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Abstract
There are numerous barriers in robotic surgical training, including reliance on observational learning, low-quality feedback, 
and inconsistent assessment. Artificial intelligence (AI) offers potential solutions to these central problems in robotic surgical 
education and may allow for more efficient and efficacious training. Three key areas in which AI has particular relevance to 
robotic surgical education are video labeling, feedback, and assessment. Video labeling refers to the automated designation 
of prespecified categories to operative videos. Numerous prior studies have applied AI for video labeling, particularly for 
retrospective educational review after an operation. Video labeling allows learners and their instructors to rapidly identify 
critical parts of an operative video. We recommend incorporating AI-based video labeling into robotic surgical education 
where available. AI also offers a mechanism by which reliable feedback can be provided in robotic surgery. Feedback through 
AI harnesses automated performance metrics (APMs) and natural language processing (NLP) to provide actionable and 
descriptive plans to learners while reducing faculty assessment burden. We recommend combining supervised AI-generated, 
APM-based feedback with expert-based feedback to allow surgeons and trainees to reflect on metrics like bimanual dexterity 
and efficiency. Finally, summative assessment by AI could allow for automated appraisal of surgeons or surgical trainees. 
However, AI-based assessment remains limited by concerns around bias and opaque processes. Several studies have applied 
computer vision to compare AI-based assessment with expert-completed rating scales, though such work remains investi-
gational. At this time, we recommend against the use of AI for summative assessment pending additional validity evidence. 
Overall, AI offers solutions and promising future directions by which to address multiple educational challenges in robotic 
surgery. Through advances in video labeling, feedback, and assessment, AI has demonstrated ways by which to increase the 
efficiency and efficacy of robotic surgical education.
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Introduction

Numerous barriers prevent efficient and effective robotic 
surgical training, including reliance on observational learn-
ing, low-quality feedback, and inconsistent assessment 
[1–4]. As surgeons apply the robotic platform to more and 
increasingly complex procedures, these problems stand to 
intensify [5]. Accepted approaches to addressing these issues 
have been unevenly adopted by different training programs; 
indeed, while the Society of American Gastrointestinal and 

Endoscopic Surgeons (SAGES) recommends structured cur-
ricula for robotic surgical education, training varies substan-
tially by specialty, program, and stage [6–9]. Such variation 
reflects heterogeneous uptake of robotic surgery as a whole 
and insufficient faculty development highlighting the specif-
ics of robotic surgical instruction [5, 10, 11].

At a basic level, programs’ use of simulation differs 
considerably, with some requiring simulation experience 
prior to operative involvement and others struggling with 
adequate access to simulation [12, 13]. Among those incor-
porating simulation in training, simulation types range from 
low-cost home simulation to virtual reality to complex tis-
sue- and cadaver-based models [14–16]. Feedback during 
simulation also varies, with some programs emphasizing 
real-time, in-person expert feedback and others relying on 
self-monitored progression [2, 17, 18]. In the operating room 

 *	 Riley Brian 
	 riley.brian@ucsf.edu

1	 Department of Surgery, University of California San 
Francisco, 513 Parnassus Avenue, S‑321, San Francisco, 
CA 94143, USA

http://orcid.org/0000-0002-7462-3214
http://crossmark.crossref.org/dialog/?doi=10.1007/s44186-024-00262-5&domain=pdf


	 Global Surgical Education - Journal of the Association for Surgical Education            (2024) 3:60    60   Page 2 of 7

(OR), learners’ ability to participate in and observe robotic 
surgery diverges dramatically by setting [11, 19, 20]. Feed-
back and assessment in the OR also differ across sites; some 
instructors provide adept and actionable advice, while others 
struggle to offer useful guidance or reliable assessment [4, 
21, 22]. Finally, after an operation, some surgeons and learn-
ers have the opportunity to review intra-operative videos to 
learn from their performance, while others experience bar-
riers to video review [23].

To some extent, this heterogeneity in robotic surgical edu-
cation reflects differing uptake and enthusiasm for robotic 
surgery. However, divergent physical, administrative, and 
instructional resources also likely contribute to the diverse 
educational experiences of those learning robotic surgery. 
Artificial intelligence (AI) offers potential solutions to these 
central problems in robotic surgical education. Properly 
applied, AI may provide for a more accessible and stand-
ardized experience for tomorrow’s robotic surgeons.

Rationale for the use of artificial intelligence

AI encompasses a range of subfields, including machine 
learning, artificial neural networks, natural language pro-
cessing, and computer vision [24]. Each of these subfields 
has the potential to impact and improve robotic surgical 
education in different ways. One significant way in which 
AI can improve robotic surgical education is by increasing 
training efficiency. While many surgeons and trainees have 
the ability to record intra-operative videos, manually review-
ing them in a meaningful way takes a substantial amount of 
time. Automated video labeling allows learners and their 
instructors to rapidly identify critical parts of an operative 
video, including key operative steps and near misses, and 
hone in on important areas for future improvement [25]. 
Through natural language processing, AI can also save time 
by allowing for basic automated feedback to reduce assess-
ment burden and save time for expert faculty [26–28]. A 
second key way by which AI can advance robotic surgi-
cal education is by improving the efficacy of simulation, 
feedback, and assessment. Many learners perform standard 
simulation exercises that are general to all robotic surgical 
learners. An AI-informed simulation curriculum, if created 
and optimized, could harness past performance to customize 
simulation based on a learner’s needs [29]. Furthermore, AI 
can allow for more efficacious feedback and assessment by 
harnessing new inputs and automated performance metrics 
(APMs) that more accurately reflect operative events than 
a human rater [30]. For example, AI-detected instrument 
movement could offer a more accurate interpretation of a 
surgeon’s economy of motion than an instructor’s percep-
tions [31]. AI can then incorporate these and other inputs to 
provide descriptive action plans to learners. Furthermore, 

AI-based assessment can offer a standardized way by which 
to increase assessment reliability, eliminate the unpredict-
ability of human raters, identify struggling learners, and pro-
mote evidence-based graduated autonomy [3]. Altogether, 
AI offers surgical educators opportunities to improve the 
efficiency and efficacy of robotic training greatly.

Available evidence

Work to incorporate AI into robotic surgical education has 
made significant strides in recent years. We will focus here 
on the applications of AI to video labeling, feedback, and 
assessment. Of note, there are numerous additional areas 
of promise for AI in robotic surgery beyond the scope of 
this paper, including in intra-operative decision support and 
autonomous task performance [24, 32].

Video labeling

Video labeling refers to the automated designation of pre-
specified categories to operative videos [25]. Numerous 
prior studies have reported on methods to apply AI for video 
labeling [33]. As such, SAGES has developed consensus 
guidelines around video labeling to promote a shared vocab-
ulary among educators, researchers, and engineers [34]. 
Labeling can be done of various types of surgical activities. 
At the most basic level, videos can be labeled by their short 
and discrete gestures, alternately called surgemes in some 
prior work [35]. Gestures may include things like moving 
to a target or grabbing a suture [35, 36]. Gesture labeling 
may be too granular for training and is not included in the 
SAGES guidelines around annotation. However, others have 
reported on gesture review for assigning meaningful stylistic 
descriptors from fluid and smooth to viscous and rough [37]. 
A set of gestures performed together can be labeled as an 
action, alternately called maneuver. Actions are composite 
gestures like knot tying and suture throwing [38]. Action 
labeling can also be useful as certain actions may indicate 
complications or points of interest in a video [38]. Multiple 
actions come together to make up a task, such as closing 
a wound or dissecting the hepatocystic triangle [34, 36]. 
Task labeling can be particularly helpful in identifying and 
reviewing specific components of a procedure. Finally, all 
procedure tasks together comprise the phase, which includes 
access, execution of the surgical objectives, and closure [34].

In addition to surgical activities, video labeling can also 
be applied to specific events, anatomy, and instruments. For 
example, in cholecystectomies, AI video labeling has been 
used to identify the critical view of safety [39]. AI has also 
been applied to label other anatomic structures. One study 
assessed the ability of a deep-learning model to accurately 
identify the uterus, ovaries, and surgical tools [40]. Another 
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study attempted to overcome limitations related to visual 
noise and obscured structures to apply labels in partial 
nephrectomies [41]. Finally, AI-assisted video blurring is 
an automated method by which to protect patient privacy. AI 
allows for non-operative moments, such as out-of-body cam-
era cleaning, to be blurred; this can protect identities without 
compromising the educational quality of videos [42].

Feedback

Feedback is a second major area in which AI has been stud-
ied in robotic surgical education. Given surgeons’ inconsist-
ent formative feedback that may not be actionable for learn-
ers, AI offers a mechanism by which reliable, high-quality 
feedback could be provided in robotic surgery [43]. The 
first way by which AI could improve feedback is by mak-
ing meaning of APMs. Though APMs do not require AI for 
collection, they sometimes represent vast amounts of data 
that can be minimally understandable in raw form. Thus, 
AI can facilitate the interpretation of APMs and provide 
actionable, specific feedback tailored to individual surgeons. 
Such feedback is already incorporated into virtual reality 
robotic simulation [35]. APM-based feedback has also been 
evaluated in real-world and tissue model settings. Hung and 
colleagues used machine learning to train a model based 
on APMs from 78 robotic-assisted radical prostatectomies 
[30]. Similarly, Lazar et al. created a model using APMs 
from 42 simulated lung lobectomies [44]. APMs have been 
shown to correlate in these studies with actual outcomes of 
interest, including postoperative complications. APM-based 
models have highlighted substantial variance in surgeon and 
trainee performance in certain metrics, such as idle time 
and wrist articulation, which could be fed back to surgeons 
and trainees to help them reflect on their motions during an 
operation or simulation.

Another way in which AI could enhance feedback is 
through language processing. Surgeons often provide poor 
quality feedback [21]. Prior authors have harnessed natural 
language processing to assess feedback quality with high 
accuracy and specificity [45, 46]. These studies demon-
strated the ability of natural language processing to rec-
ognize when surgeons’ narrative feedback did not include 
relevant, specific, and corrective components necessary for 
learners to improve. This allows low-quality feedback to 
be identified and improved to help surgeon reviewers. Of 
note, AI-generated suggestions have been shown in other 
fields to be of most use to novice learners [47, 48]. This may 
reflect limitations in AI to detect and replicate the nuances 
of feedback for advanced surgical techniques. Interestingly, 
however, in an AMEE guide, Tolsgaard and colleagues 
note, “While novice learners may gain the most from good 
AI feedback, they may be more susceptible than experts to 
incorrect advice provided by AI systems.” Indeed, while AI 

could be quite useful for providing feedback to novices, such 
novices may have less context to understand errors in the 
AI-based feedback.

Assessment

Summative assessment is closely related to feedback, though 
it differs in its goal of predicting future performance and 
determining readiness for additional autonomy or practice. 
Additionally, unlike feedback, summative assessment may 
not always be conducted to improve performance [49]. 
Multiple authors have investigated the use of AI for assess-
ment in robotic surgery. Wang and colleagues used a deep 
convolutional neural network based on a publicly available 
robotic surgery dataset [50]. They created a model to assess 
performance on suturing, needle passing, and knot tying 
and found that AI-based assessment was 91.3% to 95.4% 
accurate in skill rating when compared with a global rating 
scale. Another group used computer vision to similarly com-
pare AI-based assessment with an expert-completed rating 
scale [51]. They found correlations between AI-determined 
metrics, like bimanual dexterity and efficiency, and expert 
ratings. Additionally, AI has been applied to determine 
disease severity in cholecystectomies [52]. Disease sever-
ity or procedure difficulty assessment can provide context 
for manual expert assessment. More specifically, an expert 
could contextualize a rubric-based assessment with an AI-
generated difficulty recommendation. No prior identified 
work has used AI for actual summative assessment—with 
resultant learner consequences—in robotic surgery.

Recommendations

The potential uses of AI in robotic surgical education are 
exceptionally promising (Fig. 1). Nonetheless, we acknowl-
edge that further work must determine the ways in which 
AI affects robotic surgical education in real-life settings, 
from trainees’ reactions and learning to actual behavior and 
results. Based on the available evidence, we recommend 
incorporating AI-based video labeling into robotic surgical 
education for learners and surgeons to replay and review 
robotic operations. This may require addressing medicolegal 
and technological barriers to intra-operative video recording 
and easing the process by which those videos can later be 
seen [23]. Future work should focus on how surgeons use 
and apply video labeling to ensure that the technology meets 
educational needs. Video labeling has been chiefly used for 
retrospective educational review after an operation [33]. A 
next step for video labeling could be incorporating real-time 
video labeling on an intra-operative observer screen. Though 
research must address the effects of this on workflow, such 
an intervention could allow for more efficacious learning 
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for trainees who are relegated in parts or all of an opera-
tion to observation [53, 54]. Other work could investigate 
automated case logging based on video labeling to allow 
surgeons and trainees to track their progression over time 
and divide joint case metrics by operator [42]. Future studies 
that apply and assess video labeling should use the SAGES 
consensus vocabulary [34].

We also recommend combining AI-generated, APM-
based feedback with expert-based feedback to allow sur-
geons and trainees to reflect on metrics like bimanual dex-
terity and efficiency. AI-generated, APM-based feedback 
may represent a more accurate measure of certain activities 
in robotic surgery, which could help surgeons and trainees 
better track their performance and monitor improvement 
over time. We also suggest that further work identify how 
APMs could be used to tailor simulation efforts. This could 
allow for more efficient use of simulation time. Future work 
in AI-based feedback in robotic surgery could focus on bet-
ter combining language processing with computer vision. 
High-quality automated feedback could be provided based 
on videos of robotic operations or simulations. This could 
overcome current hurdles associated with manual feedback, 
including delays in feedback and poorly written or unac-
tionable feedback [51]. Until further work demonstrates the 
accuracy of AI-based feedback in additional and novel set-
tings, we recommend that AI-based feedback generally be 
supervised and approved by an expert.

Finally, we recommend against the use of AI without 
expert supervision for summative assessment at this time. 

While the aforementioned and other studies have shown 
substantial strides in the ability of AI to detect a number of 
important metrics in robotic surgery, it remains insufficiently 
tested to use summatively. We recommend that further work 
develop additional evidence in all aspects of validity and in 
users’ experience prior to considering AI-based summative 
feedback [55].

Limitations of artificial intelligence

There are important limitations to note with the applica-
tion of AI to robotic surgical education. First, much of the 
existing work has applied models to ideal cases or basic 
procedures that ‘follow the script’ through a single camera 
view and using a single robotic system. Applying computer 
vision when there is deviation from the script and improv-
ing algorithmic performance in new settings will be of 
utmost importance to the broader use of AI in robotic sur-
gical education. Similarly, many studies have been limited 
by small datasets, a lack of external validation, and opaque 
processes [33]. As additional authors apply and investigate 
AI in robotic surgical education, they should continue to 
emphasize the validity and transparency of their processes. 
Doing so may increase learner and surgeon receptivity to 
AI-based feedback. Furthermore, validity and transpar-
ency will be particularly important prior to the use of AI for 
assessment in robotic surgical education. Educators simply 
cannot adopt AI-based assessment in the setting of opaque 

Fig. 1   Artificial intelligence 
has multiple applications to 
address barriers in robotic surgi-
cal education for a re-imagined 
future with more efficient and 
efficacious learning
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processes. While a goal of AI-based feedback and assess-
ment is standardization and bias reduction, algorithmic bias 
remains a troubling barrier [56]. Underskilling is the inac-
curate downgrading of a surgeon’s performance by AI, while 
overskilling is the inaccurate upgrading of a surgeon’s per-
formance by AI; both underskilling and overskilling present 
obstacles to the summative use of AI-generated assessment 
[57].

Finally, we caution against the widespread view of AI-
based feedback and assessment as “objective.” While many 
authors in the works cited in this paper emphasize the impor-
tance of objective metrics such as those possible through AI, 
it is important to note that humans decide which metrics to 
include in an algorithm or AI-based rubric. Whether a par-
ticular gesture correlates with an outcome that is important 
to patients is mostly unknown [30, 58]. Similarly, many AI-
based assessments use expert feedback as a gold standard; 
however, not all expert feedback is created equally. As such, 
while AI certainly may produce highly reliable or consist-
ent results, portraying AI-based metrics as an objective and 
ultimate reflection of truth may do a disservice to learners, 
educators, and patients.

Conclusions

AI offers potential solutions to multiple educational chal-
lenges in robotic surgery. Through advances in video labe-
ling, feedback, and assessment, AI has demonstrated ways 
by which to increase the efficiency and efficacy of robotic 
surgical education. Barriers to the widespread use of AI 
remain, particularly with regard to the use of AI for assess-
ment of robotic surgical skill. Both AI-based technologies 
and robotic surgery have changed rapidly, and will likely 
continue to evolve quickly in coming weeks, months, and 
years. As such, recommendations and limitations in this area 
will also change. To facilitate impactful AI-based innova-
tions in robotic surgical education, future work should focus 
on further developing validity and transparency.

Summary box

•	 Robotic surgical education has been challenged by a reli-
ance on observational learning, low-quality feedback, 
and inconsistent assessment

•	 AI offers solutions to these and other challenges in 
robotic surgical education

•	 Strengths of AI in this field center around video labeling 
and metric-based feedback

•	 Ongoing work must focus on developing validity and 
ensuring transparency

Where to find more information

We suggest reading “Artificial Intelligence Methods and 
Artificial Intelligence-Enabled Metrics for Surgical Edu-
cation: A Multidisciplinary Consensus” and “Artificial 
Intelligence and Surgical Education: A Systematic Scop-
ing Review of Interventions” for recommendations and 
review regarding the use of AI in surgical education more 
broadly [29, 59]. For additional resources on the use of AI 
in robotic surgery, consider “A systematic review on arti-
ficial intelligence in robot-assisted surgery” [33]. Finally, 
for information on consensus video annotation, we advise 
reviewing “SAGES consensus recommendations on an 
annotation framework for surgical video” by Meireles and 
colleagues [34].
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