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Abstract 

Purpose Liquid biopsy is a promising technological method in patient management of early-stage non-small-cell 
lung cancer (NSCLC). The detection platforms exhibit high efficiency and related clinical applications also emerge 
with high-quality performance. An overview of the current status is in need for an integrated perception on this field.

Methods NSCLC takes up the largest proportion of lung cancer and there is a tendency for more early-stage patients 
in real practice. Hence, early-stage NSCLC participants occupy an important position in clinical work. Liquid biopsy, 
as a promising non-invasive detection method, had great potential in various aspects of the whole diagnosis-treat-
ment procedure. We went through the landmark articles according to liquid biopsy in the field of early-stage NSCLC 
management and concluded the status quo of it.

Results In this review, we summarized the improvement of the detection technologies regarding the most widely 
studied biomarkers and elucidated the current clinical applications of liquid biopsy in early detection, prognostic 
performance assessment, and predictive value respectively, in early-stage NSCLC patients.

Conclusion Liquid biopsy has achieved favorable outcomes in different aspects of early-stage NSCLC. Although 
there are still barriers yet to conquer, liquid biopsy is a hopeful detection means to be put into clinical use.
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1 Introduction
Lung cancer is a major global health concern, ranking 
as the second most commonly diagnosed cancer and 
the leading cause of cancer-related deaths in 2020 [1]. 
It can be classified into two main types: small-cell lung 
cancer (SCLC) and non-small-cell lung cancer (NSCLC). 
NSCLC accounts for 85% of all cases and is the predomi-
nant form of lung cancer [2]. Unfortunately, lung cancer 
is often asymptomatic in the early stages, with about 

60% of patients presenting with distant metastasis at the 
time of diagnosis. This underscores the importance of an 
effective early screening methods for lung cancer. Even 
after surgical resection, early-stage NSCLC patients are 
still at risk of local or distant recurrence and metastasis 
[3]. To address this problem, a sophisticated recurrence 
risk evaluation system and a well-organized personal 
adjuvant therapy (ADT) strategy are necessary to opti-
mize the outcomes for these patients.

Liquid biopsy is a genetic detection technology that 
takes the sampling of analytes from biological fluids, 
usually blood, but also other clinical secretions such as 
urine, ascites, and cerebrospinal fluid. Fragmented par-
ticles or dissociative cells originating from tumor cells’ 
growth or necrosis that carries genomic information are 
major subjects to the analysis, which helps us to extract 
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information from the tumor and reveal key characteris-
tics of it [4]. It is not only capable of clarifying the sta-
tus of cancer and tumor load but also suitable to depict 
heterogeneity landscape and dynamic genetic patterns 
of cancer during treatment, which is hard to obtain from 
clinical tissue biopsy. Liquid biopsy is also applicable to 
practical utility, for its noninvasiveness, repeatability, real 
time surveillance and easy to access [5]. These advantages 
drew the attention of researchers to further explore its 
potential applications in clinical fields. Currently, differ-
ent biomarkers in peripheral blood have been explore. 
Circulating tumor cells (CTCs), circulating tumor DNA 
(ctDNA), exosomes, microRNAs (miRNA), peripheral 
blood circulating RNA, tumor-educated blood platelets 
(TEPs), and circulating tumor vascular endothelial cells 
(CTECs) are typical detection subjects to liquid biopsy. 
CtDNA, CTCs and exosomes are the hottest biomarkers 
in the field of NSCLC since inception to May 2022 [4].

With the advancement of detection technology and 
refinement of clinical models, liquid biopsy has spread 
its utility in the whole diagnosis-treatment procedure 
of NSCLC. With the improvement of screening meth-
ods and improvement on people’s awareness of physi-
cal examination, the ratio of early stage lung cancer 
increased dramatically. Meanwhile, this phenomenon 
also brought about technical challenges to liquid biopsy 
in finding genetic mutations within less concentration, as 
early stage tumors shed little DNA fragments into blood 
stream. This review is going to introduce the mainstream 
detection methods in liquid biopsy and summarize the 
development and barriers of liquid biopsy in clinical 
applications on resectable early-stage NSCLC without 
distant metastasis staging from TNM I to IIIA.

2  Definition and detection methods for liquid 
biopsy biomarkers

2.1  Detection and biological characters of ctDNA
Circulating free DNA (cfDNA) was first found in human 
bloodstream in 1948 by Mandel and defined as degraded 
DNA fragments that are circulating freely in the blood-
stream [6]. These shed fragments are usually generated 
from normal healthy leukocytes and stromal cells which 
have high proliferation rate. However, its relationship 
with tumor was revealed later by Shapiro in 1983 [7], 
as patients with cancer carried a general higher level of 
cfDNA in blood than healthy participants. These group 
of ctDNA that released from cancer cells were defined as 
circulating tumor DNA (ctDNA). Although ctDNA only 
contributes a little proportion to total cfDNA in early-
stage NSCLC, it has manifested various talents in cancer 
diagnosis, prognostic evaluation and therapy manage-
ment [8, 9].

The process of ctDNA’s release is deemed to be related 
with tumor cell’s death, such as apoptosis or necrosis, 
and sometimes ctDNA originates from active metabo-
lism such as secretion when the cells were alive [10]. In 
practical analysis, it is hard to distinguish ctDNA from 
other cfDNA, because genetic aberration varies among 
cancer types and is even heterogeneous in each indi-
vidual. Even though, ctDNA still share some typical 
and distinct biological features compared with the ones 
from healthy tissue. The length of cfDNA centers around 
166  bp, similar to the length of DNA around a nucleo-
some plus its linker, as the result of histone’s protection 
from caspase-dependent endonuclease. Circulating DNA 
from tumor tissue is observed to have a different frag-
ment pattern, approximately 23  bp shorter than others, 
but the reason remains unknown [11]. In circulation sys-
tem, ctDNA faces a fast clearance via the kidneys, liver, 
and spleen. Based on the concentration analysis of mul-
tiple time point sampling, 35  min is determined to be 
the half-life of ctDNA in surgical resected lung cancer 
patients, which laid a solid foundation for dynamic sur-
veillance [12]. With the advancement of detection tech-
niques, quantification of ctDNA can even realize tumor 
volume prediction without invasive procedure. A linear 
relationship between plasma variant allele fraction (VAF) 
and tumor volume by CT volumetric analysis was con-
structed in a NSCLC cohort, among which a primary 
tumor burden of 10  cm3 is parallel to a mean plasma VAF 
of 0.1% [13].

Strong clinical value as it shows, there are plenty bar-
riers in analyzing these circulating DNA. At each tumor 
cell’s death, only 0.014% of tumor’s DNA is shed into 
bloodstream [14]. An average concentration of cfDNA 
is estimated to range from 1 ~ 100 ng/ml in periph-
eral blood, while merely 0.1~1% of cfDNA comes from 
tumor tissue in early-stage patients, which is harsh for 
the sensitivity of detection technique, especially in early-
stage patients with low tumor load. Besides, the back-
ground interference of circulating DNA from normal 
cells is another factor that influences the detection result. 
Somatic mutations that accumulate in hematopoietic 
cells with aging, termed clonal hematopoietic mutations 
of indeterminate potential (CHIP), may be misjudged as 
cancerous mutations [15]. To avoid false positive situ-
ations, CHIP-associated variant filtering or white blood 
cell control is necessary for hyper-sensitive detection 
approaches.

2.2  Detection methods for ctDNA
Unique characters of ctDNA as a tumor biomarker in 
peripheral blood can be classified into three major cat-
egories: (1) Genome mutations and structural variations; 
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(2) Fragmentomic patterns; (3) Epigenetic characters. 
These biomarkers have found their own advantages in 
different areas of lung cancer management and their 
detection strategy also varies based on their disparate 
biological features (Table 1).

Before genomic detection, preanalytical parameters 
from blood drawing to the storage of cfDNA extracts 
are critical factors directly influencing the outcome. The 
largest contamination is from the preanalytical degra-
dation of white blood cells (WBC) which releases an 
overwhelming amount of genomic DNA into the sample 
compared with the small quantity of ctDNA. To reduce 
WBC’s interference, plasma is a better sample than 
serum because plasma sample minimize the WBC-origin 
DNA from WBC lysis during the clotting process. And 
EDTA has a lower cfDNA increase rate than heparin 
and citrates as an anticoagulant. Before separation of the 
sample from blood cellular components, the amount of 
cfDNA has no significant increase in the first 4 ~ 6 h, no 
matter in room temperature or 4 °C storage. But the qual-
ity of cfDNA extracts for quantification analysis can only 
be guaranteed under − 20 °C for 3 months. During these 
procedures, agitation should be avoided and it is recom-
mended that freeze–thaw process be minimized up to 3 
cycles [16, 17].

2.2.1  Genome mutations and structural variations
Currently, the technical platforms that meet the require-
ments of ctDNA detection are mainly based on PCR or 
Next-generation Sequencing (NGS). PCR-based methods 
include real-time quantitative polymerase chain reac-
tion (RT-PCR), droplet digital PCR (dd-PCR), beads-
emulsion-amplification-and-magnetics (BEAMing) and 
amplification refractory mutation system (ARMS) [8]. 
RT-PCR is the most standardized PCR methods, but 
with a relatively low sensitivity. Detection accuracy is 
improved in dd-PCR by dividing the PCR reaction in 
plenty of droplets containing nucleic acid template. As 
for BEAMing methods, PCR is conducted by magnetic 
beads for the water-oil single-molecule amplification 
reaction, which had relative high sensitivity at the cost 
of a complex workflow. ARMS utilized the match at 3’ 
end of the primer to identify targeted mutations [5, 18]. 
These methods have modest detection accuracy and low 
economic requirements, but can only interrogate known 
mutations, and neither copy number variants nor fusion 
genes can be identified. Methods based on second-gen-
eration sequencing (NGS) include Cancer Personalized 
Profiling by deep sequencing (CAPP-Seq) and tagged 
amplicon deep sequencing (TAM-Seq). The detection 
range of NGS is not limited to several simple mutations, 
but expands its field to fusion genes, insertion/ dele-
tion and copy number variations (CNVs). However, with 

advancement in detection efficiency, its shortcomings lie 
in longer analytical time cycle and higher economic cost, 
and certain bioinformatics knowledge storage of detec-
tion equipment is in need [8, 19]. In clinical application, 
early diagnosis of lung cancer favors NGS to discover 
unknown mutations, while PCR is useful in postoperative 
monitoring or drug-resistant management based on can-
didate genes information from tissue biopsy.

2.2.2  Fragmentomic patterns
It is widely accepted that ctDNA is more fragmented 
than cfDNA from clonal hematopoietic cells. The length 
of these shorter cfDNA oscillates in a 10 bp periodicity, 
which is associated with nucleosome or protein com-
plex wrapping and protecting DNA from cleavage. Fur-
thermore, nucleosome positioning is another important 
piece of information extracted from fragmentomic pat-
terns, which showed relations with tumor origin and 
can be revealed through nuclear chromatin micrococcal 
nuclease (MNase) sequencing assays. Indeed, the loss 
of nucleosome positioning on both sides of transcrip-
tion starting sites (TSS) is necessary to properly express 
genes. NGS-based methods are capable of analysis on 
fragment’s length and distribution, while as for nucleo-
some positioning, bioinformatics analysis is inevitable 
and not applied in routinely diagnosis [20].

2.2.3  Epigenetic characters
DNA methylation, histone post-translational modifica-
tions, histone variants and chromatin remodeling com-
plexes are the main studied epigenetic mechanisms in 
liquid biopsy. DNA methylation refers to addition of a 
methyl group to cytosine in cytosine-phosphate-guanine 
(CpG) island, while histone post-translational modifica-
tions adds specific biochemical modifications on his-
tone tails to regulate gene expression. Histone variants 
regulate chromatin remodeling and histone post-trans-
lational modifications with a few variant amino acids. In 
comparison, chromatin remodeling complexes remove, 
relocate or shift histones to regulate the nucleosome 
structure [21]. Among them, DNA methylation is the 
mostly studied biomarker in lung cancer management, 
which is also validated to provide information on early 
screening, prognosis and therapy response with robust 
performance.

Methylation on DNA is usually catalyzed by DNA 
methyltransferase enzymes (DNMTs) which trans-
fer methyl group on S-adenosylmethionine (SAM) 
to the 5-position carbon of a cytosine ring. These 
methylations happen predominantly in CpG dinu-
cleotides, 60–80% of which are generally methylated 
in healthy genome [22]. Methylation regulates spe-
cific gene expression in two biological mechanisms. 
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Hypermethylation on gene promoter directly silences 
transcription, while methylation on methyl-CpG-bind-
ing proteins (MBP), which recruit DNMTs and histone 
deacetylases (HDAC), leads to chromatin conforma-
tion changes that further repress gene transcription 
[21]. DNA methylation enjoys several specific biologi-
cal characters that capacitates itself as a favorable bio-
marker. DNA methylation is stable and homogenous in 
specific type of cancer with little individual differences 
and methylation aberrations appear at an early stage of 
cancer development [23, 24]. Such preponderance set 
the stage for DNA methylation to track cancer’s minute 
trails in bloodstream.

Technologies for ctDNA methylation assay can 
be roughly categorized into bisulfite conversion-
based method, restriction enzyme-based method and 
enrichment-based method. Methylated cytosines are 
screened out through deamination process of bisulfite 
salts, while unmethylated cytosines without protec-
tion are transferred into uracil. Follow-up PCR on 
specific CpG sequencing or WGS towards global DNA 
methylation profiling are conducted based on differ-
ent detection strategies, such as methylated CpG tan-
dems amplification and sequencing (MCTA-seq) or 
whole-genome bisulfite sequencing (WGBS) [25, 26]. 
However, the toughest problem on this approach is 
degradation of DNA resulting from bisulfate conver-
sion. To solve this problem, bisulfite conversion-free 
methods come into being. Restriction enzyme-based 
method is designed based on methylation’s protec-
tion effect from restriction endonuclease on specific 
genome sequencing. Methylation restriction enzymes 
(MREs) such as such as HpaII, Hin6I and AciI, are 
used parallelly in MRE-seq, but the outcome is strictly 
limited to the availability of enzyme recognition sites 
and the extent of MRE’s digestion. Antibodies spe-
cific for 5mC and methyl-binding protein MECP2 
are important choices for enrichment-based method. 
Cell-free methylated DNA immunoprecipitation and 
high-throughput sequencing (cfMeDIP-seq) [27] and 
modified methyl-CpG binding domain protein cap-
ture sequencing (MBD-seq) [28] are classical detection 
models in this field. After refinement, both of them 
can offer a resolution to methylation landscape under a 
minimum DNA input of 1–10 ng.

In comparison, bisulfite conversion-based WGBS is 
still the gold standard for comprehensive and unbiased 
whole-genome DNA methylation profiling, but bears 
heavy work load and economic burden. A relative higher 
level of DNA input is required due to the destructive 
effect of bisulfate. The availability of MRE-seq is limited 
to the recognition sites of restriction enzymes and pos-
sible incomplete digestion causes further false positive 

situations. CfMeDIP-seq and MBD-seq are economic 
friendly, but impotent to single-base-pair resolution or 
coverage of unmethylated CpG sites [29].

2.3  Detection and biological characters of CTCs
CTCs are defined as tumor cells that have been sloughed 
from the primary tumor and are swept away by the cir-
culatory or lymphatic systems [30]. CTCs are able to 
carry out information at many levels, including presence 
of CTCs, CTC count, immuno-cytochemistry, genomic, 
transcriptomic, and proteomic analysis [31]. Different 
from primary tumor cells, CTCs manifest EMT transi-
tion properties and stemness features to adapt to the 
environment in circulation system from primary focal 
lesion. CTCs have a general short half-life time of 1.0-
2.4 h. Under the attack of body immune system and sur-
vival pressure from anoikis and bloodstream shearing 
forces, or even an assault from targeted drugs, less than 
0.01% of CTCs survive in the journey and lead to a new 
blood-borne metastasis as “seeds” of primary tumor. 
Same to ctDNA, CTCs are also low in abundance and 
patients with cancer seldom carries CTCs more than 10 
cells per milliliter [32]. Although such characters hinder 
the development of CTCs analysis, CTCs offer an oppor-
tunity to information at the DNA, RNA and protein lev-
els. Multiple dimensions of detection grants possibilities 
for its future development. In previous studies, CTCs 
have demonstrated great values in early screening and 
prognostic management among various cancer types, 
including breast cancer and lung cancer [33].

2.4  Detection methods for CTCs
Simple component separation of plasma is required 
before cfDNA analysis, but CTCs isolation is a tough 
assignment as the prerequisite and foundation for 
downstream CTCs analyses. Different CTC isolation 
techniques have been developed, which can be gener-
ally divided into physical methods and biological meth-
ods. Physical methods are based on individual physical 
characters between CTCs and blood cells, such as size, 
density, electric charge, migratory capacity, and deform-
ability to filter CTCs. And biological methods mainly 
count on antigen-antibody binding to select CTCs by 
recognizable tumor-specific biomarkers [34] (Table 1).

Physical separation method of CTCs faces lots of dif-
ficulties in development, among which size and density 
are the most favorable features. Although CTCs own an 
average higher size than normal blood cells, an appar-
ent overlap between interfering leukocytes and small size 
CTCs is not negligible. Besides, CTCs’ broad heterogene-
ity in physical size across cancer types is also observed in 
previous studies [35]. Size-based separation strategies are 
grossly categorized into two mainstream technologies: 
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membrane microfilters and size-based microfluidic CTC 
sorting devices [36]. With continuous refinement and 
technological honing, CTCs capture efficiency ranges 
from 47 to 98% with blood samples no more than 7.5ml 
in different size-based researches [35]. Another physical 
methods use specific density of RBCs, leukocytes, and can-
cer cells to centrifugate target components, among which 
silicone flotation technique and isopycnic density gradient 
centrifugation are commonly used classical methods [37]. 
OncoQuick [38] and AccuCyte-CyteFinder system [39] are 
popular density-based CTCs detection platform applied in 
current clinical researches and their average recovery rate 
reached 87% and 90% respectively, although large cohort 
study and lung cancer specific research are yet to accom-
plish. Physical separation method produces label-free, 
unmodified viable cells that can be applied in downstream 
analysis, but this strategy faces inference from leukocytes 
or other cells that should not be ignored.

Another strategy to discriminate CTCs is biological 
property-based technology which identifies the biomarkers 
CTCs produces under the process of specific physiological 
activities with the help of antibody–antigen interaction. 
However, no universal CTC antigens have been identified 
yet [37]. CTCs from epithelial malignancies are likely to 
maintain original phenotype, as a result, epithelial markers 
such as the epithelial cell adhesion molecule (EpCAM) and 
cytokeratins are suitable for detection [40]. As the most 
commonly used biomarker, EpCAM antibody-coated fer-
romagnetic beads are applied in the only FDA-approved 
clinical device, CellSearch system, with removal of back-
ground CD45 + white blood cells. Even so, EpCAM is not 
a panacea for all cancer types. EpCAM-negative cell group 
even takes up a larger quantity than EpCAM-positive ones 
in NSCLC [41]. In the process of invasion, part of carci-
noma cells experience epithelial-to-mesenchymal transi-
tion (EMT) to attain stronger migration ability, at the cost 
of epithelial phenotype. As a result, EpCAM-based enrich-
ment will inevitably miss CTCs with higher EMT extent. 
Furthermore, negative-enrichment methods are taken 
into consideration due to its advantage of label-free viable 
CTCs. Negative immunomagnetic CD45 + white blood 
cell enrichment and red blood cell lysis are two common 
practices in research [37].

In clinical utility, combined approach is a favora-
ble choice for CTCs analysis. CTC-iChip, an inertial 
focusing-enhanced microfluidic CTC capture platform, 
combined size-based filtration and immunomagnetic 
separation with positive selection and negative depletion 
modes and overcame previous CellSearch system in a 
pan-cancer cohort including lung cancer [42].

2.5  Detection and biological characters of exosomes
Exosomes are endosomal-origin vesicles ranging from 
40 to 160  nm in diameter. Proteins, messenger RNAs 
(mRNAs), microRNAs (miRNAs), and lipids enriches 
in endosome, enclosed by a stable lipid bilayer, which 
mediates intracellular transfer of information in body 
fluids [43]. Exosome biogenesis begins with invagination 
of endosomal limiting membranes and ultimately forms 
multi-vesicular bodies (MVBs) after the process of early 
sorting endosomes and late sorting endosomes. Vesi-
cles inside of MVBs, named intraluminal vesicles (ILVs), 
becomes exosomes in body fluid by the fusion of MVBs 
with plasma membrane [44]. Exosomes in body fluids 
have a general large abundance about  109 particles/mL 
and cancer cells secrete tenfold of exosomes than normal 
cells [45, 46]. As a result, exosomes with tumor infor-
mation have easier access to obtain. Besides, exosomes 
reflect biological information from living cells, while 
information carried by ctDNA is mainly from apoptotic 
or dead tumor cells [46].

In lung cancer, tumor-derived exosomes play an impor-
tant role in tumor development and metastasis through 
immune system evasion, epithelial-mesenchymal transi-
tion and angiogenesis. Exosomes from lung cancer impair 
immune system with immunosuppressive programmed 
death-ligand 1 (PD-L1) which inactivate T cells via extra-
cellular domain and cause CD8 + T cell disfunction [47]. 
Furthermore, tumor-derived exosomes and microvesicles 
produce high level transforming growth factor (TGF)-β1 
and miR-23a under hypoxia environment, which is a 
common situation in solid tumors. MiR-23a specifically 
targets the expression of CD107a in NK cells, inducing 
inhibition in cytotoxicity [48]. Second, exosomes from 
mesenchymal cells manifest upregulated β-catenin with 
suppressed expression of E-cadherin and vimentin as a 
reflection to this EMT status [49]. Moreover, exosomes 
from metastatic lung cancer cells with EMT signals suc-
cessfully induced increased level of vimentin on normal 
bronchial epithelial cells, suggesting exosomes are key 
drivers to EMT and transform cancer cells into a more 
aggressive phenotype [50]. In another study, overex-
pression of miR-210 in exosomes from lung cancer was 
found to induce fibroblast reprogramming into cancer-
associated fibroblasts through the regulation of JAK2/
STAT3 signaling pathway and TET2 in recipient fibro-
blasts, the result of which enhanced angiogenesis due to 
cancer-associated fibroblasts’ acceleration to this process 
[51]. Without any doubt, exosomes spur the progression 
and metastasis of lung cancer, granting it the ability to 
become a first-class liquid biopsy biomarker.
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2.6  Detection methods for exosomes
Exosome are heterogeneous in size and its cargo also 
varies between each of those. Exosome separation and 
enrichment are essential for statistical analysis and clini-
cal translation. Common enrichment tools are listed 
as below. (1) Ultracentrifugation-based separation is 
rendered gold standard in exosome separation, includ-
ing differential ultracentrifugation and gradient den-
sity ultracentrifugation. In comparison, gradient density 
ultracentrifugation provides better purity, but is more 
time-consuming and requires more samples to operate 
[52]. (2) Size-based separation shifts fixed-range diameter 
exosomes via specific pore sizes, but this method faces 
disadvantage of low yield. Combining multiple strategies 
or upgrading detection platform can effectively improve 
the efficiency. A size-based exosome total isolation chip 
(ExoTIC) by Liu enriches exosomes with multiple nano-
porous membranes and laid the foundation for clinical 
testing from fingerprick quantities (10–100µL) of blood 
[53]. Another innovative design of perpendicular state 
of flow direction and filtration direction, named tan-
gential flow filtration (TFF), solved the problem of pore 
clogging and developed a microfluidic tangential flow 
filtration device, Exodisc-B, which restrained the detec-
tion into 10–40 min with 30–600 µL volume blood [54]. 
(3) Immunoaffinity enrichment are also applied in exo-
some separation. Anti-CD81 functionalized microfluidic 
chip manufactured by Zhang afforded a detection limit 
of 50 µL [55]. Kang’s extracellular vesicles on demand 
(EVOD) chip applied dithiothreitol release of isolated 
EVs for downstream analysis and selected 76% more 
exosomes with EGFR in NSCLC patients than healthy 
donors, referring initial value in lung cancer early screen-
ing [56]. (4) Lipid-based separation is another methods to 
enrich exosomes, which targets on lipid molecules or the 
molecules absorbed on the exosome membrane. Wan’s 
team invented a nanoscale extracellular vesicle isolation 
platform by a surface-conjugated lipid nanoprobe with 
one end attached into membrane and the other provid-
ing solubility [57]. This kind of separation methods are 
characterized by its enrichment speed. The technique 
mentioned above only takes 15  min for isolation and 
another enrichment focusing on exosome phospholip-
ids achieved a capture efficiency of 96.5% within 5  min 
[58]. (5) Acoustic-based isolation methods utilize ultra-
sonic waves to segregate exosomes based on their physi-
cal properties such as size and density. Wu integrated 
acoustics and microfluidics modules to reach a label-free, 
contact-free isolation. These modules are able to separate 
exosomes from an extracellular vesicle mixture with a 
purity of 98.4% [59] (Table 1).

3  Clinical applications of liquid biopsy
3.1  Early diagnosis
Early detection is necessary for potential lung cancer 
patients to reduce mortality, as the 5-year overall sur-
vival rate is closely related to the TNM stage when first 
diagnosed [1] .Present recommended detection strategy 
is low dose CT (LDCT) for smokers and former smok-
ers who age above 55 with a 30 pack-year smoking his-
tory. Many randomized clinical trials (RCTs) supported 
the status of LDCT in those high-risk populations and 
numerous lung cancer screening guidelines, such as the 
National Comprehensive Cancer Network (NCCN) [60] 
and American Society of Clinical Oncology (ASCO) [61], 
recommend lung cancer screening by LDCT for indi-
viduals with high risk. Among those RCTs, the National 
Lung Screening Trial (NLST) and Nederlands-Leuvens 
Longkanker Screenings Onderzoek (NELSON) were the 
largest and proved clear benefits for a specific popula-
tion. NLST recruited 53,454 high-risk participants and 
a decrease of 20% in lung cancer-related mortality was 
found in the LDCT group during a 3-year follow-up pro-
cedure [62]. NELSON trial was conducted among 15,789 
smokers and the interval of screenings and follow-up 
time were elongated, the result of which exhibited similar 
outcomes favoring LDCT conducted once every several 
years to achieve improvement in survival rate [63]. How-
ever, LDCT is far from perfect for lung cancer screen-
ing. (1) Extremely high false positive rate is the most vital 
imperfection for LDCT. In the NLST, the false positive 
rate ranged from 15.9 to 27.2% in each year’s test [62]. 
The NELSON noted a lower false positive rate, but still, 
fluctuate at a relatively high level [63]. (2) Overdiagnosis 
and unnecessary invasive procedure are the unwanted 
consequences close behind. A meta-analysis summa-
rized overdiagnosis in LDCT screening, an estimation 
of the overdiagnosis rate reached 67.2% at most [64]. In 
NLST, 1.7% of those screened participants faced invasive 
procedures, 0.4% of false positive participants underwent 
at least one complication, and 0.1% of them even experi-
enced death after an invasive diagnostic procedure [62]. 
(3) Even though LDCT has already decreased the radia-
tion dose to 0.65 mSv to 2.36 mSv per screening, a regu-
lar reexamination can bring substantial injury to patients 
[64]. The lifetime risk of major cancers related to the 
radiation from 10 annual LDCT scans was 0.26 to 0.81 in 
every 1000 people screened [65]. (4) Psychosocial harms 
from the screening may also reduce quality of life. Indi-
viduals receiving true-positive results or indeterminate 
results experienced most anxiety and distress [66]. But 
this outcome requires better large cohort RCTs to vali-
date its reliability.
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Liquid biopsy’s sensitivity and convenience supported 
its utility in lung cancer early detection, while its inva-
siveness and applicability partly solved the above diffi-
culties in LDCT. However, biomarkers carrying tumor 
information are quite low in density in peripheral blood, 
as a median cfDNA concentration is as low as 8.64 ng/ml 
in stage I NSCLC [67]. As a result, detection tools need 
to be sensitive enough to finish this job. Tracking Non-
Small-Cell Lung Cancer Evolution Through Therapy 
(Rx) (TRACERx) study utilized SNVs in ctDNA as a bio-
marker to refer a cancerous status under NGS among 96 
early-stage NSCLCs. As lung squamous cell carcinomas 
(LUSCs) were more necrotic than lung adenocarcinomas 

(LUADs), the detection efficiency of LUSCs are signifi-
cantly higher than LUADs [13]. With the advancement in 
technology, researchers consistently pushed the detection 
threshold to allow more possibility to discern patients 
with early stage cancers. After the pan-cancer screening 
platform, Cancer-SEEK, which targeted on eight circulat-
ing protein biomarkers [68] and tumor-specific mutations 
and a targeted error correction sequencing, named TEC-
Seq [69], cancer personalized profiling by deep sequenc-
ing (CAPP-Seq) was honored as the most accurate ctDNA 
mutation detection platform with the highest sensitivity 
for early stage NSCLC. CAPP-Seq was an NGS-based 
method which combined optimized library preparation 

Table 1 Advantages and disadvantages of different detection platforms on liquid biopsy

Biomarkers Category Advantages Disadvantages

ctDNA Genome mutations 
and structural variations

PCR-based method [5] RT-PCR, dd-PCR, BEAM-
ing, ARMS

✓ Cheap;
✓ Fast;
✓ Efficient to specific 
mutations

✗ Modest sensitivity;
✗ Hard to identify copy 
variations and gene 
fusions

NGS-based method [8] CAPP-Seq, TAM-Seq ✓ Expanded detection 
field to fusion genes, 
insertion/ deletion 
and CNVs

✗ Long turnaround time;
✗ Expensive;
✗ Bioinformatics knowl-
edge requirement

Fragmentomic patterns 
[20]

NGS-based method ✗ Bioinformatics analysis 
requirement;

Methylation [29] Bisulfite conversion-based ✓ Gold standard for DNA 
methylation profiling

✗ Degradation of DNA;
✗ Heavy work load;
✗ Require high level 
of DNA input

Restriction enzyme-based method ✓ Utilize MREs to solve 
DNA degradation

✗ Limited to enzyme 
recognition sites;
✗ Possible enzyme 
incomplete digestion

Enrichment-based method ✓ Economic friendly ✗ Poor to single-
base-pair resolution 
and unmethylated CpG 
sites

CTCs [34, 36] Physical Methods ✓ Produces label-free, 
unmodified viable cells

✗ Dependent on physi-
cal characters;
✗ Interference 
from other blood cells;
✗ Broad heterogeneity 
in CTCs

Biological Methods ✓ Clinically validated 
FDA-approved test 
(CellSearch system)

✗ No universal CTC 
antigens for all cancer 
types;
✗ Miss CTCs with higher 
EMT extent

Exosomes Ultracentrifugation-based separation [52] ✓ Gold standard in exo-
some separation;
✓ Better purity

✗ Time-consuming;
✗ Requires more sam-
ples to operate

Size-based separation [54] ✓ Low requirement 
on sample volume

✗ Low yield

Immunoaffinity enrichment [55] ✓ Low detection limit

Lipid-based separation [58] ✓ High enrichment 
speed

Acoustic-based isolation [59] ✓ Label-free, contact-
free isolation
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methods with a multiphase bioinformatics approach. It 
provided 100% sensitivity with stage II-IV tumors, but 
stage I lung cancer only had 50% sensitivity at a specific-
ity of 96% [70]. Although marvelous performance it had 
manifested, only 13 patients were involved in this article 
for verification. Chabon’s team refined the recovery and 
enrichment procedure of CAPP-Seq to develop a new 
machine-learning method, named lung cancer likelihood 
in plasma (Lung-CLiP), which distinguished cancers at a 
sensitivity of 67.3% with the specificity of 80% in a cohort 
containing 104 patients with NSCLC and 56 risk-matched 
controls [71]. Lung-CLip also achieved 63% of sensitiv-
ity under 80% specificity in stage I subgroup. Apart from 
finding patients carrying lung cancer, ctDNA mutation 
can further predict tumor volume based on mutant allele 
frequency. TRACERx first found a linear relationship 
between log-transformed clonal plasma VAF and log-
transformed tumor volume under CT [13]. Abbosh sys-
tematically reviewed this discovery as mean clonal mutant 
allele frequency of 0.1% corresponded to  10cm3 tumor 
burden and roughly forecasted a T1c stage [72]. Another 
study integrated data from several researches and con-
cluded 0.21 haploid genome equivalents per plasma ml 
referred to 1  cm3 of tumor volume. 0.014% of a tumor 
cell’s DNA shedding rate at each cell’s death was also cal-
culated as a microscopic evidence for its ability to reflect 
tumor burden [14].

Methylation is another sensitive biomarker for early 
screening, for its appearance is anterior than gene 
alteration, even in a precancerous stage, which offered 
more chances to distinguish early stage patients. Recent 
research compared detection performance in pan-can-
cer early detection between different cfDNA features. 
Considering background removal with white blood cell 
pairing, best detection strategies were applied in each 
features analysis and whole genome methylation over-
whelmed others in clinical limit of detection, suggest-
ing methylation kept the lowest detection threshold in 
early detection among various cfDNA approaches [73]. 
A refined bisulfite-conversion based methylation detec-
tion approach named methylation on beads quantitative 
methylation-specific PCR (MOB-qMSP) was applied 
in Chinese NSCLC cohort, the combination of CDO1, 
TAC1, and SOX17 was evaluated as the best indica-
tor for early detection with sensitivity and specificity at 
90% and 71% in a cohort of 163 stage I NSCLC patients 
and 83 benign controls [74]. Cell-free methylated DNA 
immunoprecipitation and high-throughput sequencing 
(cfMeDIP-seq) is another methylation approach, which 
utilized bisulfite-free technique with whole-genome 
methylation. With these technical support, cfMeDIP-
seq achieved better detection performance under ran-
dom forest model with high sensitivity and specificity of 

91.0% and 93.3% within a cohort of 67 cancers with 59.7% 
of stage I and 30 normal controls, noting methylation’s 
advantages on early detection and validating its potential 
in NSCLC [75].

CTCs’ utility in NSCLC early screening has also been 
examined, but the outcome showed less competence 
than other popular biomarkers. A filtration-based detec-
tion technique, isolation by size of epithelial tumor cells 
(ISET), was assessed in malignancy discernment in 
lung cancer. When 25 CTC count was delineated as the 
threshold, sensitivity in malignant group reached 89% 
without false positive individuals among 60 neoplastic 
patients and 17 benign controls [76]. However, the fol-
lowing multi-centered research in France gave out pes-
simistic results. A 3-year ISET screening was conducted 
in a multi-centered high-risk population attempting to 
check its talent to be a regular screening examination, 
among which 614 participants took part in and only 19 
turned out to be lung cancer patients verified by pathol-
ogy diagnosis. As the outcome, the sensitivity of CTC 
detection for lung cancer detection was just 26.3%, far 
from the standard of a clinical screening method [77]. 
The deviation of the two researches originated from suf-
ficient preliminary experiments. The formal research 
only took 60 malignant samples to validate CTC’s ability, 
but the following screening trial referred that CTC was 
not up to standard for large population screening and 
CTC required more evidence and technique support to 
enhance its ability. However, it is too early to deny CTC’s 
value in early detection, since its convenience in analysis 
and economic benefits are friendly to clinical utility and 
the combination of CTCs with other biomarkers is worth 
the wait.

MiRNA in exosomes has performed favorable availabil-
ity in NSCLC early detection. Jin’s research identified spe-
cific miRNA profiles of adenocarcinoma and squamous 
cell carcinoma (SCC) in early NSCLC diagnosis from 
peripheral blood. Combination miRNA panels for NSCLC 
scored a sensitivity of 80.25% and a specificity of 92.31% 
in the stage I NSCLC cohort with 47 malignant samples 
and 13 healthy ones. The research further developed miR-
181-5p, miR-30a-3p, miR-30e-3p, and miR-361-5p adeno-
carcinoma-specific panel, and miR-10b-5p, miR-15b-5p, 
and miR-320b SCC-specific panel respectively, both of 
which exhibited high AUC value over 0.91 [78].

These biomarkers all exhibited great performance in 
early screening of NSCLC. The current trend is to find out 
a clinically friendly combination which is not only sensitive 
but also owns real benefits than traditional strategy.

Under many early detection strategies, we intended 
to compare the practicability of liquid biopsy strategy 
with conventional detection methods, including LDCT 
and serum tumor markers (Table  2). Medical imaging 
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examination is the most commonly used way to find a 
potential pulmonary cancer in clinical practice. NLST 
[62] and NELSON [63] trials has proved LDCT can 
decrease cancer-related mortality by 20% but with a 
96.4% false positive rate. Another meta-analysis summa-
rized the efficiency of LDCT on lung cancer detection 
from English-language articles published through May 
2019. 13 studies including more than 75,000 participants 
were involved and LDCT’s sensitivity ranged from 59 to 
100%, while specificity from 26.4–99.7% [64]. LDCT’s 
accuracy ranged dramatically due to heterogeneity of eli-
gibility criteria, screening protocols or follow-up length. 
LDCT often requires years of regular follow-up to obtain 
a good diagnostic ability, and the missed diagnosis and 
misdiagnosis rate of a single examination are very high 
[79]. A large-scale RCTs including 6538 patients under-
went 4 rounds of LDCT screening in 5.5 years, taking an 
additional 2 year of follow-up from the national cancer 
registry as gold standard, whose result showed 59.0% 
of sensitivity and 95.8% specificity [80]. In comparison, 
liquid biopsy had higher detection efficiency than tra-
ditional LDCT, however no liquid biopsy research was 
applied on a large-scale screening cohort similar with the 
ones on LDCT. As an early screening means, the detec-
tion cycle remained suspensive for liquid biopsy, yet a 
single round of detection had proved favorable outcome 
in previous articles [71, 75, 76, 78] which indicated a good 
potential of a powerful clinical tool for lung cancer early 
detection. Apart from that, serum tumor markers are 
also frequently-used in clinical practice. Classical serum 
biomarkers, such as neuron-specific enolase (NSE) and 
carcinoembryonic antigen (CEA), are pan-cancer specific 
and tend to be hyposensitive in NSCLC [81]. A prospec-
tive research calculated the diagnostic value of CEA, can-
cer antigen (CA125), squamous cell carcinoma (SCC), 
cytokeratin 19 fragment antigen21-1 (CYFRA 21 − 1) and 
NSE in NSCLC. Single marker had low sensitivity, rang-
ing from 22 to 76%. CYFRA 21 − 1 and CA125 appeared 
to be the most sensitive combination in the cohort which 
involved 142 localized NSCLC and reached sensitivity of 
83.8% [82]. In conclusion, although traditional detection 

means had passable accuracy in NSCLC early detection, 
non-inferior outcomes could be achieved in earlier popu-
lations by liquid biopsy-based methods.

3.2  Prognosis Judgment
Liquid biopsy is useful for early-stage lung cancer screen-
ing and has great value in prognostic performance. Mini-
mal residue disease exists after the initial therapy and 
represents the possibility of primary cancer recurrence 
or advancement. Detection of these MRD required liq-
uid biopsy to reveal timely intervention, including detec-
tion of ctDNA, CTCs, and exosomes. Newman explored 
CAPP-Seq, a sensitive method covering multiple groups 
of somatic alterations, which designed a selector with 
biotinylated DNA oligonucleotides targeting regions of 
cancer interest. This technology set a milestone in MRD 
monitoring, as it challenged the stage of radiography in 
recurrence prediction with better prediction accuracy 
in specific individuals and made up for the imaging defi-
ciencies to help distinguish residual tumor or postra-
diotherapy inflammation which had similar radiographic 
features [70]. In another cohort containing 40 early-stage 
lung cancer patients conducted by Chaudhuri, evalua-
tion method by CAPP-Seq prevailed over radiographic 
progression by RECIST 1.1 criteria in 72% of patients, 
earlier by a median of 5.2 months. Additionally, Chaud-
huri set the MRD landmark at the first posttreatment 
blood draw within 4 months of treatment completion. 
This landmark had accuracy up to 96.87% for predic-
tion of progression among 32 NSCLC patients in the 
following 72 months after the landmark [83]. TRAC-
ERx study defined the SNV threshold for the first time 
in MRD monitoring. Taking 2 SNVs as the standard, 13 
out of 14 patients experiencing relapse within the first 
two years after surgery were rendered positive before 
or overlapped with the relapse timepoint. While only 1 
out of 10 progression-free patients was classified wrong 
[13]. So far, the application of postoperative ctDNA to 
predict survival has proved its feasibility, but large-scale 
verification is still lacking. Many researchers afterward 
threw themselves into the validation work of ctDNA in 

Table 2 Comparison of diagnostic efficiency between tradition methods and liquid biopsy strategies

Strategy Paper Malignant 
Participants

Healthy/ Benign 
Control

TNM Stage I Sensitivity Specificity

LDCT Horeweg N, 2014 [80] 6583 participants, 4 rounds LDCT Not reported 59.0% 95.8%

Serum markers Molina R, 2003 [82] 211 NSCLC patients 37 (17.5%) 83.8% Not reported

ctDNA, Lung-CLiP Chabon JJ, 2020 [71] 104 56 49 (47.1%) 67.3% 80%

Methylation, cfMeDIP-
seq

Qi J, 2021 [75] 67 30 40 (56.7%) 91.0% 93.3%

CTC, ISET Fiorelli A, 2015 [76] 60 17 25 (41.7%) 89% 100%

MiRNA, miRNA-seq Jin X, 2017 [78] 47 13 47 (100%) 80.25% 92.31%
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MRD, looking forward to exploring different panels and 
expanding this application on patients in earlier stages. 
Among them, the LUNGCA project contained 67% of 
stage I lung cancer patients with a total of 330 NSCLC 
participants. Researchers also shifted the MRD landmark 
to 1 month after the surgery and got a sensitivity of 80.8% 
and specificity of 83.8% using MinerVa MRD assay. In 
this cohort, ctDNA-based MRD owned higher relative 
contribution to survival prediction than TNM stage [84].

In the field of CTCs, EpCAM-based CellSearch system 
and filtration-based ISET technology are major meth-
ods in research on the prognostic value. In researches 
based on CellSearch system, blood sample in peripheral 
vein before surgery and the one from pulmonary vein 
taken during the operation were usually applied in sur-
vival analysis. Among 30 lung cancer patients receiving 
thoracotomy, there were 16.7% and 50.0% of positive 
rate respectively in those two kinds of samples, but no 
significance was found in recurrence or overall survival 
with a median follow-up of 13 months [85]. Apart from 
this one, another CellSearch project adopting more 
relaxed positive criteria with similar design showed posi-
tive rate around 20% each but revealed significance in 
DFS and 3-year OS with CTCs in both samples from 30 
NSCLC patients staging from I to IIIA [86]. On the other 
hand, the CTC counts of more than 50 underwent ISET 
method from the preoperative blood sample was signifi-
cantly associated with shorter OS and DFS for stage I and 
II patients, proved in a 28 NSCLC patients’ cohort [87]. 
Hofman V also discovered similar conclusion in another 
174 stage I to stage II NSCLC patient cohort, that the 
presence of CTCs in preoperative peripheral blood 
detected by ISET was a significantly independent prog-
nostic factor for shorter DFS [88]. These result revealed 
CTCs’ potential in prognostic performance, but the out-
come varied in different methods. This discrepancy may 
reflect limitations in EpCAM-based method, as EpCAM 
not always kept a high level on CTCs, which was veri-
fied by the differentiated rate of identification to diverse 
stages of cancerous participants [88]. The prognostic 
efficiency of MRD monitoring in CTCs required fur-
ther validation or better detection strategy in early-stage 
NSCLC.

Exosomes are also useful biomarkers in predicting 
patients’ prognostic performance. Dejima’s team revealed 
an upregulation of the exosomal miR-21 and miR-4257 
levels in NSCLC patients with recurrence through 
microarray-based expression profiling. Afterward, worse 
disease-free survival (DFS) rates up to 30 months were 
found to have a close correlation with high levels of either 
miR-21 or miR-4257 in another independent cohort with 
195 NSCLC patients [89]. Similarly, Liu utilized qPCR 
array panel selected 9 candidate miRNAs and generated 

an optimized combination of exosomal miR-23b-3p, 
miR-10b-5p, and miR-21-5p as prognostic indicators for 
NSCLC patients. In a 196 NSCLC cohort, this miRNA 
combination improved the survival predictive accuracy 
with the AUC of the clinical variables model from 0.88 to 
0.91 at the time of 12 months [90]. Additionally, upreg-
ulation of Let-7a-5p which induced cancer cell death 
through BCL2L1-mediated PI3Kγ signaling pathway, 
also showed potential prognostic value in lung cancer 
patients, but this Let-7a-5p biomarker still lack a direct 
validation to survival of lung cancer patients [91, 92].

At present, many pieces of research have proven the 
prognostic value of liquid biopsy including ctDNA, 
CTCs, and exosomes in lung cancer. This kind of molecu-
lar recurrence also has a lead-time effect than traditional 
radiological monitoring. In Chaudhuri’s CAPP-Seq anal-
ysis, 72% of patients got a median of 5.2 months ahead 
of radiographic progression [83]. And the median inter-
val in TRACERx cohort was 70 days, ranging from 10 to 
346 days [13]. A meta-analysis on ctDNA detection inte-
grated 9 eligible articles and calculated an average lead 
time of 179 days than radiology progression [67].

Although scientists have found numerous biomarkers 
suitable for prognostic assessment, there are many prob-
lems yet to solve before its popularization in the clinic. 
First, few regulations are posted to define a unified time 
point or optimal detection technology for follow-up vis-
its. Apart from exploring the best MRD monitoring strat-
egy, former cohorts also required long-term prognostic 
outcomes. The mismatch of ctDNA-positive with current 
progression may result from a short follow-up period 
and the relationship of MRD with long-term DFS or OS 
in early-stage resectable NSCLC is granted with many 
expectations [93].

3.3  Predictive value in ADT
Although adjuvant therapy was proven to bring sub-
stantial benefits to early-stage patients, its benefits and 
concomitant harm to patients are worth balancing. A 
meta-analysis by the lung adjuvant cisplatin collabora-
tive group indicated a 5-year absolute benefit of 5.4% 
from chemotherapy in 3485 completely resected NSCLC 
patients’ group. However, the benefits varied consider-
ably with the clinical stage and there are even negative 
benefits for very early-stage patients [94]. Additionally, 
highly toxic adjuvant chemotherapies also increase the 
risk of non-cancer death, and its benefits ought to bal-
ance with other risks, like permanent hearing loss or kid-
ney damage, nausea, and fatigue [95]. Hence, new criteria 
for selecting patients with little need for adjuvant therapy 
are in need to reduce these unnecessary side effects.

Current studies were limited to ctDNA, similar 
research on CTCs or exosomes rarely focused on 
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resectable early-stage patients. In early-stage NSCLC 
adjuvant therapy prediction value assessment, the bio-
marker mainly concentrated on ctDNA. Few pieces of 
research explored this kind of therapeutic efficiency 
through CTCs and exosomes. In the field of ctDNA, 
Chen first reported differences in RFS regarding to 
patients receiving adjuvant therapy or not in MRD pos-
itive group in resectable NCSLC and the median RFS 
was 268 days in receiving ADT versus 111 days in not 
receiving ADT [12]. This result refers to the possibil-
ity of ctDNA indicators to decide ADT management, 
instead of just consulting TNM staging. Subsequent 
large cohort studies verified this hypothesis with con-
sistency that postoperative ctDNA-positive patients 
would have longer RFS if receiving adjuvant therapy 
[84, 96–98]. But the adjuvant therapy strategy in MRD 
negative group varied, as some revealed that RFS was 
not correlated with receiving ADT or not, while others 
found ADT had real survival benefits in those patients. 
The barrier on predictive value is also apparent, the 
MRD-negative cohort lacked a definite conclusion on 
ADT’s benefits. As for these patients, ADT might not 
result in shorter survival, but safety and life quality 
were also important to patients if they had no apparent 
survival benefits.

4  Conclusions
Liquid biopsy is a versatile tool in lung cancer manage-
ment. With the advancement of detection technology, 
diverse genomic detection tools emerged and liquid 
biopsy has manifested promising talents in various clini-
cal scenarios. Its utility in early screening improved the 
accuracy to identify latent lung cancer, in prognostic per-
formance augmented the ability to predict recurrence 
risk more than TNM stage, in predictive value acted as 
a predictive factor to judge adjuvant therapy’s benefits. 
However, there are still many problems waiting for us to 
conquer, before we propel its application into practical 
clinical use.
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