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Abstract 

Over the past 15 years, single-cell RNA sequencing (scRNA-seq) technology, in combination with other omics, 
has revealed the mechanisms of human development, tumors, and complex diseases at the genome, transcriptome, 
and proteome levels. However, this approach fails to directly reflect relevant spatial information, such as cell location 
and interactions. This limitation has been addressed with the advancement of the combination of high-resolution 
scRNA-seq and spatial transcriptomics (ST), which enables the identification of cell composition, intercellular 
and intermolecular interaction, and unravels the mechanisms of disease phenotypes. This review explores two types 
of ST - imaging-based ST (iST) and sequencing-based ST (sST) - and demonstrates how ST analysis can follow disease 
pathogenesis in a spatiotemporal manner, searching for disease-specific biomarkers. ST technology is an effective tool 
for resolving major biomedical and clinical problems, including tumor research, brain science, embryonic develop-
ment, organ atlas construction and other pathological analysis. Looking towards the future, despite its limitations, 
ST has the potential to address these problems in conjunction with “dynamics, multi-omics, and resolution”. Ulti-
mately, the development of ST technology, improvement of algorithms, utilization of deep learning, and refinement 
of the analysis process and interpretation will determine the key to transforming ST from bench to bedside.

Keywords Spatial transcriptomics, Single-cell RNA sequencing, Precision medicine, Cancer, Brain science, 
Development, Pathology

1 Introduction
Over the course of the past 15  years, scRNA-seq has 
emerged as an essential tool in scientific research, par-
ticularly in the fields of cancer research, brain science, 
developmental biology, and other pathologies. But 
scRNA-seq is limited by its requirement for enzymoly-
sis and destruction of the spatial structure of tissues and 
cells (Williams et  al. 2022), while most biological func-
tions in the human body, such as tumorigenesis, brain 
disease, embryonic development, and other pathologi-
cal diseases, depend on the spatial structure and prop-
erties of associated cells (Moses and Pachter 2022). The 

high-throughput ST approach has the capability to cap-
ture gene expression information in  situ, offering valu-
able insight into regulatory effects of spatial location on 
gene expression and cellular interactions in biological 
problems. The construction of the online Spatial Omics 
DataBase (SODB) platform has provided a driving force 
for the development of ST (Yuan et al. 2023). Combining 
ST and scRNA-seq is vital in closely linking pathological 
phenomena, spatial structure, and molecular changes, 
revealing molecular communication between cells in situ 
(Wang et al. 2023; Zhang et al. 2022a; Shen et al. 2022b; 
Fang et  al. 2023b; Vandereyken et  al. 2023) and allow-
ing for improved biomedical and clinical applications 
through the use of sensitive biomarkers, accurate disease 
classification, and precise risk prediction (Walker et  al. 
2022; Moffitt et al. 2022; Elmentaite et al. 2022).
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2  Development of ST technology and its analysis 
modules

2.1  Development of ST technology
Since its establishment as a technique by Ståhl et  al. in 
2016 (Stahl et  al. 2016), ST has been widely applied 
across different fields, with numerous new ST technolo-
gies emerging. ST technology can be categorized into two 
types, i.e., iST and sST, with the former detecting spatial 
gene expression through immunofluorescence images 
and the latter through sequencing to measure spatial 
gene expression (Fig.  1a). To date, various ST methods 
and analysis protocols have been developed, such as 10X 
Visium, DSP, Stereo-seq (BGI), MERFISH, Slide-seqV2, 
and STARmap PLUS (Stahl et  al. 2016; Merritt et  al. 
2020; Chen et al. 2022a), alongside the spatial atlas analy-
sis technology of chromatin accessibility (spatial-ATAC-
seq) (Deng et al. 2022).

2.2  ST analysis modules
The applications of ST analysis modules are continuously 
expanding, with applications resolving three fundamen-
tal biological problems. Firstly, ST technology enables 
the clarification of tissue cellular composition, allowing 
for the observation of specific cell types in cellular spatial 
structure. Secondly, it facilitates the analysis of interac-
tions between cells in tissues by examining spatial posi-
tions and contacts between cells. Lastly, ST technology 
analyzes molecular interaction by examining ligand-
receptor pairs transcription between cells. In tumor 
research, for instance, ST is particularly well-suited for 
exploring tumor/vascular/immune/metabolic microen-
vironments and analyzing spatial immune niche, as well 
as analyzing the tumor invasion front (TIF) and further 
constructing the gene networks. ST has demonstrated 

significant potential for applications in human disease 
and development.

3  Application potentials of ST in disease 
and development

3.1  ST in tumor research
Misdiagnosis and complex prognosis of tumors are due 
to the spatial heterogeneity of tumors and the complex-
ity of defining the TIF (Ahmed et al. 2022). Consequently, 
there is an urgent need for accurate analysis of the molec-
ular mechanism underlying tumor occurrence and devel-
opment to improve clinical diagnosis and treatment. The 
tumor immune microenvironment (TIME) is an incred-
ibly complex ecosystem (Binnewies et  al. 2018) where 
tumor-infiltrating T cells destroy tumor cells based on 
the signal regulation of bone marrow cells and recognized 
tumor-specific antigens (TSA). TIME is composed of 
monocytes, macrophages - especially tumor-associated 
macrophages (TAM) - as well as immune regulation of 
cancer-associated fibroblasts (CAF) and nutritional sup-
ply through endothelial cells (EC). During the develop-
ment of anti-PD-1/PD-L1 antibodies and other immune 
checkpoint blockers (ICBs), understanding the distri-
bution and function of immune cells in detail becomes 
necessary as TIME strongly affects the effectiveness of 
ICB therapy. Although scRNA-seq partially addresses 
questions in cancer research, understanding how differ-
ent immune cells interact with tumor cells and whether 
tumor mass is evenly infiltrated requires scRNA-seq data 
sets embedded with histological structure information, 
i.e., ST technology (Hsieh et al. 2022).

ST technology is widely utilized in tumor research, 
combining scRNA-seq to determine cell type-specific 
gene sets alongside morphological analysis (i.e., HE 

Fig. 1 Development timeline of ST technologies. The development timeline of ST has witnessed the emergence of various technologies, 
including 10X Visium, DSP, Stereo-seq (BGI), MERFISH, Slide-seqV2, and STARmap PLUS, among others
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staining) and ST to determine tissue region-specific gene 
sets (Moncada et  al. 2020). The integration of multi-
omics method is then employed to analyze the relation-
ship between cell state and different cell groups and 
tissue regions in the tumor microenvironment. The for-
mer includes tumor immune microenvironment (TIM), 
vascular microenvironment, and metabolic microenvi-
ronment, while the latter encompasses the communica-
tion and interaction between tumor cells, immune cells, 
CAFs, vascular cells, and cell proliferation and death 
(Fig. 2).

The application of ST technology in tumor research 
has proven superior to traditional methods, enabling the 
extraction of more information for clinical diagnosis and 
treatment than ever before (Lewis et al. 2021). Recently, 
Seferbekova et  al. reviewed the complex landscape of 

the tumor ecosystem revealed by ST and proteomics, 
highlighting the necessity of interaction with the tumor 
microenvironment (TME) in cancer evolution, as well 
as potential clinical applications and development direc-
tions (Seferbekova et  al. 2022). Meanwhile, Akhoun-
dova and Rubin focused on the latest research progress 
in multi-omics analysis of tumor atlas, summarizing 
the in vitro model of the spatial genome and chromatin 
conformation, ST and proteome, liquid biopsy, and drug 
effectiveness evaluation (Akhoundova and Rubin 2022). 
Novel ST technologies, such as base-specific in  situ 
sequencing (BaSISS), have also emerged to better map 
the structure, nature, and evolution of cancer clones 
(Lomakin et  al. 2022). Overall, ST is widely utilized in 
tumor research, with applications spanning various areas 
(Fig. 3):

Fig. 2 Integrating scRNA-seq, ST technology, and morphological analysis to study tumors. This figure shows the analysis process of multi omics 
in tumor research
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3.1.1  Spatial characteristics of TIME
Solid tumors are primarily composed of tumor cells, 
immune cells, stromal cells, vascular ECs, and smooth 
muscle cells (SMC). As one of the most complex tumor 
microenvironments, ST can effectively interpret TIME by 
revealing the immune cell types, status, and interaction 
with other cell types. For instance, Breast cancer (BC) 
serves as an excellent model for ST application due to its 
complex histopathological characteristics (Wu et al. 2021; 
Andersson et al. 2021). Spatial cell labeling has revealed 
that T cells are co-located in lymphocyte-rich regions 
(Wu et al. 2021), whereas ST analysis of HER2+ BC has 
found immune cells and tumor cells compartmentalized, 
mixed with, or aggregated into the structure of lymphatic 
organs surrounding the area of ductal carcinoma in situ 
(DCIS) (Andersson et al. 2021). Furthermore, the analy-
sis of TIME is a crucial focus in tumor research with spa-
tial multi-omics analysis applied to its study (Hsieh et al. 
2022). The tumor immune barrier (TIB) formed by the 
interaction of SPP1+ macrophages and CAF in the TME 
of hepatocellular carcinoma (HCC) proved related to the 
efficacy of immunotherapy (Liu et  al. 2023d). By block-
ing SPP1 to destruct the TIB structure could improve 
the curative effects of immune checkpoint blockade on 
HCC (Liu et al. 2023d). Real-time imaging via ST has also 
provided valuable insights into the behavior and func-
tion of CAR T cells, demonstrating the theoretical basis 
for cancer immunotherapy (Ahmed et  al. 2022). Addi-
tionally, there exists a strong spatial interaction between 
immune cells and metastatic malignant tumor cells. A 
CRLM study has identified a specific macrophage group 

(MRC1+ and CCL18+) scattered around the metastatic 
tumors and peritumoral boundary with extensive cell-
cell interaction (CCI) detected between metastatic tumor 
cells and macrophages (Wu et  al. 2022). Furthermore, 
SpaCET, a computer framework developed by Ru et  al., 
can infer cell identity in tumor ST data and reveal how 
CCI at the tumor-immune interface promotes cancer 
progression (Ru et al. 2023) (Fig. 3a).

3.1.2  Analysis of TIF
TIF, as the junction between tumor and immune cells, 
generally elicits a fierce immune response. Ji et al. (2020) 
and Anderssen et al. (2021) conducted high-dimensional 
and multi-omics analyses to describe the characteristics 
of human squamous cell carcinoma (cSCC) and HER2+ 
BC respectively, finding TSK as the center for cell-cell 
communication (CCC) located in the vascular tissue, 
and identifying significant cell interaction at TIF. Patients 
with rich immune cell infiltration at TIF exhibited a bet-
ter prognosis (Andersson et  al. 2021). Meanwhile, ST 
revealed malignant crosstalk between co-located cells 
in CRC patients, with CRC cells at TIF inducing human 
leucocyte antigen G (HLA-G) to produce SPP1+ mac-
rophages, enhancing tumor immunity, proliferation, and 
invasion (Ozato et  al. 2023) (Fig.  3a). The utilization of 
ST enables the acquisition of high-resolution and high-
throughput molecular expression and interaction net-
works in the TIF, facilitating the observation of changes 
in a gradient from cancerous to adjacent regions. Fur-
thermore, ST can be employed to investigate alterations 

Fig. 3 The application of ST in tumor research. a Display the cell compositions and communications in the TME, showing TIF, TLS, intratumoral 
microbiota, etc. b Demonstrate the ST application in the progression of CRC liver metastasis (CRLM), showing prognostic cancer markers
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in cell types, cellular functions, energy metabolism, and 
other factors on both sides of the TIF.

3.1.3  Spatial analysis of TLS
Tumor-associated tertiary lymphoid structure (TLS) 
are complex microenvironments that contain various 
immune cells with distinct functions, as revealed by 
ST analysis that TLS are composed of B cells, T cells, 
and dendritic cells (DC). A BC study showed that TLS 
was rich in B cells in TNBC patients, while HER2+ BC 
patients exhibited a TLS highly co-located by B cells 
and T cells (Keren et  al. 2018; Andersson et  al. 2021). 
Bassiouni et  al. have investigated the differences in cell 
composition within TNBC among different racial cohorts 
(Bassiouni et  al. 2023). In human CRC samples, ST can 
describe the molecular and structural changes that occur 
during the cancer state transition process and the varia-
tions in cell composition and TLS structural pattern (Lin 
et  al. 2023a) (Fig. 3a). The application of ST in the spa-
tial analysis of TLS enables the investigation of dynamic 
changes and ligand-receptor interactions among immune 
cells, stromal cells, and cancer cells within the TLS over 
time.

3.1.4  Intratumoral microbiota on spatial heterogeneity
Recent studies have revealed that microorganisms can 
influence tumor cells and exhibit intratumoral spa-
tial characteristics. ST and scRNA-seq analysis showed 
that microbiota distribution in oral squamous cell car-
cinoma  (OSCC) and CRC tumors was not random but 
highly concentrated in the microenvironment with 
immune and epithelial cell functions, facilitating cancer 
progression and highlighting the interactions between 
space, cell, and host-microorganism (Galeano Nino et al. 
2022) (Fig.  3a). The utilization of ST in the analysis of 
intratumoral microbiota and tumor spatial heteroge-
neity enables the investigation of interactions between 
microbiota and tumor cells within the tumor microen-
vironment, leading to a better understanding of the role 
of microbiota in tumor development and progression. 
However, the technology requires further improvement 
to enhance ST’s ability to capture microbial RNA. Future 
research may explore the distribution and interaction 
of microorganisms in tumors through the implementa-
tion of a capture strategy such as utilizing random prime 
capture.

3.1.5  Reveal tumor progression
ST can significantly advance tumor characteristic study, 
elucidating subpopulation spatial distribution, and inter-
action and metabolism between different compartments 
during cancer progression. Through ST analysis, Kar-
ras et al. obtained a high-resolution spatial landscape of 

melanoma cell subpopulations, mapped the phenotypic 
diversity of melanoma, identified tumorigenic cell groups, 
and provided insight into tumor growth origins (Karras 
et al. 2022). In CRC patients, the increased expression of 
ASCT2 and CD98 (Fig. 3b), prognostic cancer markers in 
humans, can monitor the immune cell metabolism polar-
ization (Hartmann et  al. 2021). Moreover, multi-omics 
analysis integrated by Heide et al. characterized the CRC 
phenotypic heterogeneity evolution and constructed the 
tumor heterogeneity atlas, enlightening CRC biology 
(Heide et  al. 2022; Househam et  al. 2022). Multidimen-
sional ST analysis data can identify essential information 
in tumor progression as shown by Zhu et  al. construct-
ing a multi-group invasive lung adenocarcinoma (LUAD) 
atlas, revealing LUAD-specific cell information and inter-
action that bolsters early diagnosis and surgical interven-
tion (Zhu et  al. 2022). Meanwhile, Cui Zhou et  al.’s ST 
work identified transitional cell groups between normal 
pancreas and pancreatic ductal adenocarcinoma (PDAC), 
highlighting differences in chemotherapy’s effect on 
tumor and interstitial cell abundance and transcription 
processes (Cui Zhou et al. 2022). In addition to the above 
research on coding RNA, ST analysis can also unveil tis-
sue-specificity and functional roles of long non-coding 
RNA (lncRNA)’s in cancer (Xu et al. 2023).

3.1.6  TME related to prognoses
The spatial structure of TME is strongly associated with 
overall patient survival. Patients with a well-defined TME 
often exhibit a better disease prognosis. For instance, 
in PDAC, the immune-related genes and immunophe-
notypes of the TME influence recurrence patterns and 
patients with well-defined TME tend to have better sur-
vival (Karamitopoulou et  al. 2023). Furthermore, struc-
tural subtypes of diffuse large B-cell lymphoma (DLBCL) 
have been found to have better overall survival compared 
to scattered subtypes (Colombo et  al. 2022). In pan-
cancer analysis, it has been suggested that the interferon 
response module varied with tumor location and weak-
ened after lymphocyte elimination, indicating the inter-
action between cancer recurrence and the TME (Barkley 
et al. 2022).

3.1.7  Exploration of tumor biomarkers and therapies
The integration of scRNA-seq with ST enables the iden-
tification of new tumor biomarkers. For instance, in blad-
der cancer, a new marker N-Cadherin 2 was discovered 
through single-cell clustering and was associated with 
poor prognosis. T cells expressed more depletion markers 
near tumor cells expressing N-Cadherin 2, indicating that 
tumor cells with more dedifferentiation, proliferation, 
and invasiveness were usually co-located with depleted 
T cells (Sautes-Fridman et al. 2019). ST can also be used 
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to construct molecular and immune atlases of early CRC 
tumorigenesis (Roelands et  al. 2023), identify prognos-
tic markers for CRLM (Cortese et  al. 2023), determine 
multicellular dynamics related to neoadjuvant therapy in 
PDAC (Hwang et  al. 2022), and reveal regulatory path-
ways for arginine metabolism in human neuroblastoma 
mouse models (Van de Velde et  al. 2021). CAFs, act-
ing as immunomodulatory cells in tumors, can serve as 
important biomarkers and therapeutic targets. In BC, 
ST data analysis revealed strong crosstalk between iCAF 
and adjacent T cells (Wu et  al. 2021). Further, Akiyama 
et  al. used integrated scRNA-seq and ST to explore the 
effect of matrix reprogramming on immune reactivation 
and potential treatment methods (Akiyama et  al. 2023). 
Exploring tumors using ST to construct a tumor-targeted 
regulatory network has the potential to facilitate the 
identification of tumor biomarkers and their subsequent 
implementation in personalized treatment strategies.

3.2  ST in brain science
The diversity of brain cell types and their communica-
tion relationship shall be analyzed to analysis of brain 
function (Zeng and Sanes 2017). ST plays a crucial role 
in revealing the relationship between brain cell compo-
sition, spatial location, cell communication, organ func-
tion, and disease. ST links scRNA-seq characteristics 
with spatial distribution and is regarded as an advanta-
geous tool in brain analysis. ST-based in  situ capture 
and heterotopic sequencing technologies have enabled 
spatial transcriptome analysis for regions in human and 
mouse brains (Maynard et al. 2020; Rodriques et al. 2019; 

Lei et  al. 2022). Though sensitivity is sometimes lower 
than IHC or IF, high-multiple, high-resolution, and high-
throughput ST technologies will continue to improve 
capture sensitivity, providing a powerful tool for explor-
ing brain science. ST can explore cell type heterogeneity, 
transformation, and migration during neural develop-
ment, and reveal specific types of pathological changes in 
brain diseases and animal models (Fig. 4).

3.2.1  Construction of brain spatial atlas
ST has been widely used in multiple studies to explore 
the cellular and spatial characteristics of different brain 
regions. For instance, Chen et  al. used ST (Stereo-seq) 
to describe the spatial structure of the adult mouse brain 
(Chen et  al. 2022a). Lei et  al. used single nuclei RNA 
sequencing (snRNA-seq), snATAC-seq, and high-res-
olution ST (Stereo-seq) to identify the regulatory net-
works of excitatory neurons in different cortex and brain 
regions of cynomolgus monkeys, highlighting cell types 
susceptible to neurological diseases (Lei et al. 2022). Lin 
et al. used ST to map the central nervous system (CNS) 
region of marmosets (Lin et  al. 2022), while Uzquiano 
et  al. used multimodal scRNA-seq, epigenetic sequenc-
ing, and ST to define the fate specialization process of 
the human cortex (Uzquiano et  al. 2022). Additionally, 
Zhang’s team used ST (MERFISH) to identify different 
cell types and spatial maps in the mouse primary motor 
cortex, revealing the complexity of different cell types 
(Zhang et al. 2021) (Fig. 4a).

Fig. 4 The application of ST in brain science. a ST analysis of the whole brain to construct the brain spatial atlas. Abbreviations: Cerebral cortex 
(CTX), Hippocampal formation (HPF), Thalamus (TH), Hypothalamus (HY), Corpus callosum (CP); b Spatial analysis of AD and healthy brain 
demonstrating molecular mechanisms and therapeutic targets (inhibition of Inpp5d)
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3.2.2  ST analysis of brain diseases
ST is widely used in Alzheimer’s disease (AD) research, 
providing insight into the spatiotemporal changes in 
AD pathology. For example, studies using ST have con-
structed cellular and spatial atlases of AD progression, 
identified new markers of plaque like CST7 (cystatin F), 
and revealed changes in cell type during AD develop-
ment (Zeng et al. 2023; Chen et al. 2022c; Castranio et al. 
2023; Luquez et al. 2022) (Fig. 4b). Additionally, haploid 
defect models, such as the Inpp5d model constructed by 
Lin et  al., have suggested potential treatment strategies, 
enhancing microglial function and plaque clearance (Lin 
et  al. 2023b). Other studies have drawn atlases of non-
immune and non-neuronal cells in the brain of wild-type 
and AD model mice, identifying disease-associated oli-
godendrocytes (DOLs) that respond to the CNS’s steady 
state (Kenigsbuch et al. 2022). Further multi-omics analy-
sis, as performed by Iturria-Medina et  al., could clas-
sify AD and predict neuropathy severity, defining three 
molecular subtypes that explained AD’s pathology and 
clinical heterogeneity (Iturria-Medina et  al. 2022). The 
combination of ST with radiography or pathology, as well 
as improved integration methods, can help reveal the for-
mation mechanism and treatment methods of amyloid-
beta plaque in this field.

ST is a valuable tool for exploring various brain dis-
eases. For instance, Kathe et al. used snRNA-seq and ST 
to identify an important subgroup of neurons in post-
paralysis recovery tissue necessary for the recovery of 
walking (Kathe et al. 2022). Allen et al. used ST to study 
the changes in cell molecular characteristics and spatial 
organization in the aging process of the mouse brain 
(Allen et  al. 2023), while Fang et  al. used ST to analyze 
the transcriptional substrate of brain structure and func-
tion damage in first-episode major depression patients 
(Fang et al. 2023a). Zhang et al. used ST to study the tran-
scriptional changes in specific brain regions in a mouse 
model of epilepsy, identifying potential signal targets for 
immune intervention of epilepsy activities (Zhang et  al. 
2023b). Additionally, Batiuk et  al. used ST to analyze 
changes in gene expression and neuron composition in 
the influence circuit of schizophrenia, revealing the net-
work damage mechanism driven by the upper cerebral 
cortex (Batiuk et al. 2022).

In exploring brain metastasis of cancer, for example, 
Zhang et al. used ST to obtain complete transcriptional 
histograms of tumor core, TIME, and the tumor micro-
environment in the brains of non-small cell lung cancer 
(NSCLC) patients, providing insights into the molecu-
lar and cellular mechanisms of brain metastasis (Zhang 
et al. 2022b). Similarly, Biermann et al. used ST to study 
melanoma brain metastasis (MBM) and identified its 
rich genome, adaptability, and TME characteristics 

(Biermann et al. 2022). Furthermore, ST technology has 
been applied to analyze biopsies of primary tumors of 
CNS lymphoma, revealing intertumoral heterogeneity 
and T cell exhaustion (Heming et al. 2022). In the context 
of infectious diseases such as trypanosoma brucei infec-
tion, Quintana et al. employed scRNA-seq and ST analy-
sis to reveal the crosstalk between microglia and plasma 
cells in the brain (Quintana et  al. 2022). These studies 
shed light on the molecular mechanism underlying vari-
ous brain diseases.

The utilization of ST omics in the construction of brain 
atlases and the investigation of brain diseases presents an 
opportunity to gain insight into the temporal dynamics 
and intercellular interactions of various brain cell types, 
as well as to identify potential biomarkers and elucidate 
the molecular mechanisms underlying these diseases. 
For instance, ST technology can be employed to partition 
the brain and examine the spatial distribution of brain 
regions, as well as changes in the surrounding microen-
vironment, such as amyloid-beta plaque. Moreover, this 
approach can facilitate the identification of novel thera-
peutic targets and the development of personalized treat-
ment modalities.

3.3  ST in development
Developmental biology researchers have traditionally 
focused on the formation of complex adult organisms 
from fertilized zygotes. Although scRNA-seq has been 
utilized to describe gene expression and regulation in 
mouse embryo development, it cannot accurately depict 
spatial location and cell interaction. Therefore, the inte-
gration of ST techniques is crucial for creating a more 
complete development atlas. Nevertheless, research on 
mammalian embryo development is currently limited to 
mouse and monkey models due to the challenges associ-
ated with directly studying human development (Fig. 5).

3.3.1  Analysis of embryonic development
 Rabbani et  al. have highlighted the benefits of employ-
ing ST analysis in understanding the molecular and 
cellular mechanisms involved in spermatogenesis and 
development from newborn to adult (Rabbani et al. 2022) 
(Fig. 5a). Similarly, Cui et al. used ST to construct a high-
precision anatomical atlas of the gastrulating cynomol-
gus monkey embryo, revealing important information 
about the regulatory network involved in embryogen-
esis (Cui et  al. 2022). Bergmann et  al. studied the early 
gastrula of Callithrix jacchus using ST and stem cells to 
depict the spatiotemporal characteristics of embryonic 
models (Bergmann et  al. 2022). Furthermore, a three-
dimensional ST spectrum was constructed to provide a 
panoramic view of mouse embryo development at 16.5 d 
(Chen et al. 2022a).
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3.3.2  Analysis of organ development
Chen et al. created the mouse organogenesis spatiotem-
poral transcriptomic atlas (MOSTA, https:// db. cngb. org/ 
stomi cs/ mosta/) using high-resolution ST, which mapped 
the dynamics and directionality of mouse organogen-
esis with high sensitivity at single-cell resolution (Chen 
et al. 2022a). Similarly, Asp et al. employed ST to map the 
spatiotemporal gene expression and cell atlas of human 
heart development, enabling the identification of a 
unique gene spectrum for each developmental stage and 
anatomical region (Asp et  al. 2019). Sountoulidis et  al. 
combined ST and scRNA-seq to construct a comprehen-
sive atlas of human lung early development, identifying 
83 lung cell states and the developmental tracks leading 
to significant heterogeneity of lung cells (Sountoulidis 
et al. 2023). Besides, using ST on human fetal lung tissue 
samples, He et al. established the most detailed and pre-
cise multi-group cell atlas of human lung development, 
revealing cell lineage tracks and providing new insights 
for understanding the development of adult lung dis-
eases (He et al. 2022). Fawkner-Corbett et al. established 
an atlas of human intestinal development, providing a 
detailed account of the formation of the crypt-villus axis 
and the morphogenesis of nerves, blood vessels, mesen-
chyme, and intestinal immune population (Fawkner-Cor-
bett et al. 2021). In a study on human fetal pancreas using 
a combination of scRNA-seq and ST analysis at multiple 
developmental stages, Olaniru et al. identified novel can-
didate genes involved in regulating the differentiation 
of progenitor cells. They also highlighted the potential 
importance of Schwann cells and mesenchymal cells in 

the differentiation of human endocrine progenitor cells 
and acinar cells (Olaniru et  al. 2023). Garcia-Alonso 
et  al. constructed a comprehensive spatiotemporal atlas 
of human and mouse gonadal differentiation using ST 
(Garcia-Alonso et al. 2022). Finally, Wei et al. utilized ST 
to draw the first three-dimensional ST spectrum of the 
development and regeneration of the Ambystoma mexi-
canum Brain, identifying important neural stem cell sub-
types involved in the regeneration process (Wei et  al. 
2022) (Fig. 5b).

By using ST omics in the study of development, it is 
possible to learn about the dynamic changes and interac-
tions between varies cell types during embryonic devel-
opment and organogenesis. This approach can facilitate 
the identification of key signaling pathways and gene 
regulatory networks that underlie normal development. 
Moreover, by comparing healthy and abnormal develop-
ment, ST can identify transcriptional expression differ-
ences of regulatory factors, and subsequently aid in the 
identification of novel regulators of development and 
potential therapeutic targets for developmental disorders.

3.4  ST in other pathologies
In addition to the above, the combination of ST and 
scRNA-seq is a powerful tool for exploring other human 
complex pathological diseases:

3.4.1  Analysis of key factors of cardiovascular disease (CVD)
The latest review by Miranda et  al. provided a compre-
hensive overview of the use of single-cell transcriptomics 
in cardiac biology, development, and disease, explaining 

Fig. 5 The application of ST in development. a ST analysis of embryonic development. b ST analysis of organ (heart, lung, intestine, pancreas, 
and brain) development

https://db.cngb.org/stomics/mosta/
https://db.cngb.org/stomics/mosta/
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how to maximize the implementation of these technolo-
gies and discusses the potential for multimodal inte-
gration with ST and epigenetics (Miranda et  al. 2023). 
Researchers have used ST in multiple studies to explore 
different aspects of heart disease. Kuppe et  al. drew 
a comprehensive spatial and multi-omics atlas of the 
human heart after myocardial infarction (Kuppe et  al. 
2022), while Jung et  al. identified an anti-inflammatory 
macrophage subgroup with  Trem2hi characteristics (Jung 
et al. 2022). Hu et al. explored the origin and function of 
activated fibroblasts in zebrafish heart regeneration and 
determined that Wnt signal regulates endocardium fibro-
blast response (Hu et al. 2022). Additionally, ST analysis 
has been used in studies of hypertrophic cardiomyopathy 
(HCM) (Liu et al. 2023b), pigs treated with IGF-1 (Zeng 
et  al. 2023), and human cardiac sarcoidosis (Liu et  al. 
2022) to reveal transcriptional changes and provide new 
insights into the pathology of these diseases. Finally, 
ST has been used by Bondareva et  al. to reveal specific 
molecular changes of organ vascular endothelium in a 
diabetes mouse model driven by obesity (Bondareva et al. 
2022) (Fig. 6a).

3.4.2  Analyze the influencing factors of skin diseases
The use of ST has helped analyze the diversity of skin 
cells in different cell types and states (normal/sick), 

enabling the exploration of biomarkers and disease treat-
ment (Pineiro et al. 2022). Studies of non-communicable 
inflammatory skin diseases (ncISD) through ST have 
revealed that a few immune cells promote these diseases 
(Schabitz et  al. 2022). Similarly, ST has advanced our 
understanding of immune diseases such as leprosy (Ma 
et al. 2021) and sarcoidosis (Krausgruber et al. 2023). For 
instance, studies of leprosy and sarcoidosis have utilized 
ST to explore the spatial structure of granulomas and 
their immune influencing factors. In a mouse model of 
wound healing, Foster et al. located four subpopulations 
of fibroblasts through ST and integrated scRNA-seq 
data to estimate changes in chromatin accessibility dur-
ing the three classic wound healing stages. Additionally, 
Foster et  al. found that macrophages play a crucial role 
in wound healing at the center of the wound after 1 week 
(Foster et al. 2021) (Fig. 6b).

3.4.3  Role of virus and inflammation in disease progression
ST has proven to be useful in analyzing the response of 
lung tissue to SARS-COV-2, providing a more accurate 
description of the heterogeneity and locations of related 
cells compared to bulk and scRNA-seq (Nienhold et  al. 
2020; Staines et  al. 2021; Cross et  al. 2023). Studies of 
SARS-COV-2 patients have revealed upregulation of 
gene modules related to angiogenesis, type I interferon 

Fig. 6 The application of ST in other pathologies. a Analysis of key factors of CVD. b Analyze the influencing factors of skin diseases. c Role of virus 
and inflammation in disease progression. d Construct a normal/ disease atlas
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production, inflammation, and coagulation (Kulasinghe 
et al. 2022). Additionally, ST has been utilized to inves-
tigate the immunopathology of severe COVID-19 and 
its relationship to different tissue niches of CCL18 and 
CCL21 (Mothes et al. 2023). ST is also suitable for exam-
ining the immune cell mechanism and tissue diversity 
associated with chronic inflammatory diseases such as 
rheumatoid arthritis and spinal arthritis, which involve 
overexpression of certain genes (Carlberg et  al. 2019). 
Furthermore, ST has been employed to reveal the role 
of CD4 T cells in the differentiation of effector CD8 T 
cells during chronic viral infection (Topchyan et al. 2022) 
and identify the activity and basic subgroup of intestinal 
eosinophils and their role in colitis (Gurtner et al. 2023) 
(Fig. 6c).

3.4.4  Construct normal/ disease atlas
ST has the potential to establish a normal/disease human 
cell atlas of organs, aiding in disease re-classification and 
the identification of therapeutic targets (Melo Ferreira 
et  al. 2021, 2022; Noel et  al. 2021). In the field of lung 
research, it is crucial to analyze the cellular and micro-
environment components. The integration of scRNA-seq 
and ST has redefined the tissue structure of the lung and 
airway, revealing that glandular epithelial cells recruited 
B cells and plasma cells and promoted antibody secre-
tion through the expression of CCL28, APRIL, and IL-6 
(Madissoon et  al. 2023). Additionally, studies of pulmo-
nary macrophage subpopulations using scRNA-seq and 
ST have helped clarify the complexity of macrophage 
biology in homeostasis and disease (Aegerter et al. 2022) 
(Fig. 6d).

By using ST omics in the study of other pathologies, it 
is possible to analyze different cell states, modules and 
networks during disease progression. This approach can 
facilitate the identification of novel biomarkers for diag-
nosis, prognosis, and drug response prediction. Fur-
thermore, ST can aid in the identification of potential 
therapeutic targets and the development of personalized 
treatment strategies tailored to the individual pathology. 
Additionally, this approach can provide insights into the 
molecular mechanisms underlying the pathogenesis of 
diseases, leading to a better understanding of the disease 
and the development of new therapeutic approaches.

4  Outlook: future perspectives for ST in clinical 
application

Precision medicine combines bioinformatics, histomor-
phology, and molecular biology to achieve personalized 
treatment. The approach often utilizes multi-omics to 
decode tumor heterogeneity, brain atlas, transcriptional 
regulation in development, and the pathogenesis and 
prognosis of complex diseases. Despite its potential, ST 

technology still faces certain limitations that need to be 
addressed to further advance its implementation in pre-
cision medicine. The following provides an overview of 
the limitations and future improvement directions of ST 
technology to obtain a comprehensive understanding of 
cellular heterogeneity and spatial organization.

4.1  ST limitations
ST has limitations that need to be addressed for better 
application in human research and scientific problems 
(Lee et  al. 2022) (Fig.  7). These challenges include cor-
rectly locating mRNA transcripts in space to a single cell, 
improving applicability and performance, capturing tran-
scripts with lower expression levels, accurately tracking 
immune cell receptor libraries, difficulty in working with 
FFPE samples, and high cost. The methods for in  situ 
capture and ectopic sequencing, such as 10X Visium, 
BGI Stereo-seq, and Slide-seq, require spatial transcripts 
to be located into cells using cell segmentation and the 
deconvolution algorithm (Chen et  al. 2022b). ST is not 
as suitable as scRNA-seq for capturing transcripts with 
lower expression levels (Asp et  al. 2020), leading to the 
loss of detection of key genes with lower expression. ST 
also captures only single-terminal transcripts rather 
than full-length transcripts, making it difficult to track 
immune cell receptors (BCR/TCR) library and selec-
tive splicing events. Additionally, most ST technologies 
are well-suited to frozen tissue sections but not ideal 
for FFPE samples, which are the gold standard for tissue 
preservation despite being susceptible to RNA degrada-
tion (Yu et al. 2022; Li et al. 2022a). The high cost of ST 
also limits its large-scale application, highlighting the 
need for a new, lower-cost ST technology in the future.

4.2  ST improvement directions
Given the limitations of the ST above, the improvements 
are mainly reflected in three aspects (Fig. 7).

4.2.1  Development of new ST technology and platform
New ST technologies are being developed to address 
previous limitations. Pixel-seq, a new ST technology, 
uses repeated printing technology on the polony gel to 
achieve a resolution of 1  μm’s high-density DNA chip 
and greatly reduces the cost (Fu et  al. 2022). The lat-
est progress of ST in FFPE tissue detection will also 
significantly improve the applicability of spatiotem-
poral genomics in biomedical and clinical research 
(Meylan et  al. 2022). McKellar et  al. captured RNAs 
missed by traditional workflow through spatial total 
RNA sequencing (STRS), including non-coding RNA, 
newly transcribed RNA, and viral RNA, which broad-
ened the application scope of ST (McKellar et al. 2023). 
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While long-read sequencing by Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT) 
can improve the accuracy of read sequencing, their use 
is limited by the high cost and low read counts (Marx 
2023). Ultra-sensitive sequential fluorescence in  situ 
hybridization (USeqFISH) could be used to realize the 
ST analysis of endogenous and viral RNA in the whole 
tissue volume, such as exploring the different cell sub-
type deviations of adeno-associated viral vectors (AAV) 
variants in different brain regions of mice (Jang et  al. 
2023). Other developments include Image-seq, which 
preserves spatial information and allows for the record-
ing and analysis of the spatiotemporal history of cells 
(Haase et  al. 2022), and Light-Seq, which indexes bio-
molecules in cells and tissues for spatial analysis (Kishi 
et al. 2022). These advancements allow for more sensi-
tive, accurate, and comprehensive analysis of cells and 
tissues, expanding the potential impact of ST in bio-
medical and clinical research. Finally, the development 
of 10X Visium “CytAssist”, BGI “Go Spatial” and cloud 
computing platform has made ST more accessible to 
a wider range of researchers, as they do not require 
specialized equipment or expertise, making them 
accessible to a wider range of researchers (Watanabe 
et  al. 2023). These developments have the potential to 
democratize ST technology and enable more research-
ers to utilize its benefits in their research.

4.2.2  Research and development of new algorithm
The development of ST technology has led to advance-
ments in multiple areas including cell typing, noise 
reduction, and analyzing cellular interaction. Techniques 
such as RRST (RNA-Resue Spatial Transcriptions) (Mir-
zazadeh et al. 2023) and Sprod (Wang et al. 2022) allow 
for analysis of tissue samples with medium to low RIN 
scores and the denoising of ST data through combin-
ing image and position information. The PRECAST 
model can integrate ST data by evaluating the probability 
embedding, clustering, and alignment (Liu et al. 2023a), 
while Spatial ID serves as a supervised cell typing method 
(Shen et al. 2022a). The deconvolution algorithm has also 
been improved to infer the cell type composition from 
ST data (Zhang et  al. 2023a; Liao et  al. 2022). In terms 
of cellular interaction, new exploration of CCC through 
the COMMOT (COMMUNICATION ANALYSIS BY 
OPTIMAL TRANSPORT) (Cang et al. 2023) and C-SIDE 
(Cable et  al. 2022) methods help infer competition 
between different ligand and receptor types and analyze 
cellular interactions between immune cells and tumors 
in space. Finally, spatial-CITE-seq technology, developed 
by Liu et al., facilitates spatially resolved protein and full 
transcriptome collaborative analysis (Liu et  al. 2023c). 
These advancements open up new avenues for ST analy-
sis and offer valuable insights into the complexity of cel-
lular interactions in a spatial context.

Fig. 7 ST limitations and improvement directions
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4.2.3  Application of deep learning
Deep learning has played a crucial role in improving the 
application of ST technology and allowed for joint anal-
ysis of scRNA-seq, ST, and image data, providing inde-
pendent prognostic factors for related diseases (Kleino 
et  al. 2022; Li et  al. 2022b; Holscher et  al. 2023). The 
scMGCA method is used to identify specific cell types 
and their different gene expression levels related to cell 
and tumor-related signaling pathways (Yu et  al. 2023). 
DIST improves gene expression accuracy using deep 
learning to infer gene expression in low-quality data 
(Zhao et  al. 2023). TIST-net extracts histopathological 
features by Markov random fields (MRF) and integrates 
them with location information and transcriptome data 
to deal with technical noise in analysis tasks (Shan et al. 
2022). These advancements in ST have enabled more 
accurate and comprehensive analysis of cellular and 
molecular biology, leading to the development of more 
effective treatments and therapies for various diseases.

4.3  Summary
In summary, ST marks the new beginning of genome 
measurement, facilitating the exploration of individu-
als’ dynamic development and disease processes. With 
the integration of multi-omics technology and the con-
tinuous improvement of resolution, ST development will 
continue to advance along three main directions: dynam-
ics, multi-omics, and resolution (Tian et al. 2023). These 
innovations in spatiotemporal genomics will provide 
powerful tools for exploring human organizational struc-
ture and functions, expanding the potential applications 
of ST beyond biology. The future development direc-
tion of ST will focus on improving measurement resolu-
tion, enhancing multi-omics integration, and exploring 
dynamics to better understand complex biological phe-
nomena. These advancements hold promise for uncover-
ing new insights into the spatiotemporal context of gene 
expression, cell proliferation, and interactions, and may 
ultimately lead to the development of new diagnostic and 
therapeutic approaches for various diseases.
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