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Abstract
Mitochondrial metabolism can contribute to nuclear histone acetylation among other epigenetic mechanisms. A central 
aspect of this signaling pathway is acetyl-L-carnitine (LAC), a pivotal mitochondrial metabolite best known for its role in 
fatty acid oxidation. Work from our and other groups suggested LAC as a novel epigenetic modulator of brain plastic-
ity and a therapeutic target for clinical phenotypes of depression linked to childhood trauma. Aberrant mitochondrial 
metabolism of LAC has also been implicated in the pathophysiology of Alzheimer’s disease. Furthermore, mitochondrial 
dysfunction is linked to other processes implicated in the pathophysiology of both major depressive disorders and Alz-
heimer’s disease, such as oxidative stress, inflammation, and insulin resistance. In addition to the rapid epigenetic modu-
lation of glutamatergic function, preclinical studies showed that boosting mitochondrial metabolism of LAC protects 
against oxidative stress, rapidly ameliorates insulin resistance, and reduces neuroinflammation by decreasing proinflam-
matory pathways such as NFkB in hippocampal and cortical neurons. These basic and translational neuroscience findings 
point to this mitochondrial signaling pathway as a potential target to identify novel mechanisms of brain plasticity and 
potential unique targets for therapeutic intervention targeted to specific clinical phenotypes.
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This article describes research in our and other laboratories on mitochondrial metabolism of acetyl-L-carnitine (LAC) that 
has led to the discovery of novel epigenetic mechanisms for the rapid regulation of brain plasticity in multiple rodent 
models and then has prompted us to uncover a role for this proposed mitochondrial signaling pathway of epigenetic 
function as a therapeutic target for clinical phenotypes of depression linked to childhood trauma, and implications for 
Alzheimer’s disease (Fig. 1). Multiple preclinical and clinical studies showed that epigenetic mechanisms are involved 
in the pathophysiology and treatment of stress-related depressive and cognitive disorders; the reversible properties of 
epigenetic modifications posit them as emerging potential targets for next-generation therapeutic interventions [1–5]. 
The goal is to recognize those biological changes that underlie aberrant epigenetic programming of brain plasticity, 
and to recognize mitochondrial signaling pathways, metabolic factors, transcriptomic profiles and structural changes 
that indicate flexible adaptability or the lack thereof. A key concept for understanding this interface is the model of 
allostasis (adaptation) and allostatic load (pathophysiology) [6] that we review below examining this model in relation to 
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new insights from the recent work on the link between mitochondrial metabolism and epigenetic function to promote 
healthy behaviors and cognitive function.

1  Learning from the past to promote present and future healthy trajectories

Over the past decades, a wealth of findings rekindled the interest in the older concept of Epigenetics (“Above the 
genome”), which was coined by Conrad Waddington to explain how identical genotypes could unfold different pheno-
types as development proceeds [7, 8]. Since its inception in the early 1940s, Waddington’s concept of epigenetics took 
on additional meanings until encompassing the current notion of stochastic or environment-induced modifications of 
histone proteins or DNA without changes in the DNA sequence itself that alter the accessibility of genes to transcrip-
tion factors [9]. In contrast to genetic mutations, epigenetic modifications rapidly affect target cell types exerting a 
long-lasting control in gene expression and provide a mechanism for a “non-genomic” inheritance. Epidemiological 
studies showed that genes contribute to the vulnerability of multiple CNS disorders, such as major depressive disor-
ders (MDD), schizophrenia and substance use disorders with heritability respectively of 31–42%, 64–80%, and 23–79% 
[10–13]. Monozygotic twin studies, which allow an assessment of the epigenome (gene x environment) independent of 
underlying genomic sequence mutations, showed high discordance rates and related epigenetic changes [14] in monozy-
gotic twins discordant for psychiatric illnesses. In addition to the high discordance rates between monozygotic twins, 
the importance of epigenetic mechanisms is evident in the chronic relapsing nature of these diseases, and the higher 
incidence of MDD in women after puberty [15, 16]. Genome wide association studies identified an increasing number 
of common variants associated with these diseases; however these variants explained only a small percentage of the 
genetic variation of the disorders, further supporting the concept that epigenetic processes play an important role [17].

2  Epigenetic allostasis model

As an inescapable factor of the natural world, stress plays a pivotal role in the adaptive and maladaptive responses to the 
environment through epigenetic mechanisms [1, 18]. The brain is constantly being shaped, wittingly and unwittingly, by 
environmental forces and determines what is threatening to orchestrate behavioral and other physiological responses to 
life experiences [19]. Central to this concept linking neural and systemic functions is the concept of allostasis (adaptation) 
and allostatic load/overload (pathophysiology) [6] that emphasizes the role of endogenous mediators for adaptation 
in contributing to pathologies, including MDD, when activated persistently or dysregulated under circumstances of 
toxic stress and health-damaging behaviors (poor diet, excessive alcohol consumption, sleep deprivation and circadian 
disruption). In recent years, we added an epigenetic component to the Allostasis/Allostatic load model to describe how 
non-shared environmental experiences may set each individual on a somewhat different trajectory of development 
that determines either adaptive or maladaptive responses (behavior, systemic function and vulnerability to disease) to 
subsequent novel experiences as the life course unfolds [20]. We referred to this model as the Epigenetic Allostasis model.

Fig. 1  Mitochondrial health and epigenetic regulation of brain plasticity. Growing literature showed that mitochondrial metabolism can 
regulate histone modifications among other epigenetic mechanisms. A central tenant of this signaling pathway is acetyl-L-carnitine (LAC), 
a novel epigenetic modulator of brain plasticity and a therapeutic target for clinical phenotypes of depression linked to childhood trauma
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We showed that inherent anxiety at baseline and elevated expression of the mineralocorticoid receptors (MR) in the 
hippocampus predisposes to a stress-induced suppression of expression of metabotropic glutamate receptors-2 (mGlu2, 
a key inhibitor of spontaneous glutamate release) with development of depressive-like behavior via epigenetic mecha-
nisms of histone acetylation [20]. The nature of the experiences of the animals that develop increased MR expression with 
the related regulation of mGlu2 receptors is not known but might involve epigenetic experiences early in life, such as 
maternal care and stressors in the neonatal nesting environment. Individual differences in anxiety-like behaviors among 
genetically similar Sprague Dawley and Lewis male rats, living in the same environments and not previously exposed to 
experimental manipulations, have also been shown to predict lifespan and prefrontal cortical dendritic length [21, 22]. 
Furthermore, preclinical studies showed that juvenile stress increases hippocampal MR mRNA levels and anxiety-like 
behavior in adulthood [23]. Administration of spironolactone, a selective MR antagonist, counteracted stress-induced 
mGlu2 suppression and the related development of depressive-like behavior, implicating rapid action of glucocorticoids 
via a receptor that is known to modulate glutamate release [20]. An overflow of glutamate (the main endogenous excita-
tory amino in brain, at concentration of 5–15 mmol glutamate per kg body weight, higher than of any other neurotrans-
mitter) is implicated in major psychiatric illnesses [1, 24–26]. Blocking MR receptors and interfering with glucocorticoids 
stimulation of glutamate activity counteracted stress-induced suppression of the histone acetyltransferase p300 mRNA 
levels in the hippocampus, showing a link between glucocorticoids and epigenetic programming of the glutamatergic 
system [20]. These growing preclinical studies of individual differences in stress response among inbred rodents further 
support the link between epigenetic mechanisms and development of individual phenotypes [20, 21, 27].

3  Mitochondrial modulation of epigenetic function

There is an increasing recognition that mitochondrial metabolism can significantly affect epigenetic function and the 
corresponding brain plasticity. A key tenant of this emerging signaling pathway is LAC, an endogenous molecule that 
acts as a donor of acetyl groups to histone proteins and facilitates the transfer of fatty acids from cytosol to mitochondria 
during β-oxidation [28, 29]. Endogenous LAC levels range between 8 and 9 μg/g wet rodent tissue corresponding to 
40–45 nmol/g wet tissue as previously reported in the rodent brain [30, 31]. We refer to a prior review for the pharmacol-
ogy of LAC [28]. Prior studies showed that LAC levels increase rapidly after 500 mg i.v. administration to healthy volunteers 
[32]; oral administration of LAC leads to a significant increase in LAC concentrations in both plasma and cerebrospinal 
fluid (CSF) [33], showing that LAC crosses the blood–brain barrier and reaches the brain at significant concentrations.

In multiple rodent models of chronic stress (a shared risk factor for major psychiatric illnesses), administration of 
LAC leads to a rapid and persistent antidepressant-like response by increasing histone acetylation and expression of 
key genes, including mGlu2 receptors and the downstream brain-derived neurotrophic factor BDNF [27, 30, 34–37]. In 
cell culture systems, LAC formed in mitochondria is transported into cytosol and enters nucleus becoming a source of 
acetyl groups for histone acetylation [38]. Dysfunction of glutamatergic neurotransmission is a core feature of stress-
related disorders, including MDD [27–29]. Administration of MS-275, an HDAC inhibitor, also increases expression of 
mGlu2 receptors, supporting the role of epigenetic mechanisms in the regulation of mGlu2 receptors [30]. The key role 
of histone acetylation in mGlu2 receptor regulation is also strengthened by the findings that chronic treatment with 
atypical antipsychotics down-regulates the expression of mGlu2 receptors in the mouse and human prefrontal cortex by 
increasing the binding of HDAC2 to the Grm2 promoter [39]. With regard to the relationship between BDNF and depres-
sive disorders, there is evidence that expression and activity of BDNF in the hippocampus are decreased in response to 
stress and increased by antidepressant treatment [40–43]. Furthermore, postmortem studies showed increased BDNF 
expression in hippocampus after antidepressant treatment [44]. Thus, the action of LAC on BDNF levels and the rapid 
regulation of the glutamatergic system is in line with its antidepressant activity.

The antidepressant response to LAC occurs after 3 days of administration and lasts for at least 14 days, whereas 
the action of standard antidepressant drugs (fluoxetine and clomipramine) requires 14 days of consecutive admin-
istration and disappears after drug withdrawal in the same rodent models [30, 34]. We and others showed that 
administration of LAC leads to a rapid regulation of plasticity of brain areas such as the hippocampus and the 
connected prefrontal cortex, which are implicated in MDD and are among the first brain structures to degenerate 
in Alzheimer’s Disease (AD) [26, 30, 34–36, 45]. In addition to the rapid and long-lasting antidepressant response, 
boosting mitochondrial metabolism of LAC leads to the amelioration of specific cognitive domains [46, 47], and 
promotes behavioral resilience at the social defeat stress (SDS) paradigm [27]. The findings of the rapid and long-
lasting antidepressant effects of LAC (which increases the expression of mGlu2, inhibitor of spontaneous glutamate 
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release) supports the idea that targeting the glutamate system can lead to rapid antidepressant effects in agreement 
with the prior discovery of the antidepressant action of ketamine [48–50]. These findings compel further research 
to understand how mitochondrial metabolism and the related epigenetic programming of brain plasticity can serve 
as new targets to develop mechanism-based treatment models for psychiatric and neurodegenerative diseases.

4  From basic neuroscience discoveries to translational innovation

In subjects suffering from MDD, plasma levels of LAC are decreased as compared to age- and sex-matched controls; 
the degree of LAC deficiency reflected both the severity and age of onset of MDD [51–54]. The lowest levels of 
LAC in severe clinical phenotypes of treatment resistant depression were also associated with emotional trauma 
in childhood, but none of the other subscales of the childhood trauma [52]. The greater decrease in LAC levels in 
severe forms of MDD and in patients with treatment resistant depression (TRD) is akin to a “kindling-like” progres-
sion of depression in that earlier age at onset and/or the presence of early life adversity, such as emotional trauma, 
conveys liability to more severe and treatment-resistant course of illness [51, 53, 55]. The specificity of these effects 
is in agreement with prior studies showing that the consequences of emotional maltreatments in childhood differ 
from those of physical and sexual abuse [56, 57]. Those subjects with a deficiency of LAC were previously charac-
terized by an inflammatory tone as assessed by peripheral cytokine IL-6 levels [58]. In the initial study showing a 
link between LAC levels and clinical phenotypes of depression, patients were in an acute depressive episode at 
the time of study participation and the presence of medications did not influence LAC levels [51]. Future studies 
might help in elucidating trait-dependent LAC levels. Taken together with the findings that utilization of esketa-
mine as an antidepressant increases LAC levels [59], the fact that the decrease in LAC levels in subjects with MDD 
is independent of psychotropic drug treatment raises the possibility that increasing LAC levels may be needed to 
induce antidepressant effects.

In our translational work, we also reported a link between LAC levels, cellular aging and metabolic function in the 
antidepressant responses to the insulin-sensitizing agent pioglitazone, an agent for treatment of diabetes type 2 and 
tested as potential antidepressant [60]. The decreased levels of LAC in subjects with MDD are linked to shorter leuko-
cyte telomere length (LTL), increased body mass index (BMI), and higher reported rates of childhood trauma and are 
predictive of lack of antidepressant responses as assessed using the Hamilton depression rating scale-21. Conversely, 
those subjects with increased LAC levels, longer LTL, decreased BMI, and lower reported rates of childhood trauma 
showed an improvement in depressive symptoms in response to pioglitazone. These multidimensional factors span-
ning mitochondrial metabolism, cellular aging, metabolic function, and childhood trauma provided more detailed 
signatures to predict longitudinal changes in depression severity than each individual factor alone. We postulate 
that boosting mitochondrial metabolism might be a potential therapeutic strategy to induce antidepressant effects. 
In a double-blind, randomized, controlled clinical trial, LAC was not inferior to amisulpride in relieving symptoms of 
dysthymic patients, showing an excellent profile of safety and tolerability [61]. LAC has also shown efficacy in a lim-
ited cohort of senile patients with depression [62]. It is also important to note that LAC levels are decreased in obese 
subjects [63], emphasizing the need for future studies aimed at exploring a possible link between LAC metabolism 
and obesity in subjects with MDD. Future research is also needed to explore the antidepressant effects of LAC acting 
as part of a system network with other important mediators of brain plasticity in comparison with classical antide-
pressant drugs with particular focus on the effects in specific phenotypes of depression well-characterized not only 
for the individual endogenous levels of LAC but also for the corresponding changes in metabolic and inflammatory 
pathways as well as for history of adverse childhood experiences.

In the connection between mitochondrial metabolism and aging, prior work reported decreased levels of LAC 
in subjects with Alzheimer’s disease (AD) as compared to cognitively healthy controls, with intermediate levels in 
subjects with subjective memory complaint or mild cognitive impairment [64]. It is also important to note that a 
prior randomized, placebo-controlled, double-blind study of LAC treatment for probable AD patients showed that 
administration of LAC was associated with lower AD-related deterioration as assessed using the clinical dementia 
rating scale and mini-mental scale examination in those subjects younger than 65 years [65, 66]. While prevention is 
paramount, this growing mechanistic framework raises hypotheses for future studies that targeting mitochondrial 
metabolism can open windows of epigenetic plasticity toward more positive health outcomes, particularly in subjects 
with a history of adverse childhood experiences.
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5  Mitochondrial metabolism, inflammatory tone and insulin resistance

As mentioned above, LAC is an endogenous compound essential for β-oxidation and is an emerging epigenetic modulator 
of glutamatergic function. In addition to a decrease in peripheral levels of LAC, LAC levels are decreased by 40–60% in the 
hippocampus and prefrontal cortex of rodents with depressive-like behaviors, including the Flinders Sensitive Line (FSL) rats 
[30]. Work from our and other groups showed that LAC also modulates acetylation of NF-ĸB/p65 subunit, which potentiates 
the transcriptional activity of NF-κB member to increase transcription of the Grm2 gene encoding for the mGlu2 receptor in 
hippocampus and prefrontal cortex of FSL rats [30, 36]. The mGlu2 receptor promoter harbors numerous NF-κB responsive 
elements, as opposed to the promoter of the cognate receptors, mGlu3. In the FSL rats, a combined treatment with sodium 
salicylate, which is a non-selective inhibitor of NF-κB, counteracted the antidepressant effect of LAC on the expression of 
mGlu2 receptors, supporting the link between LAC-mediated mGlu2 induction and p65/NF-κB [30]. In the connection to 
inflammation, we showed that elevation of pro-inflammatory cytokine IL-6, increased anxiety at the light–dark test, and 
smaller hippocampal volume characterized at baseline (before any applied stress) those mice that become susceptible after 
social defeat stress (SDS) with social withdrawal and impaired transcriptomic-wide changes in ventral dentate gyrus, and 
that administration of LAC promoted behavioral resilience at the SDS paradigm in this susceptible phenotype [27]. Transla-
tional research further corroborates the link between a deficiency of LAC in clinical phenotypes of TRD and certain aspects 
of inflammation [51, 58].

In the connection to metabolism, boosting mitochondrial metabolism of LAC rapidly regulates central and peripheral 
insulin resistance (IR) [67], which is metabolic dysfunction implicated in the pathophysiology of both MDD and AD [68]. 
Using 11C PET, prior studies reported relatively high uptake of 11C labeled LAC-related acetyl groups; and this uptake was 
suppressed by i.v. administration of glucose, suggesting a link between LAC-related transport of acetyl groups and glucose 
signaling pathways, especially under conditions of metabolic stress [69]. Translational studies using exosomes showed a 
relationship between the epigenetic modulation of glutamatergic function and a brain metabolic dysfunction known as 
insulin resistance (IR) as showed by an increase and sex-specific phosphorylation in the expression of IRS1, a key marker of the 
insulin signaling cascade, in discrete exosomes enriched for the neural cell adhesion molecule L1 (L1CAM), a protein highly 
expressed in the brain [52, 70–72]. Our results showed a specificity of changes in L1CAM exosomes but not in total circulating 
exosomes in subjects with MDD. Hierarchical clustering analyses showed an association between brain IR and specific clinical 
symptoms, with the highest levels of IRS-1 in L1CAM exosomes associated with suicidality, anhedonia, depressed mood and 
feelings of guilt. A growing literature suggests that IR—which is ameliorated by boosting mitochondrial metabolism of LAC 
in rodent models—is one of the proposed steps in the irreversible activation of the cascade leading from mood disorders 
to AD [73–76]. These translational findings are an outgrowth of a mechanistic model in rodents with impaired plasticity of 
key brain areas relevant to mood, cognitive and other main disorders, wherein LAC levels are markedly decreased and signal 
abnormal brain and systemic functions.

These findings provided the closest available in vivo molecular signature for brain IR in depression and showed important 
sex differences in these pathways. The sex difference in serine-312 phosphorylation of IRS-1 (pSer-IRS-1) may be akin of an 
increased vulnerability and a more advanced stage of brain IR in women than men with MDD. Consistent with this postulate, 
we observed the greater increase in pSer-IRS-1 in women with stronger severity of depressive symptoms independently of 
use of psychotropic medications. Of note, the higher vulnerability of women than men to develop mood disorders begins 
about at the onset of puberty with the beginning of reproductive life [15, 16]. This sex difference disappears after menopause 
with the incidence of mood disorders becoming similar in men and women, supporting a key role of estrogen in mood 
disorders [77]. Prior studies showed that 17β-estradiol protects neurons from developing IR, and that ovarian hormones 
also contribute to regulate phosphorylation of IRS-1 [78]. Thus, multiple biological mechanisms may be involved in the sex 
difference in pSer-IRS-1 in L1CAM exosomes isolated from subjects with MDD. Clinical and epidemiological studies support 
sex difference in markers of IR in MDD showing that the prevalence of MDD is twice as higher in women than in men. There 
are also important sex differences in multiple IR-related chronic syndromes, such as obesity, diabetes, and cardiovascular 
disease that should be further explored in connection to LAC levels.
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6  Windows of epigenetic plasticity to re‑direct health trajectories to positive outcomes

In summary, there appears to be a common denominator in the trajectories of stress-related disorders that we 
propose involves an epigenetic embedding of early life experiences through the mitochondrial metabolite LAC 
acting as part of a critical network system with other important mediators of brain plasticity and function, and 
that, when supplemented, rapidly alters gene expression profiles to ameliorate behaviors and cognitive function 
in animal models deficient in LAC because of stress-induced causes. While it is not possible to “roll back the clock”, 
deeper understanding of the biological pathways and mechanisms through which adverse childhood experiences 
produce a lifelong vulnerability to altered mitochondrial metabolism and the related pathways can provide a path 
for compensatory plasticity toward more positive health directions. Of note, a growing number of studies support 
mitochondrial metabolism of LAC as a common culprit underlying psychiatric and neurodegenerative diseases such 
as MDD and AD as well as obesity, making it important to further understand mechanisms for the development of 
aberrant mitochondrial metabolism of LAC. A key concept for understanding this interface is that while health-
damaging behaviors (e.g.: poor diet, excessive alcohol consumption, sleep deprivation and circadian disruption) 
contribute to allostatic load and the many consequences of such behaviors on triggering and exacerbating these 
illnesses, it is increasingly recognized that health-promoting behaviors that protect mitochondrial metabolism and 
energy regulation are an essential component of successful allostasis.
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