattern of the co‑seismic surface ruptures on a 1 m resolution DEM. b The access road on the northern side and the bridge have 
undergone deformation due to compression, with fractures trending at about 120°. c At the edge of the terraces, the road and drainage ditches 
show compression ridges trending at 240°, and left‑slip fractures trending at 220° with a displacement of about 5 cm. d The Ercengping Bridge 
on the front edge of the terraces shows a right‑slip fracture trending at 060°, with a sliding displacement of about 30 cm. e At Road of Lower 
Terrace, a left‑slip fracture with a trend of 170°. f A retaining wall shows a right‑lateral reverse thrust fracture trending at 170°, 70°W. g On the reverse 
slope of the Lower Terrace with a western side uplift of about 20 cm, trending from 040° to 070° from the road. h On the road slope of the Lower 
Terrace, there is a subsidence with fractures trending at about 020°. The retaining wall at the roadside shows left‑slip fractures ranging from about 4 
to 15 cm. i On the scarp road of the Lower Terrace, compression texture with a trend of 030°. j The road on the Higher Terrace slope has a left‑slip 
with compression fractures at 130°, 30°S trending. k At the edge of the Higher Terrace scarp, compression texture within the drainage channel, 
the fracture trend of 065°
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Terrace, continuous compression texture is observed on 
the retaining walls along the road. Notably, these com-
pression textures were not caused by this earthquake and 
were previously documented in existing investigation 

reports, demonstrating deformation of the retaining walls 
(Fig.  5f; Shyu et  al. 2008; Jiang et  al. 2012). At the back 
slope of the Pingting Terrace, drainage ditches and slope 
exhibit compression texture, with an orientation of 140°, 

Fig. 4 Fracture pattern of the co‑seismic surface ruptures in the southern segment of the west side of Pingting Terrace, as indicated in Fig. 2b. 
a Fracture pattern of the co‑seismic surface ruptures on a 1 m resolution DEM. b On the Lower Terrace, left‑slip fractures with trends of 015° 
and 010°, resulting in a displacement of approximately 5 cm. c On the road of the reverse slope on the Lower Terrace, compression texture 
with a trend of 010°. d Next to the cliff road of Xinliang Terrace, the thrust with left‑slip fractures with trends of 055°, 40°S on the canal wall. e 
Compression texture with a trend of 355° on the Lower Terrace scarp. f On the cement wall of the Xinliang terrace, thrust fractures with trends 
of 175°, 23°E, with a vertical displacement of about 9 cm. g On the road of the Xinliang terrace, left‑slip fractures with a trend of 040°, accompanied 
by compressive destruction, extending to the adjacent interior of the factory. h A distinct arc‑shaped reverse slope on the Lower Terrace 
with compression texture of trending 065°, 45°N. i Under the hill of the Xinliang terrace, left‑slip with compression fractures of 050° trending. j In 
the Xinliang Wetland, a series of compression textures with trends ranging from 070° to 085°. k In the southern depression of the Higher Terrace, 
continuous N–S left‑slip fractures, accompanied by the collapse of road slopes
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50°S (Fig. 5g). On the access road at the easternmost side, 
compression texture with directions ranging from 010° to 
030° trends is observable on the cement road (Fig. 5h, i).

Through surface rupture investigations, it is evident 
that fracture slip patterns and distribution locations 
correspond to the topographic features of the Pingting 
Terrace (Fig. 6a). Compression structures accompanied 

by left-slip fractures are observable on the slope, while 
strike-slip damage systems can be seen on the step 
surface. The sole rupture on the western edge of the 
terrace lacks distinct topographic variation. We car-
ried out three E-W trending cross profiles across the 
Pingting Terrace, one N–S trending profile along with 
longitudinal structural, and marked the surface rupture 

Fig. 5 Fracture pattern of the co‑seismic surface ruptures on the east side of Pingting Terrace, the site as indicated in Fig. 2b. a Fracture pattern 
of the co‑seismic surface ruptures on a 1 m resolution DEM. b–d Along the flood prevention road, a series of left‑slip displacements can be 
observed with a trend of 005° to 025°. e Adjacent to the access road on the eastern side of the terrace, a right‑slip fracture with a trend of 145°, 
accompanied by approximately 3 cm of subsidence. f In the northernmost section of the Higher Terrace, fractures are generated by compression 
in the retaining wall (old). g On the back slope of the Pingting Terrace, there are reverse thrusts and compressions with trends of 140°, 50°S. h, i On 
the eastern access road, compression texture with a trend of 010°–030°
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patterns at their respective positions on the profiles 
(Fig. 6b). The results demonstrate active recent tectonic 
processes within the Pingting Terrace. Aside from two 
east-dipping reverse fault systems with evident left-
slip fractures, several west-dipping thrust faults are 
also apparent. Surface rupture observations suggest 
fault activities behind the Pingting Terrace (east side), 
along the slopes, and on the present river terraces, 
indicating potential newly developed structures. Two 
sets of east-moving back-thrust faults have formed on 
the Lower Terrace. The primary reverse fault on the 
Higher Terrace bifurcates into two branches, resulting 
in the emergence of secondary terraces. In the south-
ern segment of the Pingting Terrace, fault activity is 
more pronounced at the forefront of the Xinliang Ter-
race than the Lower Terrace, while surface ruptures are 
nearly absent on the Higher Terrace. Left-slip fracture 
can be observed on the northern and southern ends of 
the Higher Terrace, consistent with tectonic. It can be 
inferred that the Houhu lineament of the Pingting Ter-
race features a prominent left-lateral and back-thrust 
fault system. From the longitudinal profile (profile 
IV), a depression in the middle of the Pingting Terrace 
is evident, likely formed by an ancient river channel. 
Considering the compression structures at the north-
ern and southern ends of the terrace, combined with 
the topographic characteristics, it is deduced that the 

reverse system bends to encompass the northern and 
southern ends of the Pingting Terrace (Fig. 6b).

3.2  Riedel shear structure analysis
After conducting on–Site investigations into the direc-
tion, patterns, and distribution of surface ruptures, 
it becomes evident that the tectonic activity within 
the Pingting Terrace is not solely attributed to simple 
reverse fault systems. Strike-slip components are also 
observed in the fault activity. Previous studies have also 
indicated the presence of strike-slip components within 
the Pingting Terrace based on topographic features and 
geodetic monitoring (Shyu et  al. 2008; Chuang et  al. 
2012). Accordingly, our research team employed the 
Riedel shear structures model to analyze the geometric 
relationships, regional stress, and principal shear direc-
tions of the surface ruptures within the Pingting Ter-
race. The concept of Riedel shear structures originated 
from clay-cake deformation experiments conducted 
by Cloos (1928) and Riedel (1929). In previous studies, 
Riedel shear structures have been identified across vari-
ous scales of strike-slip fault zones, including map-scale, 
outcrop-scale, and even micro-scale (e.g., Bestmann et al. 
2000; Davis et  al. 2000; Ahlgren 2001; Lin et  al. 2001; 
Angelier and Bergerat 2002; Katz et al. 2004; Scholz et al. 
2010; Zhang et  al. 2010). Geometrically, Riedel shear 
structures consist of a series of fractures, encompassing 

Fig. 6 The distribution of the co‑seismic surface ruptures and geomorphic features in Pingting Terraces. a Surface rupture distribution. The base 
map is drawn from 1 m resolution DEM. b Structural profile combining terrain cross‑section of Pingting Terraces with surface rupture patterns
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compressional textures, R and R’ conjugate shear struc-
tures, tension fractures, and P shear structures. The ori-
entations of these structures are correlated with the trend 
of the principal displacement zone (PDZ) at specific 
angles. The conjugate R and R’ shear structures are ori-
ented at Ф/2 and 90° − Ф/2 with respect to the princi-
pal shear direction, respectively, where Ф represents the 
internal friction angle of the fractured rock or structure 
(Riedel 1929; Tchalenko 1968; Bartlett et al. 1981; Chris-
tie-Blick and Biddle 1985; Woodcock and Schubert 1994; 
Davis et al. 2000; Qu 2019). Tension fractures and com-
pressional structures are oriented at 45° to the principal 
shear direction, perpendicular to each other. Both R and 
P shear structures are symmetrical and share the same 
sliding direction with the PDZ (Fig. 7a). The angular rela-
tionships among various fractures are adjusted in actual 
shear zones due to geological conditions, structural con-
siderations, and strain rates during faulting (Katz et  al. 
2004). While artificial structures and varying mechanical 
properties of pavements could potentially influence the 
angles of shear structures, this study conducts a compre-
hensive analysis of diverse rupture patterns backed by a 
substantial amount of measured data.

As a result, the analysis of co-seismic rupture data 
collected from the surface can accurately represent the 
nature of fault activity within the Pingting Terrace. Based 
on the survey results, a total of 75 surface rupture data 
points were collected across the study area. The domi-
nant rupture types within the Pingting Terrace feature 
compressional structures, left-lateral ruptures, and occa-
sional right-lateral ruptures. Upon considering the cor-
relations among these rupture types, it is inferred that 
left-lateral ruptures in this area correspond more closely 
to P-structures rather than R-structures.

Due to the divergent terrain and structural charac-
teristics between the northern and southern segments 
of the study area, separate statistical analyses were car-
ried out. The outcomes suggest that in this earthquake-
induced surface ruptures, the northern segment displays 
larger slip and compression amounts, broader rupture 
distribution, and greater consistency in rupture orienta-
tions. Conversely, the southern segment witnesses a con-
centration of ruptures primarily on the newly developed 
Xinliang Terrace, characterized by relatively smaller slip 
amounts and greater variation in rupture orientations 
(Fig.  7b, c). Applying the Riedel shear model analysis 
method to these segments yields the principal PDZ and 
maximum principal stress (σ1) directions for each region, 
as depicted in Fig. 7. In the northern segment, the PDZ 
direction aligns closely with the N–S trend (azimuth 0°), 
whereas the σ1 direction is oriented NW–SE. In contrast, 
in the further southern segments, the PDZ direction 

rotates to a near NNE-SSW trend (azimuth 20°), with the 
azimuth of the σ1 direction at 155° (Fig. 7d).

4  Discussion
4.1  Investigation of Riedel shear structures in the Pingting 

terrace
In natural shear zone systems, specific angular relation-
ships between individual shear structural features are 
observed, particularly the angles between R, R’, and P 
structures, as well as their angles with the main slip zone. 
These angular relationships are influenced by various fac-
tors, such as regional geological conditions, pre-existing 
structures, rock strength (expressed as the coefficient 
of internal friction), strain rate during fault activity, and 
stress state (Dresen 1991; Ahlgren 2001; Lin and Nishi-
kawa 2011).

Based on the research findings, the shear structures 
within the Pingting Terrace are identified as R’ and P 
structures. The angle between the P structure and the 
principal displacement zone (PDZ) can provide insights 
into the local bedrock characteristics. In both the north-
ern and southern sections, the angles between P struc-
tures and the PDZ are approximately 20°, implying an 
inferred coefficient of internal friction angle of around 
40° for the underlying rocks. According to previous sur-
vey data, the footwall of the Pingting Terrace is com-
posed of conglomerate alluvium, and the hanging wall is 
the Lichi Mélange with an overlying conglomerate layer 
(Tong et  al. 2006; Chi 2007). Additionally, our oN–Site 
investigation has confirmed that the shallow layer of the 
Pingting Terrace is primarily covered with conglomer-
ates. Previous studies suggest that the coefficient of inter-
nal friction angle for conglomerates is approximately 
35°–40° (Barton and Choubey 1977; Lin et al. 2014). The 
friction angle for mudstone is around 26° (Spears and 
Taylor 1972; Taylor and Spears 1981). After weathering, 
the friction angle can decrease to 20° (Skempton 1970). 
When the mechanical properties of Lichi Mélange con-
tain a moisture content exceeding 10%, the friction angle 
is approximately 10°–18° (Fang 2002). Based on this 
information, it is inferred that the shallow conglomer-
ate influences the surface rupture characteristics in the 
region.

In this study, during the statistical analysis of shear 
structural features, not only the orientations of R’ and P 
shear structures but also the orientations of compression 
structures are considered. This approach aims to mitigate 
factors that may introduce angular errors into the anal-
ysis. This seismic surface rupture analysis is believed to 
effectively reveal the activity characteristics of the faults 
beneath the Pingting Terrace by utilizing a substantial 
amount of measured data.
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Fig. 7 Riedel shear analysis results of the Pingting Terrace. a Geometrical Characteristics of Riedel Shear Model Fractures. b Further differentiation 
into northern and southern segments based on the terrain structural features and surface rupture trends of the Pingting Terrace. c Statistical 
chart of rupture directions for the northern and southern segments of the Pingting Terrace. d Analysis results of Riedel shear for the northern 
and southern segments of the Pingting Terrace
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4.2  The stress in Lichi Mélange
The outcomes of the Riedel shear model analysis reveal 
the orientations of maximum principal stresses within 
the region: the northern segment aligns with an NW–SE 
direction (135°), while the southern segment is oriented 
at 155° (Fig.  7d). The change in stress field orientation 
may be attributed to the geometry of the fault. Accord-
ing to previous studies, stress deflection can occur due to 
lateral density/strength contrasts, flexural stresses, or the 
presence of geological structures such as faults (Sonder 
1990; Bell and McCallum 1990; Zoback 1992, 2007; Yale 
et  al. 1994; Zoback and Richardson 1996; Kastrup et  al. 
2004; Yaghoubi et  al. 2023) and salt diapirs (Dusseault 
et  al. 2004). When a fault is present, it acts as a stress 
guide, influencing the orientation and magnitude of 
stress in its vicinity. The stress state within the Pingting 
Terrace can be further compared with the fault activity 
characteristics observed within the Lichi Mélange. Chang 
et  al. (2001) conducted comprehensive field investiga-
tions along the Muken River on the northern side of the 
Pingting Terrace (refer to Fig.  2a for the Muken River’s 
location). The Lichi Mélange within the Muken River 
is composed of intensely sheared mudstone. By exten-
sively measuring the slickenside information from fault 
surfaces, it becomes possible to deduce the maximum 
principal stress direction within the Lichi Mélange. 
Through segmented statistical analysis, the variability of 
the maximum principal stress is found to range between 
135° and 170°. In addition to measuring the reverse dis-
placement components, many strike-slip components are 
also measured. This indicates that the shear zones and 
stress conditions within the Lichi Mélange are intricate 
and encompass both strike-slip and thrust components, 
and also confirms that the fault strike can be changed. 
The stress directions recorded in the field align with the 
phenomenon of maximum principal stress as observed in 
the co-seismic surface rupture analysis conducted in this 
study.

4.3  The flower structure in Lichi Mélange
Previous research has proposed that the Pingting Ter-
race is a tectonic terrace formed by two faults, the Chih-
shang Fault and Lichi Fault, both exhibit characteristics 
of reverse faults with a left-lateral component (Shyu et al. 
2008 and Chuang et  al. 2012). However, in the course 
of mountain building, it is plausible that the entire fault 
zone does not consistently move in a fixed direction at the 
same rate. Uplift and left-lateral movements occasionally 
dominate in different scenarios, as discerned from the 
slickensides recorded in the Lichi Mélange (Chang et al. 
2001). Regardless of high-resolution topographic data, 
it has become apparent that the Pingting Terrace hosts 
many intricate structural linear features. Furthermore, 

examining co-seismic surface rupture resulting from the 
2022 Guanshan earthquake has revealed the presence of 
multiple strike-slip fracture systems within the Pingting 
Terrace. The compression texture systems are distributed 
along the frontal edge of the terrace and behind the ter-
race. This suggests that the existing structural models no 
longer adequately account for the complete deformation 
behavior of the Pingting Terrace.

Considering the terrain, structural patterns, and sur-
face ruptures in the Pingting Terrace, it can be classi-
fied into two distinct structural units: the northern and 
southern segments. The results of the Riedel shear model 
analysis of the co-seismic surface rupture unveil that the 
primary shear zone in the northern segment trends in a 
north–south direction, whereas in the southern segment, 
it alters its direction to approximately 020° (Fig.  7d). In 
strike-slip fault zones, the stress state and geometry will 
change along the fault zone when a fault undergoes bend-
ing. If the fault’s directional change introduces a signifi-
cant vertical stress component, it can induce the uplift of 
a central block, giving rise to flower-like pop-up struc-
tures (Woodcock and Fischer 1986; Harding 1985, 1990; 
Hinsch et al. 2005; Dewey et al. 1998; Davis et al. 1996). 
Positioned within a left-lateral fault system, as the fault’s 
trend curves to the left, a transpressive regime emerges 
at the center, forming flower structures and resulting in 
rapid uplift of the Pingting Terrace (Fig. 8). In accordance 
with the flower structure model, signs of reverse fault 
compression deformation are noticeable on the eastern 
and western sides of the Pingting Terrace (Figs. 3, 4, 5). 
Moreover, within the terraces, multiple sets of reverse 
faults and backthrust systems can be observed (Figs. 3, 4). 
In the middle of the terraces, there is clear evidence of 
left-slip fractures (Fig. 5).

The phenomenon of strike-slip fault bending appears 
to align with the distinctions in trend between the Chih-
shang Fault’s southernmost segment and the Lichi Fault’s 
northernmost segment. The Chihshang Fault and Lichi 
Fault are developed within the Lichi Mélange (Lin et al. 
2009a, b) and constitute the primary shear zones. Upon 
their individual developments, they intersect within the 
Pingting Terrace. The divergence in fault trend at this 
intersection forces the Pingting Terrace to a transpres-
sional regime, fostering the formation of flower struc-
tures. This observation also corresponds to the fact that 
the Longitudinal Valley Fault in this region bifurcates 
into two widely separated fault systems exhibiting dis-
tinct characteristics.

4.4  The diversion of Luliao and the Beinan rivers
The Pingting Terrace is adjacent to the alluvial fans of the 
Luliao River and the Beinan River. The terrace surface 
consists of riverbed gravel, indicating that sediment is 
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transported and deposited by the Luliao or Beinan Riv-
ers. Based on previous dating data, the deposition age 
is estimated to be around 1530–1690  years ago (Shyu 
et  al. 2008). The Luliao River alluvial fan has a radius 
of around 5.8  km and reaches a height of 140  m at its 
highest point. It extends toward the western base of the 
Coastal Range. Considering the present position of the 
Luliao River, the alluvial fan has an asymmetrical shape 
with a larger northern area and a narrower southern sec-
tion (Kou et al. 1985; Chang et al. 1994). To the north of 
the Pingting Terrace, the Beinan River originally followed 
the Longitudinal Valley Fault which is at the frontal of 
the Coastal Range. However, within the Pingting Terrace, 
the Beinan River shifts to the east and enters the hanging 
block of the Longitudinal Valley Fault. This river diver-
sion led to the rapid formation of a new riverbed (Shyu 
et al. 2008).

Observing the topography of the Pingting Terrace, a 
relatively lower terrace is visible above the middle of the 
Higher Terrace. This lower terrace may correspond to an 
ancient riverbed of the Luliao River, potentially formed 
and carved before the terrace uplift. The course change 
of the Luliao River after the terrace uplift left behind a 
depression atop the terrace. Previous researchers have 
identified traces of ancient water flow heading south-
east in the southern part of the Higher Terrace of the 
Pingting Terrace (Shyu et al. 2008). Furthermore, the nar-
rowest segment area of this terrace aligns with the axis 
of an anticline, indicating that the structural activity of 

the Pingting Terrace influenced the ancient water flow. 
Additionally, the growth rate of the anticline surpassed 
the rate of incision by the small water channel. A geo-
morphologic evolution model of this area is proposed in 
Fig. 9.

These observations present an evolutionary process 
of the Luliao River, Beinan River, and Pingting Terrace 
(Fig.  9). In the initial stage (Stage I), before the forma-
tion of the Pingting Terrace, the terrace apex was situ-
ated at the tail end of the Luliao River alluvial fan. The 
fault was active along the Coastal Range, and during this 
period, the Beinan River followed the fault (Fig.  9a). In 
stage II, the Pingting Terrace experienced an uplift due 
to the bending of the strike-slip fault. During this phase, 
the Luliao River continued to flow across the terrace, but 
the development of an anticline caused the river to grad-
ually narrow. The Beinan River started to shift eastward 
due to the terrace uplift (Fig.  9b). As the terrace eleva-
tion continued to rise in stage III, the Luliao River altered 
its course to the south, expanding the Luliao River allu-
vial fan. The Beinan River also curved increasingly due to 
the terrace uplift (Fig. 9c). Approaching the recent stage 
(Stage IV), the Pingting Terrace displayed a dual-level 
terrace feature, and ongoing fault activity contributed 
to the formation of the Xinliang Terrace at the terrace’s 
leading edge. The Luliao River persisted in its southern 
course change, resulting in the wide-narrow distribu-
tion of the Luliao River alluvial fan. The Beinan River 
meandered closer to the Coastal Range and established 

Fig. 8 The underground structural model of the Pingting Terrace. Based on the analysis results of the Riedel shear model, it is inferred 
that the Pingting Terrace is a flower structure formed by the turning of a strike‑slip fault
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new accumulation terraces behind the Pingting Terrace 
(Fig. 9d).

5  Conclusions
Through the analysis of co-seismic surface ruptures 
caused by the 2022 Guanshan Earthquake in the 
Pingting Terrace area, the following conclusions can be 
derived:

1. The co-seismic surface ruptures brought about by the 
2022 Guanshan Earthquake correspond to the topo-

graphic features of the Pingting Terrace, thereby con-
firming the connection between surface ruptures and 
underlying structures.

2. Co-seismic surface ruptures within the Pingting Ter-
race encompass compression texture, left-slip, and 
right-slip fractures. The Riedel shear structure anal-
ysis indicates the presence of P structures, R’ struc-
tures, and compressional structures in these surface 
ruptures. According to the geometric relationship 
between the fractures, it can be deduced that a prin-
cipal displacement zone in the N–S orientation (azi-

Fig. 9 Illustrations of the evolution of Pingting Terrace, Luliao River, and Beinan River over time. a In the early stages, almost 1600 years ago, 
Pingting Terrace was located at the toe of the alluvial fan of the Luliao River, and the faults were developed along the front of the Coastal 
Range. b Due to the overlapping of two faults with different strikes, the Pingting Terrace began to uplift, consequently influencing the course 
of the Beinan River, which changed direction. The Luliao River, however, maintains its course across the terrace, leaving behind discernible remnants 
of its past path. c The Pingting Terrace continued to uplift, causing the Luliao River to divert to the south, the alluvial fan to extend southward, 
and the Beinan River to curve even more. d The Pingting Terrace developed into a two‑tiered terrace feature, with the Beinan River forming a new 
floodplain within the curved region, and the Luliao River continuing its southward course, merging with the Beinan River
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muth 0°) on the northern segment and approximately 
020° on the southern segment.

3. In the Pingting Terrace, the angle between the P 
structure and the principal displacement zone is 
approximately 20°. This angle can be inferred that the 
internal friction angle of the terrace material is about 
40°, reflecting that the surface rupture characteristics 
are affected by the conglomerate in the shallow layer.

4. The maximum horizontal stress orientations from 
the co-seismic surface rupture analysis are approxi-
mately 135° for the northern segment and 155° for 
the southern segment. These findings align with the 
fault inversion results of the Lichi Mélange in Muken 
River near the northern side of Pingting Terrace.

5. The Riedel shear model analysis shows that the 
Pingting Terrace rests upon a bent left-lateral fault 
system. As this fault system undergoes directional 
changes, a transpressive environment character-
ized by lateral compression emerges, resulting in the 
development of a flower structure and the swift uplift 
of the Pingting Terrace.

6. The rapid uplift of the Pingting Terrace plays a pivotal 
role in the eastward deviation of the Beinan River, 
leading to the relocation of the Luliao River’s chan-
nel and forming an alluvial fan wider in the north and 
narrower in the south.

Our results show that the co-seismic surface rupture 
analysis of this earthquake can clearly reflect the tec-
tonic activity of the Pingting Terrace. When the shear 
zone undergoes bending within the Lichi Mélange, 
transpressive stress at these bends can lead to the for-
mation of pressure ridge structures. Additionally, the 
structural evolution of the Pingting Terrace has played 
a pivotal role in altering the courses of both the Beinan 
and Luliao Rivers.
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