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Abstract 

An efficient forward trajectory model is proposed, in which the property and position of the fluids advected 
from the Euler coordinates to the Lagrangian coordinates can be accurately evaluated. After sorting and align‑
ing those fluid elements on the irregular Lagrangian curves, we apply the cubic or other high‑degree polynomials 
to interpolate the properties of the elements from the irregular curves to the regular grids. There is no need to solve 
the cubic equations and the associated coefficients as proposed previously. The model is quite simple, accu‑
rate, and much more efficient than the previous models. It also allows higher‑order polynomials to be employed 
in the interpolations. It is suitable for simulating the multi‑dimensional fast‑moving flows with large Courant Num‑
bers, the transport of pollutants in the atmosphere and ocean, and movement of raindrops in atmospheric models.

Keywords Lagrangian scheme, Semi‑Lagrangian, Forward, Backward, Courant number, Courant–Friedrichs–Lewy 
criterion (CFL), Euler and Lagrangian coordinates

1 Introduction
The characteristic-based Lagrangian models have been 
successfully applied to simulate the vortex merging, 
hydraulic jumps, and shear flows in the shallow water 
equations (Toro 1999; Wang and Yeh 2005, and others) 
with CFL ≥ 1, their results are quite accurate compared 
with the high-order finite volume models (Sun 2011; 
Sun and Oh 2022), but the former requires tremen-
dous computing time. They are also difficult to apply to 
multi-dimensional flows. Hence, the semi-Lagrangian 
advections are popular in computational fluid dynamics 
(Staniforth and Cote 1991). It is noted that there is a big 
challenge to find the property of the fluid in the upstream 
regions in fluid dynamics (Kalnay et  al 2000; Fournier 
2005; Sun and Sun 2017). The conventional backward 
schemes may face similar challenges. On the other hand, 
the forward trajectory method can easily evaluate the 
fluid property in the downstream with great accuracy 

(Purser and Leslie 1991). However, the variables on a cur-
vilinear Lagrangian grid are difficult to evaluate in the 
equations. Purser and Leslie (1991) proposed the ‘cascade 
interpolation method’, which was also used in Nair et al. 
(2003) and others. Sun et  al. (1996) proposed the ‘split 
interpolation method’. Based on splitting the dimensions 
of the geometric space to simplify the interpolation for-
mulae, both methods are very efficient with satisfactory 
accuracy. Because both methods hypothesize the same 
coordinate monotonicity, they are also subject to the 
restriction that neither the x- nor the y-projections of the 
Lagrangian curves should cross, which may not require 
CFL ≤ 1, but is still more stringent than the stability cri-
terion of Sun and Yeh (1997) semi-Lagrangian scheme. It 
is noted that the numerical scheme applied to the flux-
form model also requires CFL ≤ 1. A numerical scheme 
that allows CFL much greater than unity can be useful to 
simulate the fast-moving, high deformation flows inside 
hurricanes (Kurihara et  al. 1998) and tornados (Fujita 
1974, 1992), along the upper-level jet or the low-level jet, 
and strong vertical updrafts and downdraft inside the hot 
towers in the Equator trough (Rielh and Malkus 1958; 
Sun 2023), and the high-speed raindrop falling in the 
sky and the downslope density current (Setter and Kuo 
1983; Sun 1993); or to ease the CFL constraint imposed 
by the unwanted acoustic waves in a compressible fluid 

*Correspondence:
Wen‑Yih Sun
wysun@purdue.edu
1 Department of Earth, Atmospheric, and Planetary Sciences, Purdue 
University, West Lafayette, IN 47906, USA
2 Department of Atmospheric Sciences, National Central University, 
Taoyuan 320317, Taiwan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44195-024-00060-y&domain=pdf
http://orcid.org/0000-0002-3376-2605


Page 2 of 6Sun  Terrestrial, Atmospheric and Oceanic Sciences            (2024) 35:2 

and/or gravity waves in the Quasi-geostrophic phenom-
ena (Sun and Sun 2015, 2019; Yeh et al. 2002). Because of 
high accuracy and simplicity, the current scheme is suita-
ble to simulate the long-distance transport of dust by the 
upper-level-jet (Sun et al. 2013) and dispersion of pollu-
tion over the complex terrain (Wu et al. 2003; Sun 2021).

Sun and Yeh (1997) (will be referred to as SY) proposed 
a direct projection from the regular grids to the irregular 
Lagrangian grids in the 2D flow with velocity (u, v). Fig-
ure 1 shows that the fluid from the grid O(ξ, η) on η = yj 
moves to P(X,Y).(indicated by red circle) on the Lagran-
gian curve η = yj within ∆t, where X = ξ + u∆t, and 
Y = η + v∆t. The variable F (for example, water substance 
or pollutant) and the Lagrangian coordinates of the par-
cel remain the same, although the location changes from 
O(ξ , η) to P(X,Y) in Euler coordinates. They:

(A) Arranged the data in an orderly sequence,
(B) Assumed that variables F and the coordinate of 

P(X,Y) on the Lagrangian curve η = yj , are given by 
the cubic polynomials of ξ:

(1a)X(ξ) = a3ξ
3
+ a2ξ

2
+ a1ξ + a0,

Used 4-points values of ξ on η = yj and at P(X,Y) to 
determine the coefficients of ak , bk , and ck in the section 
of dξ = ξj+1 − ξj , where P(X,Y) is located.

(C) If the curve of η = yj intercepting the vertical line 
at X =  Xk, as indicated by the blue diamond Q in 
Fig. 1, they solved and selected the appropriate ξXk ,j 
among three roots of

 

Then, put ξXk ,j in Eqs. (1b) and (1c) to obtain the Y and F 
at Q; and applied same method to other Lagrangian curves 
to obtain entire interceptions of blue diamonds (Qs) on 
vertical line at X =  Xk.

(1b)Y (ξ) = b3ξ
3
+ b2ξ

2
+ b1ξ + b0,

(1c)F(ξ) = c3ξ
3
+ c2ξ

2
+ c1ξ + c0.

(1d)a3ξ
3
+ a2ξ

2
+ a1ξ + a0 = Xk .

Fig. 1 A particle O in Euler grids (dashed lines) moves to P in Lagrangian grids (full lines), and the corresponding Eulerian coordinate lines x = xi 
and y = yj are transformed to the Lagrangian coordinate lines ξij and ηij, respectively
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(D) From the values and y-coordinates of (Qs) along the 
vertical line to derive the value at the regular grid C 
(purple star in Fig. 1), then repeated the same pro-
cedure for the grids in the entire domain

This method is as accurate as Purser and Leslie (1994), 
Nair et al. (2003) or Sun et al. (1996). It is not limited by 
the restriction of coordinate monotonicity, either. Hence, 
it can be applied to the flow with CFL > 1. Although it 
requires 1.7 to 2.3 times computation compared with the 
splitting method, it is still more efficient than the back-
ward semi-Lagrangian scheme according to SY. The SY 
scheme has been applied in a 3D nonhydrostatic model 
to simulate the flows over mountains, and convective 
cloud bands develop over a warm ocean (Hsieh et  al. 
2010; Hsu et al. 2004, etc.) SY also showed solving coef-
ficients of Eqs. (1a, 1b, 1c) and the roots of cubic Eq. (1d) 
consume most of their computing resources. Meanwhile, 
equations higher than the third degree are exceedingly 
difficult to solve, hence, they cannot be applied in SY.

Here, we propose a method that requires solving neither 
the coefficients nor the cubic equations. The new method 
not only significantly reduces the procedures, saving 2/3 or 
more of computing time, but also allows higher-order poly-
nomials to be employed. To compare with SY results, we 
will show the simulations using the 3rd-order polynomials 
in the flow with large Courant Numbers.

2  Numerical scheme
As described previously, the fluid moves from Oi(ξ , η) to 
Pi(X ,Y )(indicated by red circle) within Δt in the regu-
lar coordinates. We connect those red circles to form the 
Lagrangian curve (η = yj), which intercepts with the ver-
tical line at X = Xk, indicated as blue diamond point Q. 
Since the variables on the Lagrangian curve are related to 
the cubic polynomials of the Lagrangian coordinates of the 
parcels, ξ and η, they can also be represented by the cubic 
polynomials of X and Y, the Euler coordinates of the par-
cels, because X and Y are well-defined functions of ξ and 
η. Consequently, F(Xk) and Y(Xk) can be derived from the 
coordinates of the neighboring reds by the Lagrangian 
polynomials:

(2a)

F(X) = Fi−2,j
(X − Xi−1,j)(X − Xi,j)(X − Xi+1,j)

(Xi−2,j − Xi−1,j)(Xi−2,j − Xi,j)(Xi−2,j − Xi+1,j)

+ Fi−1,j
(X − Xi−2,j)(X − Xi,j)(X − Xi+1,j)

(Xi−1,j − Xi−2,j)(Xi−1,j − Xi,j)(Xi−2,j − Xi+1,j)

+ Fi,j
(X − Xi−2,j)(X − Xi−1,j)(X − Xi+1,j)

(Xi,j − Xi−2,j)(Xi,j − Xi−1,j)(Xi,j − Xi+1,j)

+ Fi+1,j
(X − Xi−2,j)(X − Xi−1,j)(X − Xi,j)

(Xi+1,j − Xi−2,j)(Xi+1,j − Xi−1,j)(Xi+1,j − Xi,j)

After obtaining F and Y of all intercepts (blue diamonds) 
on the vertical line at X =  Xk, we apply Eq. (2a) again but on 
the vertical direction by replacing X by Y to get the value 
F at the Euler grid C. The same procedure is applied to the 
entire domain. There is no need to solve the cubic equa-
tions or the associated coefficients. Hence, this scheme is 
much simpler and more efficient than the one proposed 
by SY. It is noted that following the same procedure, the 
vertical Lagrangian curves can be interpolated from the 
fluids initially coming from the vertical lines, ξi. Interpola-
tion from the Lagrangian curves projected by fluids com-
ing from either a horizontal or vertical curve to the regular 
grids is referred to as ‘Economic Internet Interpolation.’ On 
the other hand, interpolation using both vertical and hori-
zontal lines parcels came from is called ‘Complete Internet 
Interpolation’ (SY). They showed that Complete Interpo-
lation is slightly more accurate than Economic Interpola-
tion, but the Complete version requires twice computing 
resources as the Economic one. It is also noted that Eq. (2a, 
2b) used in this model can be replaced by the 5th or higher 
order polynomials here, but not in SY.

3  Numerical results of Doswell’s idealized 
cyclogenesis

The idealized cyclogenesis of Doswell (1984) is used to 
demonstrate the performance of the scheme applied to a 
rotational flow with strong deformation. The governing 
equation is

The tangential velocity of the circular vortex is.

where r is the radius of the vortex; A = 2.598 is chosen 
so that the maximum value of V equals 1. The initial con-
dition is.

(2b)

Y (X) =Yi−2,j
(X − Xi−1,j)(X − Xi,j)(X − Xi+1,j)

(Xi−2,j − Xi−1,j)(Xi−2,j − Xi,j)(Xi−2,j − Xi+1,j)

+Yi−1,j
(X − Xi−2,j)(X − Xi,j)(X − Xi+1,j)

(Xi−1,j − Xi−2,j)(Xi−1,j − Xi,j)(Xi−2,j − Xi+1,j)

+Yi,j
(X − Xi−2,j)(X − Xi−1,j)(X − Xi+1,j)

(Xi,j − Xi−2,j)(Xi,j − Xi−1,j)(Xi,j − Xi+1,j)

+Yi+1,j
(X − Xi−2,j)(X − Xi−1,j)(X − Xi,j)

(Xi+1,j − Xi−2,j)(Xi+1,j − Xi−1,j)(Xi+1,j − Xi,j)

(3a)

∂f

∂t
= −V · ∇f in Euler forms, or

Df

Dt
= 0 in Lagrangian form.

(3b)V (r) = A sech2(r)tanh(r),

(3c)f x, y, 0 = −tanh[(y− yc)/δ],
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 where δ is the characteristic width of the frontal zone, as 
defined in in Holm (1995). The analytic solution is.

 where (xc, yc) is the center of rotation and ω = V/r is the 
angular velocity. The integration domain is 10 units long 
with resolutions of 65 × 65 or 129 × 129 grid points. An 
integration time of 5 units is chosen so that the analytic 
solution is still resolvable on the low-resolution grid. 
Nearly perfect results are obtained for the smooth cases 
with δ = 1, and we are interested only in the non-smooth 
cases with δ = 0.05. The analytic solution on the high-res-
olution grid is shown in Fig. 2a. The simulation from SY’s 
Complete Version with the filters (Sun and Sun 2004; Sun 
2007) on 129 × 129 grids, 64-time steps, t = 5, CFL = 1, and 
Error = 0.083 shown in Fig.  2b is quite comparable with 

(3d)

f (x, y, t) = − tanh

[

(y− yc)

δ
cos(ωt)−

(x − xc)

δ
sin(ωt)

]

our Economic simulation (Error = 0.078) in Fig. 2c. They 
are also in good agreement with our numerical result 
with 16-time steps, CFL = 4, t = 5, and Error = 0.076 in 
Fig.  2d. The numerical result obtained from SY’s Com-
plete Internet on 65 × 65 grids with CFL = 4, t = 5 and 
Error = 0.068 is shown in Fig.  3a. Our Economic simu-
lation shown in Fig.  3b has Error = 0.147. A larger error 
indicates that twice of the data used in Complete Interpo-
lation does improve the numerical results when the sharp 
edge of the vortex sheet is barely resolved by the coarse 
grids. When the phenomena can be well represented by 
the Lagrangian polynomials, the results do not have sig-
nificant difference between our simple (Economic) model 
and SY’s Complete Model. Both models can handle flows 
with the Courant Number much larger than one. The 
simulation on 129 × 129 grids with CFL = 6.0 produces an 
Error = 0.132 at t = 9.843, 21-time steps (shown in Fig. 4). 
The Error = 0.073 at t = 5.15 at 11-time steps. The mass 

Fig. 2 The Idealized cyclogenesis test on 129 × 129 grids, δ = 0.05. a The analytic solution after 5‑time units: b simulation at the same time 
from Complete Internet of SY (64 time‑steps, CFL = 1, Error = 0.083). c Simulation from current Model (64 time‑steps, CFL = 1, Error = 0.078), d 
simulation from current model with 16 time‑steps (CFL = 4, Error = 0.076)
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is also well conserved (Error of mass is 6.176 ×  10–4 at 
t = 9.843) by using Sun (2007), and Sun and Sun (2004). 
Because of simplicity and efficiency of the model, the cur-
rent model is suitable to simulate the multi-dimensional 
fast-moving flows or to ease the constrained by unwanted 
acoustic waves in compressible fluid or gravity waves in 
simulating the flows in the atmosphere or oceans. It can 
be applied to predict the transport of pollutants and dust 
along the jet (Sun et  al. 2013; Wu et  al. 2003) and the 
high-speed raindrops falling from convective clouds (Sun 
1993), or strong downslope windstorms in a three-dimen-
sional complex terrain model (Haines et al. 2019; Sun and 
Sun 2015; Sun 2021) because of simplicity and accuracy. 
This scheme can also incorporate the variation method 
to ensure the conservation of mass and/or energy of the 
entire domain (Sun and Sun 2004; Sun 2007).

4  Conclusion
Here, we propose an efficient forward trajectory model, 
in which the property and position of the fluids can be 
accurately evaluated from the Euler coordinates advected 
to the Lagrangian coordinates. After sorting those fluid 
elements on the irregular Lagrangian curve, we apply 
the 3rd-order cubic polynomial to interpolate the coor-
dinates and properties of the elements from the irregu-
lar curves to the regular grids. This scheme retains the 
advantages of the Internet Interpolation Model (SY) to 
allow a larger Courant number, but no need to solve the 
cubic equations and coefficients of a set of linear alge-
bra equations as proposed by SY. The scheme is not only 
much simpler than SY’s models but also allows using 
higher-degree polynomials. Hence, it is suitable to simu-
late the multiple-dimensional fast-moving flows in hurri-
canes, tornados and jet-streams, storms, and jet-stream, 
or ease the CFL constraint imposed by the unwanted 
acoustic waves in a compressible fluid or gravity waves in 
simulating the flow in the atmosphere and ocean (Mes-
inger and Arakawa 1976; Haltiner and Williams 1980; Lin 
2007; Coiffier 2011; Lin et  al. 2018). The semi-Lagran-
gian method can also avoid the nonlinear instability and 
is easier to handle the open lateral boundary compared 
with the finite difference and finite volume as discussed 
on p. 89 and p. 142 in the review article of Sun (2023).

Fig. 3 Numerical simulation after 5‑time units on 65 × 65 
grids, δ = 0.05, and CLF = 4: a simulation from Complete version 
of SY(Error = 0.068), b simulation from current Economic model 
(Error = 0.147)

Fig. 4 Numerical simulation after 9.84‑time units on 129 × 129 grids, 
δ = 0.05, and CLF = 6 (Error = 0.132) from current Economic model
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