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Abstract

In the recent past, non-thermal food processing methods have been promoted due to the limitations associated with
conventional thermal processing methods such as poor nutrient quality, rheological properties, and sensory charac-
teristics of food products. The microbial and enzyme inactivation in food products subjected to non-thermal processes
occurs without the application of heat that in turn results in products of superior quality. Non-thermal food processing
for health-promoting beverages is gaining popularity because of the various advantages like processing at ambient
temperature resulting in minimal or no changes in the texture, sensory attributes, composition of nutrients, bioactive
compounds (antioxidants, anthocyanin, 3-carotene and flavonoids), and organic acids. Due to the continuous rise in the
research in this field, it is very important to synthesize relevant literature to supplement existing information to benefit
all researchers and industrialists in the food processing sectors. This review aims to critically discuss various non-thermal
processing technologies like ultrasound, pulsed light, high hydrostatic pressure, supercritical carbon dioxide, cold plasma,
membrane technology, and pulsed magnetic field for processing health-promoting beverages. The working principle,
effect of non-thermal processing technologies on the nutritional quality, sensory attributes, and elimination of microbial
load of health-promoting beverages are also discussed. Most of the studies are performed on a laboratory scale which
exhibits the need for the development of industrial-scale trials. Non-thermal processes are potential alternatives to ther-
mal processing methods due to the retention of superior product quality and lower energy requirements. It is concluded
that the adaptability of the combination of non-thermal processes along with aseptic packaging and cold temperature
storage will result in superior product quality.

Keywords Athermal processing - Functional beverages - Product quality - Pasteurisation

1 Introduction

Foods are derived from either plant or animal origin and contain various nutrients like carbohydrates, proteins, lipids,
vitamins, minerals, and other bioactive components. They are prone to spoilage due to different physical, chemical, and
microbial agents. Food preservation is defined as processes by which the shelf life of food products can be increased
without affecting the product quality in terms of nutrient retention and sensorial attributes [1]. Beverages provide
energy, water, and nutrients like vitamins, minerals, proteins, lipids, and carbohydrates. Beverages can be classified into
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water, unsweetened tea or coffee, milk, sweetened with non-nutritive sweeteners, energy as well as nutrient-rich, and
only energy-yielding sweetened beverages [2-4]. The demand for health-promoting beverages in the global market is
continuously growing due to consumers’ continuous health awareness, and they prefer foods of nutritional value that
can reduce the risk of diseases [5, 6]. Conventionally, fruit or vegetable-based beverages are processed using thermal
processing methods [7, 8]. However, thermal processing can cause severe physical and chemical changes, affecting the
organoleptic properties and nutrient bioavailability [9, 10].

Non-thermal processing techniques like ultrasonication, cold plasma technology, supercritical carbon dioxide (SC-
CO,), pulsed light, high hydrostatic pressure (HHP), membrane technology, and pulsed magnetic field can be used for
processing health-promoting beverages (Fig. 1). These techniques can be used to prevent the aforementioned drawbacks
of conventional thermal processing methods. The non-thermal processing methods can result in a preservation effect
similar to thermal processing methods while minimizing the deleterious effects on nutrients, color, texture, and senso-
rial characteristics of food products [11-15]. Thermal processing requires huge energy requirements and also results in
products of poor quality; hence, it can be replaced with environmentally friendly non-thermal processing techniques.
During non-thermal treatment, the microbes are inactivated for a shorter duration due to the alteration in the membrane
structure of bacteria and the unfolding of DNA structure [16-18]. It also affects the non-covalent bonds like hydrogen
and ionic bonds to denature the protein, gelatinize the starch, and destroy the pathogenic or food spoilage-causing
microorganisms [19-22]. The thermal treatment affects both covalent and non-covalent bonds, resulting in product
quality deterioration [23]. In this review article, the principle and effect of different non-thermal processing technologies
on the quality of health-promoting beverages are described.

2 Ultrasonication

In ultrasonication, the treatment of food products is carried out at lower temperatures whereas, in thermosonication,
food products are subjected to both ultrasound and moderate temperature [24, 25]. Manosonication is the treatment in
which food materials are exposed to ultrasound and pressure (100-300 kPa). In manothermosonication, food products
are treated with ultrasound in combination with pressure and temperature [26, 27]. The thermophilic microorganisms
can be inactivated by manothermosonication because both the temperature and pressure provide a synergistic effect
leading to the collapse of created cavities.

Non-thermal processing as preservation tool for health-
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Fig. 1 Non-thermal processing technologies for health-promoting beverages
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2.1 Working principle

Ultrasound is a sound wave with a frequency higher than 20 kHz which is more than normal human hearing frequency.
Ultrasound waves oscillate through the medium resulting in the creation of numerous cycles of expansion and com-
pression [28]. The small cavities are formed due to the presence of air and the cavities expand to a definite size followed
by collapse. This results in the generation of huge energy and local hot spots while increasing heat and mass transfer
rates [29]. The direct heating of the product takes place during ultrasound treatment due to the release of high energy
and intense agitation. Ultrasonication can be classified into low (20-100 kHz), medium (100 kHz-1 MHz), and high
(1-100 MHz) range frequencies. Low frequency can produce a large shear force, while medium produces radical species
and high frequency produces less shear force. The medium-range frequency of ultrasound waves is more suitable for
various processes because that can cause the oxidation of lipids and proteins during food processing. It is carried out
by immersion of the health-promoting beverages at a suitable frequency in an ultrasonic bath resulting in the desirable
changes in the subjected food material [30]. The diagrammatic representation of ultrasonication is provided in Fig. 2.

2.2 Application of ultrasound in the processing of health-promoting beverages

Ultrasonication can also be used for degassing carbonated beverages by which microbial load reduction can also be
attained. A continuous flow high-intensity ultrasound was used for the inactivation of various enzymes during the pro-
cessing of milk [25]. The synergistic effect of heating (61-75.5 °C) along with ultrasound resulted in the denaturation of
enzymes (alkaline phosphatase, gamma-glutamyltranspeptidase, and lactoperoxidase) and proteins (alpha-lactaloumin
and beta-lactoglobulin). There was no change in the casein structure but fat globule size was reduced up to 81.5%.
The particles were evenly distributed at~ 70 °C compared to processing at lower temperatures. Ultrasound treatment
improves the homogeneity of the solution due to the reduction in particle size and results in superior product quality.

The synergistic effect of carbonation and ultrasonication on nutrient quality and the microbial load reduction in guava
juice was investigated by Cheng et al. [31]. Carbonation facilitates the formation of numerous nuclei for cavitation which
in turn removes dissolved oxygen. This treatment resulted in the juice with higher ascorbic acid retention but microbial
load reduction was low. Sonication of strawberry juice samples at 40-100% amplitude levels at 20 kHz for 2-10 min and
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pulse durations of 5 s ON and 5 s OFF was reported [32]. The retention of anthocyanin and ascorbic acid content after
10 min of ultrasound treatment was 96.8 and 89%, respectively. The shelf life of sonicated orange juice (0.3-0.81 W/mL
for 2-10 min) stored at 10 °C is 27-33 days while thermal pasteurized juice had 19 days of shelf life [33]. The sonicated
orange juice retained higher ascorbic acid compared to thermally pasteurized samples. Anthocyanin retention of black-
berry juice during ultrasound treatment at 100% amplitude for 10 min is more than 94% with negligible color change
[34]. Sonicated passion fruit juice (20 kHz, 263 W, and 89.25 um) retained the color, pH, and ascorbic acid content higher
than thermal preservation while microbial load remained constant for 10 days upon storage at 4 °C [35].

Ultrasound treatment of Gulupa juice at 40 kHz for 30 min improved the shelf life to 20 days with minor color changes
and a slight decrease in ascorbic acid level [36]. Extraction of noni juice using ultrasound improved the phenolic, and
flavonoid content while the nutritional quality and suspension stability of the juice remained the same [37]. The color, pH,
soluble solids, flavonoid, and phenolic content of kaji lemon juice are similar to that of thermally processed samples [38].
Ultrasound treatment of strawberry juice for 12 min retained phenolic, flavonoids, and ascorbic acid content similar to
that of the unprocessed sample [39]. Conventional pasteurization of pear juice at 95 °C and ultrasound treatment at 65 °C
inactivated the microbial load whereas ultrasound treatment resulted in the superior retention of phenolic compounds
[40]. The sonicated barberry juice retained higher anthocyanin and phenolic compounds compared to thermally treated
samples [41]. Ultrasonication of mulberry juice at 24 kHz for 30 min retained higher anthocyanin (95%) compared to
thermally treated samples [42]. Ultrasound treatment of mango juice at 600 W for 40 min resulted in a complete reduc-
tion of microbial load and superior retention of nutrients [43]. The quality profile of matured coconut water exposed to
ultrasound at 60% amplitude for 10 min was not affected while the microbial load reduction was 4.79 log CFU/mL [44].

The ultrasound treatment of apple juice at 20 °C and 25 kHz for 30-90 min did not alter the pH, color, soluble solids, and
titratable acidity while the microbial load was significantly reduced. Ultrasound-treated apple juice also retained a higher
amount of ascorbic acid, phenolics, and antioxidant activity [45]. A similar level of inactivation of aerobic mesophiles,
yeast, and molds in prebiotic whey beverages using high-intensity ultrasound (600 W) and high-temperature short-time
treatment (75 °C for 15 s) was reported by Guimaraes et al. [46]. The phase separation in ultrasound-treated beverages
was prevented due to the decrease in particle size, and denaturation of proteins and polysaccharides (inulin and gellan
gum). Ultrasound treatment of prebiotic-rich strawberry juice was carried out for 15-30 min at 40 kHz and 180 W [47].
The microbial load was reduced to 1 log CFU/ml and phenolics were increased by 25% compared to untreated samples.
The sensorial attributes and ascorbic acid content of strawberry juice were not affected after ultrasound treatment. The
various reports on the processing of health-promoting beverages using ultrasound are discussed in Table 1.

3 Cold plasma

Based on the generation of plasma, it is classified into thermal (fully ionized) and cold (partly ionized) plasma. Thermal
plasma is composed of thermodynamically balanced ions, electrons, and gas molecules. In cold plasma, local thermo-
dynamic equilibrium is maintained between electrons and gas molecules which in turn leads to the low temperature of
the whole system. Cold plasma is more suitable for the processing of beverages because it is carried out under ambient
temperature and does not use heat energy to inactivate microbial load, hence the thermolabile compounds are not
degraded [12, 48].

3.1 Working principle

Cold plasma is defined as the fourth state of matter and contains a high amount of internal energy that converts the
matter from solid-state to liquid then to gas and finally to ionized gaseous state i.e., plasma [49, 50]. The formation of cold
plasma occurs when gas is subjected to continuous high electrical energy that in turn facilitates the collision of particles
leading to the generation of particles of smaller sizes (Fig. 3). It contains free radicals, electrons, photons, positive ions,
negative ions, and excited or non-excited molecules [51, 52]. Atmospheric pressure and energy in the form of electrons
are utilized for the formation of cold plasma. The molecules are maintained at ambient temperature; hence this is termed
as cold plasma which can be effectively used for processing thermolabile food products [53]. The reactive species gener-
ated during cold plasma interact with lipids, proteins, and fatty acids leading to structural variations followed by microbial
cell damage. Various factors that affect the efficiency of cold plasma processing are the degree of ionization, nature of
gas, temperature source, treatment duration, nature of microbes, and food properties [54].
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Fig.3 Schematic diagram
of cold plasma equipment. Quartz Tube Gas In
Adapted from [100]
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3.2 Application of cold plasma in processing health-promoting beverages

The exposure of orange juice to cold plasma at a voltage of 70V and pressure of 50 Hz for 1-6 min resulted in the reduc-
tion of volatile compounds. The reduction in limonene, y-terpinene, linalool, a-terpineol, terpinene-4-ol, and p-cymene
was observed after cold plasma treatment [55]. The effect of cold plasma on the processing of pomegranate juice for
3-7 min at 4 W increased the phenolic content (33%), especially ferulic acid, ellagic acid, and catechin. This treatment
also lowered the content of caffeic acid, and punicalagin [56]. Processing of apple juice at a dielectric barrier discharge
power of 50 W for 30 s resulted in a 4.3 log reduction of E. coli [57]. Blueberry juice treated with an atmospheric jet plasma
power of 11 kV for 6 min resulted in the 7.2 log reduction of Bacillus and enhanced phenolic content [58]. The exposure of
tomato juice to the frequency of 50 Hz and voltage of 230V for 5 min in liquid plasma has not changed the compounds
responsible for aroma especially trans-2-hexenal and n-hexanal [59]. The treatment of different juices at an atmospheric
jet plasma power of 650 W at the gas flow of 50 L/min for 30-120 s resulted in microbial load reduction as follows: orange
juice (1.59 log), tomato juice (1.43 log), apple juice (4 log), and sour cherry nectar (3.34 log). This treatment enhanced the
phenolic content (10-15%) and significant changes in color and pH were not observed [60]. Treatment of tender coconut
water with high voltage atmospheric cold plasma in the air at 90 kV for 120 s resulted in a 1.3 log reduction of Salmo-
nella enterica. [61]. The formation of reactive gas species like ozone and hydrogen peroxide is responsible for microbial
inactivation. Higher microbial cell leakage was further facilitated by the presence of citric acid (400 ppm), resulting in
a 5-log reduction of Salmonella enterica. Exposure of white grape juice to dielectric barrier discharge for 4 min at 80 kV
resulted in a 7.4 log reduction of Saccharomyces cerevisiae without affecting pH and flavonoid content [62]. Processing
of orange juice in dielectric barrier discharge at 90 kV for 2 min resulted in a 4.7 log reduction of Salmonella enterica
without significant changes in pH, flavonoid, and phenolic content [63]. A 5-log reduction of Zygosaccharomyces rouxii in
apple juice was attained by exposure to dielectric barrier discharge at 90 W for 140 s while oxidative enzymes were not
affected [64]. The treatment of tomato juice in gliding discharge plasma at 3.8 kV and 40 W for 5 min resulted in a 5-log
reduction of aerobic mesophiles and a 3.7-log reduction of Candida albicans without affecting the lycopene and ascorbic
acid content [65]. The changes in the color, ascorbic acid, and vitamin B content of siriguela juice were not observed after
glow discharge plasma treatment at 50 Hz for 5-15 min while the polyphenol oxidase activity was reduced to 20% [66].

Treatment of carrot juice with dielectric barrier discharge plasma at 70 kV for 4 min has not affected the content of
pigments, sugars, and minerals [67]. The complete reduction of E. coli in sour cherry juice using atmospheric cold plasma
at 25, 35, and 50 kV/cm was attained by processing for 1, 5, and 9 min, respectively. The phenolic content in sour cherry
juice was not affected while the reduction in anthocyanin and ascorbic acid was 4 and 21%, respectively [68]. Cold atmos-
pheric plasma treatment of apple juice at 30 kV for 7 s resulted in the 4.14 log reduction of Alicyclobacillus acidoterrestris
while the complete reduction was attained in 240 s. The pH and color of juice were not affected but a slight reduction
in phenolic content was observed [69]. The cold plasma treatment of Jujube juice at 10-30 kV for 2 min resulted in the
degradation of mycotoxins like alternariol (1.3-56%) and alternariol monomethyl ether (8.1-62.8%) [70]. Atmospheric
cold plasma inactivated acid and non-acid adapted E.coli strains in 120 and 90 s, respectively, without affecting the pH
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and titratable acidity [71]. Dielectric barrier cold plasma treatment (500 Hz and 20 kV for 10-20 min) imparts a fresh and
fruity flavor to the pineapple juice by demethylation of aromatic compounds [72]. Cold plasma treatment of milk at 70
and 80V for 120 s retained the various physicochemical properties like pH, color, and viscosity while 5 log reduction of
Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus was reported [73]. The treatment of cow milk at 70V for
120 s resulted in a 3.27 log reduction of Cronobacter sakazakii [74]. Treatment of whey protein solution in cold plasma at
70 kV for 30 and 60 min improved the foaming and emulsifying capacity [75]. Exposure of coconut water to cold plasma
at 90 kV for 2 min resulted in a 5-log reduction of Salmonella enterica and increased the shelf life up to 45 days [76]. The
various reports on the processing of health-promoting beverages using cold plasma are discussed in Table 2.

4 Supercritical carbon dioxide

The application of SC-CO, improves the shelf life of food products by reducing the microbial load and inactivating lipase
that otherwise leads to the formation of free fatty acids, rancidity, and off-flavor development. It reduces the generation
of toxic residues and minimizes nutrient loss [77]. The SC-CO,-based processes result in better retention of color, texture,
and bioactive compounds of milk, fruit, and vegetable juices [78]. The exposure of food products for a few seconds can
eliminate the various spoilage and pathogenic microorganisms but the higher equipment and processing cost limits
the application in industries [79, 80].

4.1 Working principle

Carbon dioxide has the properties of liquid and gas when maintained above the critical point generally at high pressure
(7.38 MPa) and temperature (31.1 °C). This can inactivate oxidative enzymes and cause cell rupture in the microorgan-
isms [81]. The negligible surface tension and lower viscosity of carbon dioxide facilitate the penetration in the complex
microbial cell structure leading to cell rupture [82].

4.2 Application in the processing of health-promoting beverages

The effect of SC-CO, on the enhancement of the shelf life of orange juice after processing at 36 °C and 13 Mpa with a
concentration of 0.385 g CO,/g juice was studied by Fabroni et al. [83]. The product quality with acceptable microbial limit,
sensory characteristics, and nutrient content similar to fresh juice was maintained for up to 20 days at refrigerated storage
conditions. The treatment of mulberry juice at 15 MPa and 55 °C for 10 min followed by refrigerated storage resulted in the
superior retention of bioactive compounds and the shelf life was improved to 21 days [84]. Grape-whey juice treatment
at 35 °Cand 14-18 MPa for 10 min improved the inhibitory activity of the Angiotensin-converting enzyme due to the
interaction of whey protein with the phytochemicals present in the grape juice [85]. About 80% of polyphenol oxidase
activity in apple juice was inactivated when treated for 30 min at 25 MPa and 40 °C [86]. The exposure of pomegranate
juice to 600 MPa for 3 min enhanced the phenolic content (22%), color, and antioxidant activity at the end of storage for
28 days [87]. The safety and quality of the health-promoting beverages are mainly affected by the oxidative enzymes
and microorganisms. The exposure of beverages to SC-CO, at a pressure range of 10-60 MPa and temperature range
of 35-55 °C can improve the shelf life for an additional 20 days with product quality similar to that of fresh juices [77].
The combined treatment of SC-CO, with ultrasound for 3-4.6 min at 100 bar and 31.5 °C resulted in the complete
elimination of microbial load with minimal loss in ascorbic acid, pH, and soluble solids in pineapple juice [88]. The stabil-
ity of pineapple juice was maintained for up to 4 weeks with a lower reduction in ascorbic acid (8%) and an acceptable
microbial limit. Pomegranate juice subjected to SC-CO, and combined SC-CO, with ultrasound treatment resulted in
the decrease of limonene, 1-hexanol, and camphene content. The treated juice can be differentiated from fresh juice in
terms of odor and concentration of volatile compounds (increase in aldehydes and decrease in alcohols, esters, ketones,
and terpenes). The flavor of treated juices was not significantly different from fresh juice. The aqueous extract of Pfaffia
glomerata roots containing higher fructooligosaccharides (1-kestose, nystose, and fructofuranosylnystose) was added
to apple juice [77]. The pH and soluble solid content were not affected by the SC-CO, treatment while the fructooligo-
saccharides content remained unchanged indicating SC-CO, can maintain the prebiotic functionality of beverages. The
treatment of strawberry juice at 60 MPa and 45 °C for 30 min resulted in a 3.7 log reduction of aerobic mesophiles [89].
The exposure of apple juice to 6-18 MPa and 20-45 °C resulted in higher inactivation of polyphenol oxidase and complete
inactivation of lactic acid bacteria, yeasts, and molds was attained at 12 MPa and 35 °C [90]. The treatment of elderberry
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juice at 18 MPa and 45 °C for 90 min extended the shelf life up to 2 weeks without any changes in sensory characteristics
with complete inactivation of microbes like aerobic mesophiles, yeast, and mold [91]. Orange juice at 74-351 MPa and
33-67 °C for 20-70 min resulted in the prevention of cloud formation by inactivating pectin methyl esterase [92]. Treat-
ing blackcurrant juice at 30-60 MPa and 45 °C for 10 min resulted in superior retention of anthocyanin and ascorbic acid
compared to thermal pasteurization at 85 °C for 10 min [93]. The pomegranate juice treated with SC-CO, (12.7 MPa, 45 °C
for 15 min) resulted in the reduction of yeast and mold to less than 2 log CFU/ml while aerobic mesophiles was reduced
below 2.4 log CFU/mI [94]. The volatile components, pH, and soluble solids of treated juice were not affected during stor-
age for 28 days at 4 °C. These studies indicate that SC-CO, can be effectively used for developing novel health-promoting
beverages with better nutrient quality and better shelf life (Table 3).

5 High hydrostatic pressure

High hydrostatic pressure (HHP) is a non-thermal processing technique wherein food products are subjected to a pres-
sure of 100-1000 MPa at low temperatures to achieve pasteurization, enzyme inactivation, and protein denaturation [95,
96]. The efficiency of this process is dependent on temperature, treatment duration, pressure range, and characteristics
of food products [97].

5.1 Working principle

The food product is immersed in a liquid medium and then exposed to high pressure for about 10-20 min in a closed
chamber to provide uniform exposure of products to pressure irrespective of their size and shape [88]. Le Chatlier’s prin-
ciple states that applied force can cause any change in the temperature, pressure, and volume of an equilibrium system
leading to the development of a new equilibrium. Adiabatic heating is caused due to the exposure of food products to
high pressure that in turn increases the temperature of the liquid medium by 3 °C for a pressure increase of 100 MPa [98].

5.2 Applications of high hydrostatic pressure for processing of health-promoting beverages

The processing of beverages using HHP can prevent the Maillard reaction and caramelization. The texture, color, flavor,
and bioactive compounds of food products can be retained after HHP-based processing [99]. The HHP-based processing
induces chemical reactions that can prevent microbial growth and also cause cell death by affecting the membranes
[100]. The HHP-based treatment of soy smoothie at a pressure of 650 MPa and 20 °C for 3 min resulted in ascorbic acid
retention of 55% and no changes in color and bioactive compounds [101]. It has also improved the antioxidant activity
due to the increase in the content of 3-carotene and lycopene. The sensory characteristics of treated smoothies (450 MPa)
and fresh smoothies were similar. The HHP treatment of cucumber juice at 500 MPa for 5 min improved the sensory char-
acteristics compared to high-temperature short-time treated juices [102]. The treatment of watermelon juice at 50 °C and
30 MPa for 30 min reduced polyphenol oxidase activity to 4% [103]. Mulberry juice exposed to the pressure of 500 MPa
for 10 min resulted in the inactivation of aerobic mesophiles from 4 log CFU/ml to an undetectable level followed by
the complete elimination of yeast and molds [104]. This has also increased flavonoids, phenolics, antioxidant capacity,
resveratrol, and volatile compounds like aldehydes, alcohol, and ketones. The HHP-based treatment of strawberry puree
at a pressure of 400-600 MPa resulted in higher retention of anthocyanin, phenolics, and ascorbic acid [105]. Aronia berry
puree processed at 400 and 600 MPa for 5 min decreased yeast and mold to 1 log CFU/g and aerobic bacteria to <2 log
CFU/g without altering the phenolic content as well as antioxidant activity [106].

The HHP-based process (30-90 MPa, 10-25 °C for 1-7 cycles) reduced the methanol content in sorghum spirits while
the sensorial characteristics were improved due to the formation of aroma compounds like methyl acetate [107]. The HHP-
based processing of fruit and vegetable smoothies at 630 MPa and 20 °C for 6 min inactivated the peroxidase, polyphenol
oxidase, and pectin methylesterase by 31.4, 9.7%, and 83.9%, respectively [108]. The pH and soluble solid content of
smoothies were not affected. The exposure of reconstituted cow milk powder containing E. coli, P. fluorescens, and Entero-
bacter aerogenes to 500-600 MPa and 25 °C for 3-5 min resulted in the inhibition of these gram-negative bacteria [109].

Milk treated at a pressure of 600 MPa for 3 min resulted in the 5 log reduction of E. coli, Salmonella, and L. mono-
cytogenes. This treatment also enhanced the shelf life to 7 days which is comparable to commercial pasteurized
milk. The casein content and particle size of fat molecules were similar between HHP-treated and raw milk [110].
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Milk processed using HHP for yogurt production resulted in the improvement of product firmness and controlled
syneresis [111]. Multifruit-soymilk smoothies processed at 450-650 MPa for 3 min at 20 °C have not modified the
color and bioactive compounds (lycopene, B-carotene, and antioxidants). The stability of these compounds was also
maintained during refrigerated storage.

The HHP treatment (200-600 MPa for 5-15 min at <40 °C) of goat milk resulted in the 7-log reduction of Staphy-
lococcus aureus [112]. The viscosity and soluble solid content remained unaltered after HHP treatment and shelf life
was improved to 10 days at refrigerated conditions. The treatment of orange juice at 400-600 MPa and 20 °C for
15 min improved the lightness and redness without altering the content of cyanidin-3-glucoside [113]. Treatment of
citrus fruits in HHP retained the color and enhanced the shelf life [114]. Raw milk from Bordaleira, as well as Churra
Mondegueira da Serra da Estrela sheep breeds treated using HHP of 121 MPa for 30 min, resulted in better curd yield
(>9%) and retained the microbiota beneficial for cheese preparation [115]. Shiikuwasha juice processed at a pressure
of 600 MPa for 150 s resulted in > 5 log reduction of E. coli and provided shelf life stability for 28 days without affecting
the color, aroma, phenolics, and flavonoids [116]. Carrot orange juice blend treated using HHP of 200-400 MPa for
300 s resulted in the extension of shelf life up to 28 days without altering the phenolic and carotenoid content [117].

Sea buckthorn juice treated at 500 MPa for 5 min retained aroma and flavor similar to fresh juice while the carot-
enoid and phenol content is comparatively higher than the thermally processed sample [118]. Microorganisms in
HHP-treated aronia juice (200-600 MPa for 10 min) after storage for 80 days at 4 °C were below the detection limit
and about 8-12% loss in phenolic content was observed [119]. The HHP treatment of apple juice (300 MPa for 10 min)
resulted in a 3.7 log reduction of A. acidoterrestris without significantly affecting the pH and color of the juice [120].

The exposure of beetroot juice to HHP treatment at 500 MPa for 10 min resulted in the degradation of betacyanin
(12.2%) and betaxanthin (8.9%) while the lactic acid bacteria was reduced up to 4.5 log [121]. Treatment of tomato
juice in HHP at a pressure of 500 MPa for 5 min resulted in the superior retention of lycopene content and volatile
compounds compared to the thermal pasteurization process. Treatment of kiwi juice in HHP at a pressure of 500 MPa
for 10 min resulted in a 2-log reduction of aerobic mesophiles and enhanced the shelf life to 42 days [122]. The
exposure of kiwi juice at 200 MPa for 3 cycles in HHP resulted in the extension of shelf life up to 48 days and 7 days
in cold storage conditions and room temperature, respectively [123]. The HHP treatment of peanut sprout juice at
a pressure of 600 MPa for 5 min retained aroma, color, and pH while the shelf life was extended up to 90 days [124].

The HHP treatment (250 MPa for 4 min) of grape juice resulted in the inhibition of B. cinerea without altering the
sensory properties [125]. The HHP treatment of orange juice at a pressure of 600 MPa for 10 min resulted in the reduc-
tion of A. acidoterrestris spores to 3.5 log with the extension of shelf life up to 60 days [126]. About 22% of pectin
methyl esterase was inactivated while a high reduction of molds (1.85-3.72 log) and yeast (3.19 log) in raspberry
juice was attained at HHP treatment of 600 MPa for 10 min [127]. The shelf life of tender coconut water increased
up to 120 days after HHP treatment at a pressure of 593 MPa for 3 min without any changes in aroma, pH, color, and
taste [128]. Cloudy hawthorn berry juice treated at 300-600 MPa for 30 min at 65 °C inhibited the aerobic mesophiles,
lactic acid bacteria, yeast, and mold which in turn improved the shelf life to > 150 days [129]. It has not affected the
pH, or titratable acidity but enhanced the sugar content and aroma compounds leading to better flavor and taste.
The various reports on the processing of health-promoting beverages using HHP are discussed in Table 4.

6 Pulsed light treatment

The pulsed light treatment is one of the non-thermal processing technologies which is recently been used for pro-
cessing food products to enhance the shelf life of foods by inactivation of food spoilage and food-born pathogenic
microorganisms [129-131]. This is due to the inactivation of double-bonded carbon atoms in proteins and nucleic
acids leading to the disruption of structure, transcription, and translation processes [132]. The high energy intensity
of pulsed light flashes also contributes significantly to microbial inactivation. The effect of microbial inactivation by
pulsed light is higher in clear liquids compared to opaque liquids because of the decrease in light intensity due to
the absorption and scattering of the light [96].
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6.1 Working principle

Pulsed light technology emits high-power pulses either in single or continuous modes of wavelength ranging
between 170 and 1000 nm with a gradual increase in energy by using inert gas flash lamps like xenon [133]. The
electromagnetic radiation is stored in the capacitor and light flashes can be emitted using inert gas flash lamps to
inactivate microorganisms [134, 135]. The process efficiency depends on treatment duration, nature of the food
product, packaging material, nature, and number of microorganisms present in the sample [11, 136, 137].

6.2 Application of pulsed light in the processing of health-promoting beverages

The E. coli in apple and orange juices treated with a pulsed light dose of 4 J/cm? was reduced by 2.9 and 4 logs,
respectively [138]. Pulsed light treatment of whey protein isolate at 4-16 J/cm? improved the formation of carbonyl
and free sulfhydryl groups that in turn induced dissociation and partial unfolding of proteins [139]. These changes
enhanced the different functional properties like foaming and solution stability. The lactic acid fermented mulberry
juice exposed to 2-8 s at a pulse range of 14 J/cm? resulted in the reduction of microbial load to 1 log CFU/mI [140].
There were no significant changes in the pH, titratable acidity, and soluble solids between pulsed light-treated
juice and fresh juice. A slight increase in the phenolic content was observed in the mulberry juice after pulsed light
treatment. A decrease in anthocyanin concentration was observed which can be attributed to the adverse photo-
chemical reactions. A slight decrease in the lightness of juice was observed after pulsed light treatment because of
the changes in the pigment concentration. The concentration of volatile compounds and odor activity values were
enhanced during pulsed light treatment.

The reduction of E. coli in tender coconut water, orange, and pineapple juice using pulsed light treatment (95.2 J/
cm?) for 15 s was 4, 4.5, and 5.33 log, respectively [141]. The pulsed light treatment of apricot juice at two different
intensities (7 and 14 kV/cm) for 500 us has not significantly affected the pH, °Brix, and color compared to unprocessed
samples. The pulsed light treatment resulted in increased content of phenolic compounds, flavonoids, and antioxi-
dant activity [142]. Apple juice was exposed to pulsed light of different cycles like 4, 6, and 8 with a total number of
pulses in the range of 200-400 pulses [143]. The changes in bioactive compounds, ascorbic acid, and polyphenol
content were not observed in pulsed light-treated juice even after 72 h of refrigeration. Pulsed light treatment of
pineapple juice at 13 kV/cm resulted in higher microbial load reduction compared to treatment at 9 and 11 kV/cm
[144]. The total phenolics, flavonoids, ascorbic acid, and B-carotene content was not affected. The pulsed light treat-
ment (31.2 kV/cm, 20 pulse widths at 100 Hz frequency) retained higher antioxidant activity and sensorial properties
of ready-to-serve beverage containing tender coconut water and nannari extract in comparison to conventional
pasteurization (96 °C for 360 s) [145]. Raspberry juice exposed to pulsed light treatment at 200 Hz retained higher
phenolic content (426.4-567.2 mg GAE/100 g) and around 19% of pectin methyl esterase enzyme was inactivated
[127]. Complete inactivation of peroxidase and polyphenol oxidase in amla juice was attained when exposed to
pulsed light at 3.32 kV/cm for 3 min [146]. The exposure of mixed fruit beverage containing amla, pineapple, and
coconut water to pulsed light at 3.3 kV/cm for 3 min resulted in 5 log reduction of aerobic mesophiles, yeast, and
mold counts while the oxidative enzymes were completely inactivated [147]. The pulsed light treatment of bael fruit
juice at 3.3 kV/cm for 4.5 min inactivated the oxidative enzymes like polyphenol oxidase, and peroxidase (73.5-90%)
better than the thermal process [148]. The 5 log reduction of Listeria monocytogenes and E. coli in sweet lime juice was
attained after pulsed light treatment at 3.3 kV/cm for 4.5 min without any changes in pH, color, or taste of the juice
[149]. The continuous flow pulsed light treatment of coconut water, pineapple, and orange juice for 43, 44,and 45 s
resulted in 5-log reduction of aerobic mesophiles, yeast, and mold without altering their physicochemical proper-
ties [150]. Processing tender coconut water with pulsed light at 2.5 kV for 2.5 min resulted in a 5 log reduction of B.
cereus and L. monocytogenes [151]. Pomegranate juice treatment with pulsed light at 2.7 kV/cm for 90 s resulted in a
5-log reduction of aerobic mesophiles, yeast & molds and retained a higher amount of phenolics (97%), antioxidants
(94%), and ascorbic acid (83%) [152]. Pineapple juice treated with pulsed light at 2.4 kV/cm for 3.5 s resulted in the
reduction of aerobic mesophiles, yeast, and molds without affecting the sensory attributes [153]. The treatment of
mulberry juice using combined pulsed light (1.2 kV/cm for 3.5 s) and ultrasonication treatment (15 min at a frequency
of 28 kHz) retained phenolic and antioxidant activities at higher levels compared with the thermal process [154].
Exposure of verjuice to pulsed light at 6.12 J/cm? for 3.5 s resulted in a 5.1 log reduction of S. cerevisiae and the shelf
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life of the juice extended up to 6 weeks without any changes in fresh-like characteristics (color, aroma, taste) and
sensory attributes [155]. The pulsed light treatment of grape juice at 66 J/cm? for 3.5 s resulted in a 2.6 log reduction
of E. coli [156]. The shelf life of pulsed light-treated (2.9 kJ/cm? for 3.5 s) pomegranate juice extended up to 41 days
with higher retention of phenolics and antioxidant activity compared to thermal-treated samples [157]. The various
reports on the processing of health-promoting beverages using pulsed light are discussed in Table 5.

7 Membrane technology

The application of membrane technologies is suitable for the processing of health-promoting beverages due to several
advantages like lesser energy consumption, mild processing conditions, and superior product quality compared to
conventional thermal processes.

7.1 Working principle

The pressure-driven membrane operations such as microfiltration and ultrafiltration are used for the clarification and
concentration of beverages [158]. These processes involve a semipermeable barrier (membrane) for selective separa-
tion of compounds from feed solution and pressure gradient acts as the driving force for mass transfer through the
membrane. The feed solution is separated into permeate (molecules permeated through the membrane) and retentate
(molecules rejected by the membrane). The degree of rejection depends on the pore size, charge, and surface proper-
ties of the membrane [159-161]. The performance of the pressure-driven membrane process is assessed by permeate
flux and degree of separation [162].

7.2 Application of membrane technology in the processing of health-promoting beverages

The pore size of microfiltration and ultrafiltration membranes is 0.1-10 um and 0.001 to < 0.1 pm, respectively [163].
These membranes can reject the molecules larger than the pore size without causing physicochemical changes in the
feed solution. The pathogenic microorganisms can be removed from the beverages by proper selection of membranes
of suitable pore size. Ultrafiltration can be used to remove macromolecules like proteins and polysaccharides that in
turn cause turbidity in health-promoting beverages. This can also be used for removing all microorganisms. Thereby
ultrafiltration can be simultaneously used for clarification and cold sterilization of beverages. The processing of apple
juice at the pilot scale level by ultrafiltration membranes composed of ceramic and organic polymer resulted in a 9 and
5-log reduction of bacteria, respectively [164]. The application of an ultrafiltration membrane of 0.03 um pore size for the
processing of white birch sap reduced the microbes from 1.6 x 10% to 2.0 x 102 CFU/mL. The combination of ultraviolet
with ultrafiltration resulted in the complete elimination of microorganisms during 40 days of storage at 4 or 25 °C[165].
Banana juice processed using ultrafiltration enhanced the shelf life to 30 days with superior product quality [166]. The
quality of bottle gourd juice processed by ultrafiltration was not adversely affected even after 8 weeks of storage [167].
The processing of jamun juice using polysulfone hollow fiber of 50 kDa pore size eliminated the microorganisms [168].
A flat membrane module composed of polyethersulfone (pore size <0.01 pm) also reduced the microbial load to an
undetectable level in coconut water [169].

Microfiltration can be used as a pretreatment prior to ultrafiltration in order to avoid the fouling problem of the
membrane by removing the microorganisms and particles of larger size. Coconut water containing 140 CFU/mL of
aerobic mesophiles was processed sequentially using 0.8 um and 0.45 um of cellulose nitrate membrane. The growth of
microbes was not observed even after 180 days of storage and a slight increase in total soluble solids was observed due
to the hydrolysis of carbohydrates [170]. The membrane of 0.3 um pore size resulted in the reduction of microorganisms
in pineapple juice to the desired level [171]. The processing of watermelon juice using an ultrafiltration membrane of
polyethersulfone (50 kDa molecular weight cut off) resulted in the reduction of soluble solids (2.8%) and ascorbic acid
(11.2%) [172]. Dragon fruit juice treated using ultrafiltration membrane of polyethersulfone of different pore sizes (5,
10, and 20 kDa molecular weight cut off) resulted in the retention of betacyanin (30.6%) at a higher level compared to
phenolic compounds (11.3%) level [173]. Processing of broccoli juice in an ultrafiltration membrane of polyethersul-
fone with 5, 10, and 50 kDa molecular weight cut off decreased the phenolic content by 2.7, 9.6, and 5.5%, respectively
[174]. Orange juice processed in ultrafiltration membranes composed of polyethersulfone retained better clarity com-
pared to polysulfone membranes [175]. Lemon juice treated with cellulose acetate membrane (100 kDa) retained higher
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antioxidant activity with a significant amount of eriocitrin and hesperidin [176]. The treatment of cashew apple juice
in an ultrafiltration membrane improved the shelf life by 12 weeks [177]. Cloudy apple juice processed in an ultrafiltration
membrane of polyethersulfone (10 kDa molecular weight cut off) enhanced the shelf life to 4 weeks without any changes
in the quality [178]. The processing of sugarcane juice by ultrafiltration (polysulfone membrane of 30 kDa) extended the
shelf life up to 4 weeks by inactivating the bacteria (Streptomyces, Staphylococcus, Lactobacillus) [179]. Apple beetroot
and apple juice processed in the ceramic membrane (15 kDa) retained 68 and 71% of soluble solids, respectively [180].
Mulberry juice treated in an ultrafiltration membrane (100 kDa) retained better color and phenolic compounds [181].
Ultrafiltration of watermelon juice in 1 kDa membrane improved the enrichment efficiency which in turn increased the
concentration and purity of lycopene [182]. The various reports on the processing of health-promoting beverages using
membrane technology are discussed in Table 6.

8 Pulsed magnetic field

The pulsed magnetic field is one of the emerging non-thermal techniques in recent years for enzyme and microbial
inactivation in health-promoting beverages. The major parameters that affect the pulsed magnetic field process are
magnetic field intensity and number of pulses.

8.1 Working principle

The electric current flow in a coiled wire or solenoid leads to the generation of magnetic current across the coil. The
pulsed magnetic field is generated by the generator in the form of short energy pulses which are stored in the capacitor
bank. Superconducting coils can be used to generate magnetic field intensities in the range of 5-50 T. Microorganisms
and enzymes contain charged particles that undergo drifting under the influence of Lorentz force in the magnetic field.
This results in the formation of induced currents followed by the inactivation of microbes and enzymes. Magnetopora-
tion induced by a pulsed magnetic field leads to microbial death due to the loss of cytosol and nucleic acid together
with the increase in intracellular Ca* content. The pulsed magnetic field affects the enzyme activity by the unfolding of
tertiary structure. The microorganisms respond to the domain of a pulsed magnetic field by stimulation which is known
as the “window effect”[183].

8.2 Application of pulsed magnetic field in the processing of health-promoting beverages

The pulsed magnetic field processing of orange juice at 7 T and 20 pulses resulted in the 0.61 log reduction of aerobic
mesophiles [184]. The pulsed magnetic field range used in this study was not effective in microbial inactivation indicating
the possible window effect. Pulsed magnetic field treatment of 8 T with a pulse number of 60 in cucumber juice resulted
in a 1.36 log reduction of E. coli [185]. The increase in intensity to three times reduced the bacteria to an undetectable
level even after 4 days of storage at 4 °C. The inactivation of bacteria in vegetable juices (cucumber, carrot, spinach, and
bitter gourd) was further facilitated by the combination of a pulsed magnetic field (3 times 8 T with 60 pulses) with Litsea-
cubeba essential oil at a concentration of 1.5 mg/ml [186]. The addition of essential oil slightly masked the natural flavor
of the juice but the sensorial attributes were not significantly affected. The cell membrane rupture and the inhibition of
intracellular enzymes are the major mechanisms responsible for cell death. The higher bacterial load reduction (99.9%)
in bovine colostrum was attained during pulsed magnetic field treatment of 2.53 T with a pulse number of 20 with mini-
mal loss of IgG and sensorial characteristics [187]. Maximum inactivation of E. coli, mold, and yeast in milk was attained
at 16.02 T with a pulse number of 6-8 [188]. The pulsed magnetic field processing of apple juice at 6 T with 15 pulses
inactivated various oxidative enzymes such as polyphenol oxidase, peroxidase, and pectin methyl esterase [189]. The
various reports on the processing of health-promoting beverages using a pulsed magnetic field are discussed in Table 7.

9 Current challenges and future prospective
At present, most of the studies are performed on a laboratory scale and very few pilot-scale studies are reported. Hence

more scale-up studies have to be performed and economic feasibility studies have to be undertaken to ensure sustainable
utilization and implementation. Additionally, more studies focused on the combined or sequential approach of various
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non-thermal processing methods have to be applied to food products for microbial decontamination, and inactivation
of oxidative enzymes. Ultrasonication can be applied for food preservation in combination with other methods to fur-
ther improve enzyme inactivation and microbial load reduction. The synergistic effect of the ratio of beverage and CO,
in the SC-CO, process can be studied to improve the process reliability to meet the global demand. In HHP treatment,
heat generation leads to process instability and non-uniformity. The other challenges include a lack of data on the syn-
ergistic effect between pressure and packaging materials. Dielectric barrier discharge is a type of cold plasma that can
be efficiently used for in-pack sterilization of beverages. Further optimization studies of processing variables in pulsed
light treatment are needed to obtain products of superior quality. Studies should also focus on the structural integrity,
bioavailability, and flow behavior of processed beverages [190]. Ultrafiltration membranes of tiny pore size can result in
fouling and poor permeability of nutrients with smaller molecular weight. The proper selection of ultrafiltration mem-
brane of suitable pore size should be selected for the removal of viruses and improved process efficiency. Microfiltra-
tion can be used as a pretreatment to remove larger microorganisms to minimize the fouling problem. The application
of coagulation agents is also effective in controlling the fouling of membranes [191]. Studies on pulsed magnetic field
for microbial load reduction and enzyme inactivation in beverages are very limited. Thus, more studies are required to
understand the effect of pulsed magnetic field on the nutritional quality and sensorial attributes of food products [183].

In the future, novel processing techniques can be developed by combining different non-thermal processes to improve
product quality and process efficiency. There is also scope for process equipment design and process economics for non-
thermal processes to make them more accessible and cost-effective. There is an urgent need for the establishment of
streamlined regulatory bodies concerning the utilization of these technologies to make the approval process faster and
less expensive. Customized equipment can be developed to process health-promoting beverages to meet consumer
demands. Algorithms, artificial intelligence, and data analytics can be incorporated with these advanced techniques for
the real-time monitoring and control of the process. For the widespread adoption of non-thermal processing in the bev-
erage industry, it is pivotal to overcome the current challenges as well as to work with future opportunities in this field.

10 Conclusion

Non-thermal food processing techniques are a promising alternative for food processors and provide a glimpse of future
innovations in food technology. Conventional thermal treatments are commonly used for the pasteurization of liquid
food products but they can affect the product quality in terms of nutrient retention and changes in sensorial attributes.
The application of novel green technologies like non-thermal processing methods is environmentally friendly, rapid,
and effective in microbial inactivation without affecting product quality. The action mechanisms of various non-thermal
food processing techniques driven by different energy sources have been explored in the present review paper. The non-
thermal processing methods come under a sustainable approach for microbial inactivation that in turn can improve the
shelf life of food products. The non-thermal processes can be combined with preservatives to attain complete sterilization
of food products. The low-temperature storage and distribution of non-thermal food products are essential for maintain-
ing their sensorial properties. The HHP treatment can be applied to packaged food products and it has minimal effect
on nutrients and sensorial attributes. The pulsed electric field is suitable for processing only liquid food products and
reduces the degradation of heat-labile compounds. Ultrasound and membrane technology are economically feasible and
also meet the requirements for scale-up. The HHP and SC-CO, are suitable for both microbial and enzyme inactivation
in the temperature range of 35-55 °C. In conclusion, this literature can provide a paramount reference to help the food
processors planning to execute these non-thermal techniques for processing several food products.
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