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COMMENTARY

Emerging role of single-cell RNA sequencing 
in studies of cochlear aging
Guoqiang Sun1,2, Juan Carlos Izpisua Belmonte8*, Si Wang6,7*   and Guang‑Hui Liu2,3,4,5,6,7* 

Aging-related hearing loss (ARHL), also known as pres-
bycusis, is a multifactorial disorder resulting from aging 
of the auditory system, particularly the cochlea. It is char-
acterized by progressive, bilateral, and symmetrical hear-
ing loss, which is most pronounced at high frequencies 
(Jafari et al. 2019; Wu and Liberman 2022). ARHL is the 
most common chronic sensory deficit in the elderly pop-
ulation; cases double every decade from 20 years of age 
such that approximately half of those over 70  years old 
and more than 80% of those over 80 years old are affected 
by ARHL, with a higher incidence in men than in women 
(Wang and Puel 2018; Schubert et  al. 2022). Given that 
the aging global population is increasing, the num-
ber of people affected by ARHL is expected to increase 
annually.

ARHL can hinder normal communication and lead 
to social isolation. As a result, ARHL is associated with 
several comorbidities such as frailty, falls, and late-onset 
depression (Forster et  al. 2022; Rivas-Chacon 2022; 
Paciello et  al. 2023; Cominetti et  al. 2023). Further-
more, there is mounting evidence that ARHL is linked 
with cognitive decline and an increased risk of dementia 
among the elderly population, which negatively impacts 
on quality of life (Cominetti et  al. 2023; Martin et  al. 
2022; Fefer et  al. 2022). Apart from the health burden, 
ARHL also results in substantial economic costs. Stucky 
et  al. estimated that direct medical costs and costs for 
lost productivity of hearing loss in people aged 65 years 
and older amounts to billions of dollars per year in the 
United States (Stucky et al. 2010). Consequently, health, 
social, and economic costs of ARHL are substantial and 
are projected to continue to rise.

ARHL primarily results from aging of the cochlea, a 
complex structure with intricate physiology (Sun et  al. 
2023; Wang et  al. 2022; Yang et  al. 2022). The coch-
lea, which is shaped like a snail’s shell, comprises a hard 
bony outer shell and a longitudinal compartment along 
the cochlear axis with similar sections, each of which 
encompasses the three chambers present in the cochlea: 
the scala vestibuli, the scala media, and the scala tympani 
(Zdebik et al. 2009; Ashmore and Gale 2000; OJ ON et al. 
2023). The scala vestibuli and the scala tympani contain 
perilymph, while the scala media is filled with endo-
lymph. The basal cochlear cells detect high-frequency 
sounds, whereas the apical cochlear cells detect low-
frequency sounds. The cochlea is composed of different 
anatomical regions, including the lateral wall, the organ 
of Corti, and the modiolus (Zdebik et al. 2009; Ashmore 
and Gale 2000). The lateral wall contains cells including 
intermediate cells (ICs), basal cells (BCs), marginal cells 
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(MCs), capillary endothelial cells (CECs), perivascu-
lar resident macrophage-like melanocytes (PVM_Ms), 
fibroblast (FBs), fibrocytes (FCs), smooth muscle cells 
(SMCs). The organ of Corti primarily comprises hair 
cells (HCs), deiter cells and pillar cells (DCs_PCs), inner 
phalangeal cells / inner border cells (IPhCs_IBCs), and 
tympanic border cells (TBCs). Spiral ganglion neurons 
(SGNs), satellite glial cells (SGCs), schwann cells (SCs), 
chondrocytes (CCs), and osteoblasts (OBs) are present 
in the modiolus (Sun et  al. 2018; Shrestha et  al. 2018; 
Burns et al. 2015; Jean et al. 2023; Grandi et al. 2020; Li 
et  al. 2020; Milon et  al. 2021; Kolla et  al. 2020; Ranum 
et al. 2019; Hoa et al. 2020; Yamashita et al. 2018; Petit-
pre et  al. 2018). Immune cells including macrophage 
(M), T cell (T), B cell (B), and granulocytes/neutrophils 
(Neu) may infiltrate different anatomical regions (Milon 
et al. 2021). Based on the different pathological features 
of cochlear aging, ARHL can be classified as neural 
ARHL (loss of the SGNs), sensory ARHL (degeneration 
of the inner and outer HCs), strial ARHL (also known as 
metabolic ARHL, metabolic and vascular changes within 
cochlea), conductive ARHL (changes in the conduction 
or resonance of the cochlear duct) and mixed ARHL (a 
combination of the above) (Jafari et  al. 2019). However, 
because of its intricate structure and the diversity of its 
cellular composition, decoding the cellular and molecular 
mechanisms of ARHL has been challenging. Unlike bulk 
RNA-seq, emerging single-cell RNA-seq enables a more 
precise analysis of the cellular and molecular basis under-
lying cochlear aging at the single-cell level.

Recent single-cell RNA sequencing (scRNA-seq) analy-
sis of the cochlea have primarily focused on mouse coch-
lear development and impact of noise on the cochlea in 
mice. Burns et al. conducted a study using 301 single cells 
from the utricular and cochlear sensory epithelia of new-
born mice, identifying major sensory epithelial cell types 
and demonstrating differences in cell types between the 
cochlear and vestibular sensory epithelia (Burns et  al. 
2015). Other studies reported subtypes of type I SGNs 
identified by scRNA-seq and that inner HC-driven activi-
ties are necessary for SGN diversification (Sun et  al. 
2018; Shrestha et al. 2018). ScRNA-seq analysis has also 
been applied to resolve the cellular heterogeneity of 
adult mouse cochlear supporting cells and stria vascu-
laris (Hoa et al. 2020; Korrapati et al. 2019). In addition, 
Yamashita et al. conducted scRNA-seq analysis on mouse 
cochlear organ of Corti harvested at multiple time points 
after conditional overexpression of Atoh1, identifying 
51 reprogramming transcription factors, including Isl1, 
that were important for the efficiency of HCs conversion 
(Yamashita et  al. 2018). It was also found that Tgfβr1 is 
essential for the developmental maturation of outer HCs 
in a study analyzing the transcriptome of approximately 

30,000 cells from mouse cochlear sensory epithelium 
at four developmental time points (Kolla et  al. 2020). 
Finally, Milon et  al. revealed cochlear cell type-specific 
transcriptional changes upon noise exposure using sin-
gle-cell transcriptomics (Milon et al. 2021). These studies 
have advanced our understanding of cochlear develop-
ment and responses to noise at the single-cell level.

 In the context of aging, several studies have contrib-
uted to advance our understanding of cochlear aging 
at the single-cell level. For instance, Shrestha et  al. ana-
lyzed the changes in the proportion of three subtypes of 
typeI SGNs with aging and found that type IC SGNs are 
selectively vulnerable to aging (Shrestha et  al. 2018). In 
related work, Liu et  al. discovered that aging-associated 
upregulated genes in HCs are mainly associated with 
oxidative stress (Kdm6b, FOXO3, Sod1), DNA damage 
(Marf1, Rad9b, Actr2) and autophagy (Pikfyve, Gsk3b, 
Yod1), based on their analysis of inner and outer HCs, 
identified by morphology, from the young and old mouse 
cochlea (Liu et al. 2022). Although these pioneering stud-
ies unveiled age-related changes in specific cochlear cell 
types, a complete scRNA-seq analyses of all cochlear cell 
aging remained outstanding. Notably, a study published 
in 2023 constructed the first high-resolution single-cell 
transcriptome atlas of mice cochlear aging across multi-
ple time points (including 1, 2, 5, 12, and 15 months old 
mice) to systematically reveal the cellular and molecular 
mechanisms of mouse cochlear aging (Sun et al. 2023). In 
this study, multiple cochlear cell types (HCs, DCs_PCs, 
IPhCs_IBCs, TBCs, ECs, SGNs, SGCs, SCs, CCs, OBs, 
RMCs, ICs, MCs, BCs, CECs, PVM_Ms, FBs, FCs, SMCs, 
M, T, B, Neu) and especially ICs, SCs, HCs, SGNs were 
found to have aging-associated elevated immune inflam-
matory responses (S100a8, S100a9, Ifi35), and increased 
levels of oxidative stress (Apoe, Sod2, Gpx4), apoptosis 
(Atf4, Ddit3, Casp3), and endoplasmic reticulum stress 
(Hsp90aa1, Calr, Hspa5) (Sun et  al. 2023). Most strik-
ingly, Hsp90aa1 was found to be a potential target for 
delaying aging of cochlear ICs. This work provides a rich 
resource for uncovering the cellular and molecular mech-
anisms of cochlear aging, and provides a foundation for 
advancing the development of diagnostic and therapeutic 
intervention strategies for ARHL (Fig. 1) (Sun et al. 2023).

The fact that cells in the cochlear basal and apical turns 
perceive sound at different frequencies suggests that 
the same cell type have different properties depending 
on its location in the cochlea. Furthermore, it has been 
reported that cells in different cochlear locations are 
affected by aging to varying degrees, for example, the 
cells in the basal turn of the human cochlea are more sus-
ceptible to aging, leading to high-frequency hearing loss 
(Wang et al. 2020; Gates et al. 2005; Fu et al. 2018; Tian 
et  al. 2020). Therefore, a more in-depth analysis of the 
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molecular mechanisms of cochlear aging at the spatial 
level is needed to better understand the effects of aging 
on different regions of the cochlea.

Lastly, the cochlear structure of non-human pri-
mates is more similar to that of humans than that of the 
rodents. For instance, the cochleae of both non-human 
primates and human have 2.5–3.5 turns, whereas mice 
only have 1.5–2.5 turns. As a result, non-human pri-
mates can perceive sounds within a frequency range 
comparable to humans (Recanzone et  al. 2011; Sun 
et  al. 2021; Engle et  al. 2013; Ayala et  al. 2017). Thus, 

the non-human primate cochlea is a superior model for 
gaining a more comprehensive understanding of the 
cellular and molecular mechanisms underlying coch-
lear aging in higher vertebrates, and ultimately there-
fore more likely to inform identification of new targets 
that can be targeted therapeutically to mitigate human 
cochlear aging and ARHL.

Acknowledgements
We greatly thank Lei Bai, Luyang Tian, Ruijun Bai, Qun Chu, Jing Lu, Xiuping 
Li and Ying Yang for their administrative assistance. This work was sup‑
ported by the National Key Research and Development Program of China 
(2020YFA0804000) and the STI2030‑Major Projects (2021ZD0202400).

Fig. 1  Schematic diagram showing the mechanism of cochlear aging revealed by scRNA‑seq. Top, young and aged mouse cochlear tissues were 
subjected to histopathological analysis and single‑cell transcriptomic sequencing. Bottom, cellular and molecular alterations associated with age 
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