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Abstract 

It has been proved that cognitive biases widely exist in various social realities and lead to unprecedented con-
sequences by affecting individual judgment and decision-making processes in distinct ways. To further explore 
the influence of changeable cognitive bias, we introduce a heterogeneous population and learning process that can 
be influenced by cognitive bias into the threshold public goods game (TPGG). Specifically, additional parameters 
describing the heterogeneity and updating speed of bias are employed. The combined effects of bias and the inher-
ent parameters in the TPGG model on the evolution of cooperation are explored. Numerical simulation results show 
that the heterogeneity of cognitive bias exhibits diametrically opposite effects when the threshold is relatively low 
and high, and the effect of incentives based on fixed reward and adjustable punishment are distorted by hetero-
geneous cognitive biases as well. In addition, the process of social learning forces individuals to update their beliefs 
toward the direction of obtaining a higher payoff. Different learning rates eventually lead to distinct levels of coop-
eration by changing the distribution of cognitive bias when the population reaches the evolutionary steady state. 
Our work extends the research framework on cognitive bias from the perspective of population heterogeneity 
and explores the impact of individuals’ learning ability on personal bias and cooperative behavior.

Keywords Cognitive bias, Public goods game, Cooperation dynamics, Updating rule

1 Introduction
The presumption that economic agents are rational is one 
of the pillars of economic analysis. Among other things, 
rational assumptions imply that agents make objec-
tive predictions about their prospects and update those 
forecasts in a Bayesian way. However, tons of evidence 
in the psychological field refutes this notion (Lewinsohn 
et al. 1980; Taylor and Brown 1988). In fact, humans fre-
quently make social cognitive biases, such as systematic 
mistakes in predicting the prevalence of cooperative 

conduct in communities. Monin and Norton (2003) 
gave the example of asking students to take fewer show-
ers more frequently during a field study when there was 
a water shortage. People regularly lack the capability to 
evaluate other people’s pro-social actions (Krueger and 
Funder 2004). According to the survey, students revealed 
common social cognitive biases including false consen-
sus, false uniqueness, pluralistic ignorance, and others. 
Beliefs regarding climate change are affected by cognitive 
biases (West and Kenny 2011; Taddicken et al. 2019; Gar-
rett and Daw 2020), which go beyond local public goods 
(Vuolevi and van Lange 2010; Leviston et al. 2013; Cas-
tro Santa et  al. 2018). In general, these biased opinions 
can be used as proxies for participation (or non-partic-
ipation) in climate action, even though they cannot be 
immediately translated into acts of cooperation or defec-
tion (Krueger and Funder 2004). All of the previously 
mentioned biases are well-known in social psychology 
(Geiger and Swim 2016; Weber 2017): for instance, false 
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uniqueness or uniqueness bias corresponds to situations 
in which people mistakenly believe that their opinions or 
behavior are different from others (Miller and McFarland 
1987; Suls and Wan 1987; Goethals et al. 1991; Prentice 
and Miller 1993; Miller and Prentice 2016); false consen-
sus refers to the tendency to overestimate the proportion 
of one’s opinion or behavior in a group (Ross et al. 1977; 
Shamir and Shamir 1997). Given the connection between 
thoughts about other people’s cooperative conduct and 
cooperation in the aforementioned issue (McAuliffe and 
Dunham 2016), it seems plausible that this bias affects 
collective action as a whole (Milinski et  al. 2008; John-
son and Fowler 2011; Nyborg et al. 2016; Ackermann and 
Murphy 2019; McNamara et al. 2021).

Public goods games (PGG) have widely been utilized 
as a paradigm to examine such conundrums marked by 
conflicts between individual and group interests (Fehr 
and Gächter 2002; Hauert et al. 2002; Szolnoki et al. 2011; 
Sasaki and Uchida 2013, 2014; Wang et al. 2019). Cogni-
tive biases often do not significantly affect the results of 
collective actions in common linear PGG because the 
payoff structure is linear and proportional to the number 
of cooperators (Evans 1989; Frey and Meier 2004). How-
ever, the influence of cognitive bias may be magnified in 
nonlinear PGG when considering the possibility of group 
failure. A typical illustration of this is the PGG with a 
threshold, in which the advantages of cooperation would 
be attained only when a specific percentage of coopera-
tors is present (Santos and Pacheco 2011; Tavoni et  al. 
2011). In certain situations, an incorrect estimation of the 
percentage of people intending to cooperate may hinder 
cooperation; on the other hand, it may generate false cog-
nition that the required number of cooperators is higher 
than the real number, thus encouraging individuals to 
cooperate.

We closely follow the work of (Santos et  al. 2021), 
but unlike in the past, we set the cognitive biases to be 
heterogeneous, and the bias values of cooperators and 
defectors in the initial stage follow a certain distribu-
tion. Obviously, the individual’s level of cognitive bias will 
directly affect his judgment on the expected payoff of the 
PGG, thus making individuals who pursue short-term 
profit maximization consider whether to change their 
original strategies (Fudenberg and Levine 1998; Santos 
et  al. 2006). Conversely, when individuals update their 
cognition, they would also be affected by the real payoff 
in the previous round. We employ Monte Carlo methods 
to simulate the evolution process due to the complex-
ity of this interaction mechanism. The main goal of this 
study is to explore how much the inherent parameters of 
TPGG, the initial distribution of bias, and the updating 
process of cognition affect the cooperation density when 
the system reaches a steady state after introducing the 

heterogeneous bias with an updating process, as opposed 
to the unbiased traditional version.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related literature. The third part intro-
duces the TPGG model with cognitive bias, evolutionary 
dynamics, and updating rules of bias. The simulation 
results are presented and further analyzed in Sect. 4. The 
last section summarizes the previous conclusions and 
gives an outlook on possible future directions.

2  Related literature
2.1  Research on cognitive bias and cooperation
In the past, the research that combined cognitive bias (or 
belief ) and cooperation can be roughly divided into two 
categories: one discussed the evolution of cognitive bias 
in the game theory scenarios, and the other discussed the 
changes in cooperation with preset bias. Regarding the 
first question, the earlier evidence of Nyarko and Schot-
ter (2002) on the evolution of beliefs in constant-sum 
games showed that there may be completely different 
behaviors behind the evolution of people’s beliefs in dif-
ferent environments. Duan and Stanley (2010) proposed 
a benefit-oriented belief updating mechanism under the 
ultimatum game. Simulations showed that belief updat-
ing may induce the emergence of fair behavior. Guazzini 
et  al. (2019) adopted a behavioral model based on the 
ultimatum game to illustrate how altruistic behavior 
based on in-group bias is stabilized. Leimar and McNa-
mara (2019) studied the evolution of cognitive biases 
under repeated games. Individuals could decide the 
amount of investments through costs and benefits, and 
empirical research showed that overestimation of invest-
ment costs can evolve, but also lead to reduced invest-
ment. Further research demonstrated that there were 
cognitive limitations in belief updating and that the evo-
lution of biases can compensate for this situation (McNa-
mara et al. 2021).

For the latter research path, Fischbacher et  al. used 
empirical methods to study the role of social prefer-
ences and beliefs on voluntary cooperation in the early 
days (Fischbacher et  al. 2001; Fischbacher and Gächter 
2010). The results showed that the frequency of condi-
tional cooperation remained stable. However, the free-
riding phenomenon gradually increased, while a steady 
decline in cooperation strategies was observed in another 
series of experiments, and a considerable number of sub-
jects became unconditional defectors (Andreozzi et  al. 
2020). Ackermann and Murphy (2019) extended previous 
empirical research on public goods problems by elicit-
ing beliefs at the individual level and testing individuals’ 
performance in one-shot and repeated games. Research 
showed that people’s decisions, beliefs, and even social 
preferences would change as the game progresses.
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Simulation methods were employed to explore the 
cooperative behavior with belief as well. Based on a one-
shot and repeated prisoner’s dilemma, Delton et al. (2011) 
proved that the generous belief is a necessary by-product 
of decision-making system selection that regulates binary 
reciprocity under uncertainty, and a fundamental reason 
for its evolutionary stability is that it’s inherently a high-
payoff strategy. Ellingsen and Robles (2002) explored the 
theoretical basis of the stranded problem through the 
bargaining model of the evolution process of beliefs and 
strategies. Tang et al. (2014) used the prisoner’s dilemma 
game to study how structural dynamics affect the cooper-
ation of two interdependent groups. The results showed 
that intra-group bias is usually beneficial to cooperation, 
but larger biases sometimes inhibit cooperation. Johnson 
and Fowler (2011) proposed an evolutionary model based 
on resource competition scenarios. Numerical calcula-
tion results showed that overconfidence will maximize 
individual adaptability, and when the benefit–cost ratio of 
competing resources is large enough, the group will tend 
to overdo it. Confidence, whereas a "rationally" unbiased 
strategy is stable only under limited conditions. On the 
other hand, some scholars have questioned the value of 
overconfidence and believed we should note the differ-
ence between cognitive bias and outcome bias (Marshall 
et  al. 2013): the steady state formed by outcome bias is 
suboptimal, but cognitive bias may be optimal. Li et  al. 
(2016) proposed a co-evolutionary resource competition 
game model with overconfidence and bluffing based on 
previous work. Simulation results showed that bluffing is 
more likely to succeed but is punished more frequently 
than overconfidence. Liu et al. (2021a) proposed a heuris-
tic model based on coevolution to study the evolutionary 
dynamics of competitive cognitive biases and environ-
mental feedback. Huang et al. (2018) combined prior het-
erogeneous cooperation beliefs and imitation dynamics 
and found through simulation on a square network that 
heterogeneous cooperation beliefs can enable individu-
als to overcome the negative feedback mechanism intro-
duced by network reciprocity.

The literature on beliefs and cooperation is rich and 
covers a wide range of scenarios, most of which inves-
tigate changes in individual behavior under repeated 
games through simulation or laboratory experiments, 
with attention generally concentrated on the payoff of 
strategies and the evolution of beliefs. However, the 
research on the interactions between the evolution of 
cooperation and belief is not sufficient enough.

2.2  Research on social learning and belief updating
The process by which members of a population continu-
ously adjust their own cognition through direct percep-
tion of external signals and the influence of other people’s 

opinions is called social learning. This concept was origi-
nally a supplement to the behaviorist learning theory by 
Bandura, which emphasized the vital role of human soci-
ality in learning (Bandura 1962), that is, people can learn 
from observation and imitation. In subsequent research, 
social learning was gradually developed into a theoretical 
system (Bandura and Walters 1977).

The learning process can be divided into sequential 
social learning (Banerjee 1992; Conway and Christian-
sen 2001) and network social learning (DeGroot 1974; 
Gale and Kariv 2003). The former process emphasizes the 
observation of late-comers on the previous people, while 
the latter focuses on the impact of the current belief snap-
shot on exactly the next time period. In addition, from the 
conditions on which the learning process depends, it can 
be divided into Bayesian and non-Bayesian social learn-
ing, while the former relies more on thumb rules (Elli-
son and Fudenberg 1993). Since Bayesian social learning 
is more rigorous and rationally describes the process of 
human beings understanding the nature of the objective 
world state through signals to a certain degree (Porot and 
Mandelbaum 2021), it has widely been used in the previ-
ous study as the driving force for individual belief updat-
ing process, and gradually developed into two forms of 
Bayesian social learning model (Gale and Kariv 2003; 
Acemoglu et  al. 2011; Mueller-Frank 2014). The main 
applicable scenario of social learning theory is human (or 
other biological) society. Hence, the purpose of research 
on its dynamics is often not to find an optimal model, but 
to find a model that best fits the realistic characteristics 
of human society. Based on the consideration of human 
practice scenarios, Jadbabaie et  al. (2012) proposed a 
non-Bayesian social learning model in 2012. Compared 
with traditional theories that want to explain the dynam-
ics of people’s beliefs and behaviors, non-Bayesian social 
learning models focus more on describing them. Regard-
ing the comparison between Bayesian and non-Bayesian 
learning, Acemoglu and Ozdaglar (2011) conducted an 
in-depth discussion on previous works about belief and 
opinion dynamics in social networks.

Various social learning mechanisms have been pro-
posed to fit different scenarios. Yet, previous studies sel-
dom took the fitness of individuals into account to reflect 
the impact of interactions’ outcomes on the updating 
process itself.

3  Model
In this work, we consider a well-mixed population 
consisting of N  individuals. Individuals are randomly 
matched with those who belong to this population and 
form a group with a fixed size G . Thereafter, each individ-
ual would participate in a round of TPGG with his G − 1 
partners at every time step. Here, the available strategies 
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belong to a discrete binary set S ∈ {C ,D} , that is, indi-
viduals can only choose one action from “cooperation” 
or “defection”. In each round of games, if an individual 
chooses to cooperate, he will contribute c units to the 
public pot in advance; however, if he adopts a defective 
strategy, his contribution is zero. In the following stage, 
collective action will decide whether to proceed and gen-
erate corresponding benefits based on whether the num-
ber of cooperators in the group reaches the minimum 
level required. If the number of cooperators is lower than 
the threshold T  , none of the individuals in this group 
could gain any payoff from the interaction. Conversely, 
when a group reaches the threshold T  , each individual 
could receive the basic benefit bc , in addition to a special 
reward fc for each additional cooperator exceeding the 
threshold. Therefore, the payoff S not only depends on 
the individual’s own strategy S but also on his partner’s in 
the same group. Presuming that j is the current number 
of cooperators in a group, we have:

where �[x] is the Heaviside unit step function, whose 
value is 0 when x < 0 and 1 when x ≥ 0.

In addition, we add an adjustable punishment factor δ 
to the payoff structure, which denotes the negative con-
sequences of violating social norms. The value of δ repre-
sents the relative quantity between the punishment and 
the cost paid by cooperators and δ = 0 means no punish-
ment is imposed on defectors. Hereafter, Eq.  (1) can be 
transformed into:

We define the cooperation density ρc as the proportion 
of cooperators in the whole population, which can be 
expressed as:

where Si  = 1 if individual i cooperates and Si  = 0 if indi-
vidual i defects.

In this model, everyone in the population has his own 
cognitive bias, which is based on the current average 
cooperation density of the whole population. Hence, such 
bias can also be regarded as one’s belief about the will-
ingness of other individuals to cooperate, denoted by σi . 
Without loss of generality, an individual with cognitive 
bias can estimate the fraction of cooperators in the popu-
lation as:

(1)
∏

D
[j] =

(

bc + fc(j − T )
)

�[j − T ],

(2)
∏

C
[j] =

∏

D
[j] − c,

(3)
∏

D
[j] =

(

bc + fc(j − T )
)

�[j − T ] − δc.

(4)ρc =
1

N

N
∑

i=1

Si,

If σi = 0 , we have ρ̂c = ρc , individual i has no cognitive 
bias at the current time step, and his cognition is consist-
ent with the real situation. When an individual adopting 
strategy S interacts in a well-mixed population of fixed 
size N  , he will compare the relative payoff of choos-
ing cooperation fC [ρ̂c] with that of choosing defection 
fD[ρ̂c] based on its own cognition on cooperative situa-
tion. Since the population is large enough, each individ-
ual thinks it is equally possible to interact with others. 
Hence, the expected payoff of adopting cooperation or 
defection strategies is:

Different from the previous study, we set the individ-
ual’s cognitive bias to be heterogeneous and dynamic, 
reflecting the evolution of people’s beliefs when they 
interact over time. We consider using uniform distri-
bution to describe the level of initial cognitive bias and 
employ a parameter ω to control the diverse degree of 
bias at the initial stage. Combining the factors mentioned 
above, the initial cognitive biases of individuals are 
equally spaced on interval [−ω,ω] . In particular, when 
ω = 0 , the cognitive bias of all individuals in the popula-
tion is 0, and the model returns to the original version; 
when ω increases, the distribution range of initial cogni-
tive biases will be more extensive, and the differences of 
opinions among individuals will be enlarged accordingly.

A synchronous updating rule is employed during the 
updating process of strategy. At each time step, individu-
als can decide whether to change their strategies based 
on the cooperation environment in the past round, 
together with their own cognitive bias. Therefore, the 
change in individuals’ expectation of cooperation at this 
step does not affect others’ judgment. On the one hand, 
as the difference between the expected payoffs of the two 
strategies expands, the possibility of individuals adopting 
the strategy with higher returns will increase steadily. On 
the other hand, individuals sometimes may be affected 
by exogenous factors and spontaneously switch from one 
strategy X to another Y  with a certain probability. Here, 

(5)ρ̂c = ρ10−σi

c = exp
[

10−σi ln[ρc]
]

.

(6)
fC [ρ̂c] =

G−1
∑

k=0

(

N − 1

G − 1

)−1(

N ρ̂c − 1

k

)

(

N (1− ρ̂c)

G − 1− k

)

∏

C
[k + 1],

(7)
fD[ρ̂c] =

G−1
∑

k=0

(

N − 1

G − 1

)−1(

N ρ̂c
k

)

(

N (1− ρ̂c)− 1

G − 1− k

)

∏

D
[k].
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we set the mutation rate as µ , and the probability of an 
individual transiting his strategy is obtained by compre-
hensively considering these two factors (Fudenberg and 
Levine 1998):

In the homogeneous population, the transition probabil-
ity of the system increasing or decreasing a cooperator can 
be expressed as (Traulsen et al. 2006):

where σc and σd are the common biases of all coopera-
tors and defectors, respectively. However, the situation 
is different in the heterogeneous population, where their 
cognition may differ even if they adopt the same strategy. 
Therefore, we calculate the probability that each indi-
vidual would change their strategy separately, based on 
their unique value of bias, and take the average level as 
the transition probability of the whole population.

To make cognitive bias, as a special kind of belief, have an 
impact on individuals’ cooperative expectation and, in turn, 
be influenced by the cooperation results, we reconstructed 
the updating rule of individual cognitive bias derived from 
existing social learning models (DeGroot 1974; Del Vicario 
et al. 2017; Liu et al. 2021b; Alvim et al. 2021). Considering 
that our model is based on a well-mixed population rather 
than one on the network, we presume that individual i 
randomly selects one member h from those who have par-
ticipated in the same TPGG group. Thereafter, individual i 
compares his own real payoff with his partner to update his 
opinion, we have:

where σ t+1
i  and σ t

i  represent the cognitive bias of indi-
vidual i at time steps t and t + 1 , respectively. We assume 
that the cognitive bias value is within [−2, 2] , which 
means that individuals cannot make their cognitive 
biases exceed the upper bound 2 through the updating 
process and vice versa. Besides, the updating rule models 
the evolving process of individuals’ beliefs. εti,h is the bias 
factor and is defined as:

(8)µ+ (1− µ)

(

1+ e−β(fY−fX )
)−1

.

(9)T+[x] = (1− x)

(

µ+ (1− µ)

(

1+ e
−β

(

fC

[

ρ10
−σd

c + 1
N

]

−fD

[

ρ10
−σd

c

])
)−1

)

,

(10)
T−[x] = x

(

µ+ (1− µ)

(

1+ e
−β

(

fD

[

ρ10
−σc

c − 1
N

]

−fC

[

ρ10
−σc

c

])
)−1

)

,

(11)σ t+1
i = σ t

i + εti,hν
(

σ t
h − σ t

i

)

,

(12)εti,h =
(

�̃t
h − �̃t

i

)

�[�̃t
h − �̃t

i ],

where �̃t
h and �̃t

i is the normalized payoff of individual h 
and i at time step t , respectively. The Heaviside function 
�[�̃t

h − �̃t
i ] ensures that the belief of individual i would 

move toward individual h ’s only when the payoff of indi-
vidual h is higher. The parameter ν is the learning speed 
of the focal player or the peer pressure from group mem-
bers, which adjusts the updating rate in any case. Since 
individuals become more and more similar over time 
through this interaction, and eventually lead to hemo-
philia, the overall cognition of the entire population will 

converge to a certain level.

4  Results and discussion
Our works are mainly based on numerical simulations, 
to help understand the simulation results we are about to 
analyze, we plot the flow diagram in Fig. 1, which briefly 
describes the framework of our model as well as indi-
viduals’ actions during each time step. The population 
size N = 500 and PGG group size G = 11 are fixed in the 
simulation, and selection intensity β = 10 and mutation 
rate µ = 0.01 also remain unchanged. We set the con-
tribution c = 1 , and to reduce the uncertainty caused by 
random effects, the results of each data point are aver-
aged over 10 independent runs.

To verify the rationality of the model after introduc-
ing heterogeneous bias with a belief updating process 
and explore the impact of the inherent parameters in 
the original TPGG model on the cooperation density, 
we plot the comparison curves of cooperation density 
as a function of b under different cooperation thresh-
olds T  in Fig. 2. Five different values of T  are considered 
in this figure, and the remaining parameters are fixed at 
f = 1.5 , ω = 1 and ν = 0.01 . It can be observed from the 
figure that under each cooperation threshold T  , as the 
basic income b increases, the cooperation density of the 
population maintains an upward trend. When the coop-
eration threshold T = 5 , even if the fixed basic income 
is 0, the cooperation density still reaches 30%. With the 
increase of T  , the critical b value required for the emer-
gence and dominance of cooperators also increases. For 
instance, in the case of T = 10 , there is no cooperator 
until b = 7 except for the mutant factor, which means 
more incentives are required in a group with a relatively 
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Fig. 1 Flow diagram of individual i  performing an updating process in a single step

Fig. 2 Comparison curves of cooperation density with b under different cooperation thresholds T
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high threshold. Hence, it is easy to draw a conclusion that 
lowering the threshold for cooperation effectively relaxes 
the conditions for achieving common goals and reach-
ing cooperation within a group. Hence, more individuals 
start to find that cooperative behavior is profitable at a 
lower level of basic income, which promotes the emer-
gence and prosperity of cooperation.

From Fig. 3, in the given parameter space where b = 9 , 
ω = 1 and ν = 0.01 , the cooperation density ρc generally 
shows an upward trend with the increase of extra reward 
f  . However, the number of cooperators remains stable 
even if the value of f  changes significantly from 0 to 1.5, 
which shows that f  does not seem to impact the ρc when 
T  is relatively high. It is worth noting that in the scenarios 
of T = 6 , 7 and 8, it can be clearly observed that when 
the extra reward is less than 1, which corresponds to the 
area to the left of the black dotted line in Fig. 3, a higher 
threshold is more conducive to the cooperation. We spec-
ulate that this might be because when the extra reward is 
less than 1, the extra reward is not enough to cover the 
cost of those who have paid for adopting a cooperative 
strategy in a PGG group. Therefore, once the group has 
reached the threshold for cooperation, group members 
have no additional motivation to become a coopera-
tor. As a result, the cooperation density decreases when 
the threshold is lowered. On the contrary, in the case of 
f ≥ 1 , because the extra incentive brought by the num-
ber of people exceeding the threshold in the PGG group 
was greater than the contribution of every single coop-
erator, individuals would find it profitable to cooperate. 

For populations with the potential to achieve a high level 
of cooperation, even if the number of cooperators in the 
group has already reached the threshold, the higher extra 
benefit can still motivate members to further contribute 
to the public pool.

The definition of initial heterogeneity of bias ω has 
been introduced in the previous section. Obviously, the 
larger ω is, the wider the range of the initial distribu-
tion becomes, and the differences in cognition among 
individuals are more significant. Figure  4 displays the 
cooperation density as a function of ω for five different 
values of T  , and the rest of parameters are set as b = 10 , 
f = 1.5 , ν = 0.01 . It can be easily seen from Fig.  4 that 
the cooperation density is polarized when the heteroge-
neity of bias is not significant. At that time, the popula-
tion is in a full cooperation state when the threshold is 
relatively low ( T ≤ 8 ), while dominated by defectors 
when the condition for cooperation is too strict ( T ≥ 9 ). 
For the curves originally reach full cooperation, with the 
enhancement of the ω , the level of cooperation remains 
unchanged in the early stage ( ω ≤ 0.8 ), then drops rap-
idly, and the change becomes flatter when ω gets bigger. 
However, for the population with a high threshold, the 
trend of ρc is just the opposite as the value of ω increases. 
Overall, the increase of ω makes the curves under dif-
ferent T  move toward the region with a medium level of 
cooperation. From a microscopic perspective, cognitive 
bias can affect individuals’ estimation of expected return, 
and the enhancement of ω leads to greater differences 
in the judgment of expected payoff, even among those 

Fig. 3 Comparison curves of cooperation density as a function of extra reward f  under different cooperation thresholds T
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who adopt the same strategy. Therefore, the response 
of some individuals may not coordinate with their part-
ners. The macroscopic manifestation of this chaos is that 
the boundary of the selection gradient becomes more 
blurred, which leads to the level of cooperation closer to 
the neutral state when the population reaches the evolu-
tionary steady state. This result also reflects the fact that 
an excessively wide range of opinions may lead to a sig-
nificant disagreement on collective action, which is con-
sistent with our observation in real life.

To investigate the combined effect of b , f  and ω , we 
draw the heatmap of ρc in Fig. 5. In this figure, the X-axis 
represents for ω in both of the subplots, the Y-axis indi-
cates b and f  respectively, and each color encodes a 
certain range of cooperators density at the stable state. 
The other configurations in both subgraphs are set as: 
T = 6 , ν = 0.01 . Figure  5a shows the combined effect 
of basic benefit b and initial heterogeneity of bias ω on 
the evolution of cooperation within a certain parameter 
space. Obviously, no matter what the value of ω is, the 

Fig. 4 Comparison curves of ρc with changing heterogeneity ω under different cooperation threshold T

Fig. 5 Heatmap of the cooperation density ρc with various b , f  and ω . a f = 1.5 ; b b = 10 . Other configurations are set as: T = 6 , ν = 0.01
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cooperation density consistently shows a growing trend 
with the increase of b , which is similar to the results 
demonstrated in Fig. 2. In the case of ω < 0.5 , the tran-
sition region between full cooperation and full defec-
tion is quite narrow, and the phase transition process is 
achieved with only a very slight change of b . However, in 
the scenario of ω > 0.5 , more areas with a medium level 
of cooperation density are introduced into the trumpet-
shaped transition region, making the phase transition 
from full cooperation to full defection smoother. For a 
fixed value of b , when it is small, the cooperation density 
rises with the increase of ω ; however, when b > 2 , the 
cooperation density will go down when ω becomes larger. 
Figure  5b shows the combined effect of extra reward f  
and initial heterogeneity of bias ω on the cooperation 
density ρc . The population gradually transitions from the 
bright yellow in the upper left corner to the dark blue 
area in the lower right corner, which generally shows that 
the cooperation density and f  are positively correlated, 
while negatively related with ω overall. However, it can be 
noticed that when the special reward is fixed at f = 1.2 , 
with the increase of ω , the cooperation density does not 
show a monotonically decreasing trend. This phenom-
enon indicates that there is a combination of f  and ω 
which enable the population to achieve a full cooperation 
state with a minimum value of extra reward. Additionally, 
it is convincing to derive an inference that the optimal 
situation can be obtained by adjusting the initial hetero-
geneity of bias so that the system can achieve a high level 
of cooperation density with relatively smaller incentives.

To further explore the effect of parameters in this 
model, we plot the comparison curves of ρc as a func-
tion of basic income b and extra reward f  under differ-
ent levels of ω and the parameters are fixed in Figs. 6 and 
7: T = 6 , ν = 0.01 . It can be clearly observed from Fig. 6 
that no matter what value the initial heterogeneity of bias 
ω is, the fraction of cooperators in the population grows 
as b increases. The curves with smaller values of ω (when 
ω ≤ 0.7 ) start with a full defection state and then have a 
dramatic change in the vicinity of b = 1.5 . Evidently, the 
range of b for the coexistence of cooperators and defec-
tors becomes wider as ω increases, which seems to be 
considered as the countervailing effects of heterogene-
ity on basic income. Additionally, it is noteworthy that 
there exists a threshold value of b around 1.75. In the 
case of b < 1.75 , a bigger value of ω is more conducive 
to the cooperation; however, when b > 1.75 , it shows the 
opposite trend that a small value of is more beneficial to 
cooperators. We speculate that the reason for this phe-
nomenon is the interference from heterogeneity, for the 
effect of b is limited when its value is small. However, 
cognitive bias influences individuals’ expectations of 
payoff and misleads some players to adopt a cooperative 
strategy. According to Fig. 7, it is obvious that the coop-
eration density rises at all levels of heterogeneity as the 
extra reward f  increases. In the scenarios of ω ≤ 0.9 , the 
four curves both grow at a steady pace; they get closer 
and closer and eventually coincide with each other when 
f  has reached a high value. However, in the case of 
ω = 1.5 , although this curve also shows an upward trend, 

Fig. 6 Comparison curves of cooperation density ρc as a function of basic returns b under different ω
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it remains almost parallel to the curve represented for 
ω = 0.5 in the given parameter space. This result reveals 
that the initial heterogeneity of bias is able to weaken the 
positive effect of extra reward when ω exceeds a critical 
value, which makes the cooperation density constantly 
below those with a relatively small ω . Besides, when ω 
changes in a certain range, the increase of extra reward 

could eliminate and even offset the negative impact of 
bias on cooperation.

To examine the impact of learning speed ν on the den-
sity of cooperation when the population reaches a steady 
state, we plot a set of comparison curves with the chang-
ing initial heterogeneity ω in a specific parameter space: 
T = 7 , b = 6 , f = 1.5 . According to Fig.  8, the curves 

Fig. 7 Relationship between the cooperation density ρc and extra reward f  with different ω

Fig. 8 Comparison curves of ρc as a function of initial heterogeneity ω under different updating speed ν
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generally show a downward trend with the increase of ω 
at all levels of ν , and this result is basically consistent with 
the previous analysis. It is evident that the belief updating 
rule based on learning the cognition of individuals with 
higher payoff has largely delayed the declining trend of 
cooperation density, and the phase transition point of full 
cooperation gradually moved from ω = 0.7 to ω = 1.1 
as ν increases. However, when the level of initial het-
erogeneity is high, that is, in the right half of the graph, 
the curve with a larger learning speed has a lower posi-
tion, and the order of cooperation density from high to 
low is exactly the opposite of the previous scenario. We 
infer that this learning mechanism can play a more vital 
role when the initial heterogeneity is greater because the 
differences in beliefs among individuals are more signifi-
cant. In addition, since the speed of belief updating itself 
is much faster than the changing rate of cooperation in 
the system when the learning speed is too high, individ-
ual beliefs will quickly converge to a certain level, making 
it impossible for individuals to effectively improve their 
strategies through repeated interactions. In this configu-
ration, the cognition of some individuals may converge 
prematurely to specific intervals in the early stage, which 
makes the model closer to the version with a homogene-
ous bias in most of the time steps.

We plot the heatmap of ρc in the full b− f  plane to fur-
ther explore the impact of updating speed on the evolu-
tion of cooperation in Fig.  9. Different colors represent 
specific levels of cooperation density ρc that the popula-
tion is at when the system reaches the steady state, among 
them, the dark blue area means the population is domi-
nated by defectors and the yellow region indicates that 
the population has reached a high level of cooperation. 
By comparing the scenarios of ν = 0 (the original version 

without the updating process) and ν = 0.03 (where the 
updating speed is fast), it is clear that the speed of cogni-
tive updating only has a small effect on the evolution of 
cooperation when both the basic income b and the extra 
income f  are relatively small (the lower left region of 
the two figures); however, when b and f  are of high lev-
els (the upper right region of the two figures), the faster 
updating speed introduces a region with a high level of 
cooperation. This phenomenon suggests that when the 
values of income factors are small, their incentive effect 
on cooperation behavior is quite limited, while inter-
individual differences in the payoff are relatively small. At 
this time, even if there exists a cognitive updating process 
based on payoff, individuals with lower payoff are unable 
to adjust their cognition quickly to the cognitive level of 
individuals with higher payoff through this process. In 
addition, the system has a certain degree of randomness, 
while a fast learning speed can amplify this effect. This 
may cause the cognition of some individuals to converge 
prematurely to specific intervals, while the evolution of 
cooperation enters the steady state much earlier, thus 
coarsening the boundary of the different ranges of coop-
eration density.

Punishment has been widely employed as a micro 
mechanism to solve social dilemmas and promote the 
emergence of cooperation. However, the incentive func-
tion of punishment may be affected by cognitive bias in 
an unexpected way. Here, we modify the rules of inter-
action to include a penalty for defectors, which amount 
is δc(0 ≤ δ ≤ 1) . The value of δ indicates how much the 
penalty imposed compares to the initial contribution paid 
by cooperators. When δ = 0 , it indicates that no penalty 
has been imposed, and δ = 1 indicates that all advantages 
of the defectors over the cooperators are eliminated. To 

Fig. 9 Heatmap of ρc as a function of b and f  under different ν . a ν = 0 ; b ν = 0.3
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comprehensively investigate the impact of T  and ν on the 
efficiency of punishment, we plot the comparison curves 
of ρc with various δ in a specific parameter space, and the 
remaining parameters are fixed at b = 6 and f = 1.5 . It 
can be easily seen from Fig. 10 that the punishment fac-
tor δ always has a positive effect on cooperation, because 
it reduces the relative cost of cooperators, thus making 
the difference in the expected payoff between the two 
strategies when individuals face the same situation. By 
comparing the subgraphs on the two rows, we can find 
that the effect of punishment factors is more significant 
when the value of ω is small and T = 10 . However, when 
the value of ω is relatively big and T = 7 , different from 
the previous case, this effect becomes milder. We can 
infer that the heterogeneity of cognitive bias flattens the 
upward trend brought by punishment factors. Besides, 
it’s evident that the trend in subgraphs on the right (when 
ν = 0.03 ) is more unstable. Compared with the smooth 
curves on the first column, the curves have more fluctua-
tion when ν are high, and this result ties well with what is 
shown in Fig. 9.

5  Conclusion
Understanding how to maintain cooperation in vari-
ous social dilemmas is critical to addressing many of 
the challenges in society today. This effort could benefit 
from recognizing the influence of cognitive bias in coop-
eration dynamics and establishing proper incentives 
that conform to social norms. Motivated by the previ-
ous work related to cognitive bias and belief updating in 
multi-agent systems, we propose a heterogeneous pop-
ulation with a specific distribution of cognitive bias at 
the initial stage, along with its updating rule during the 
evolution process of cooperation. We conduct numeri-
cal simulations to investigate the impact of evolving bias 
and its combined effect with the inherent parameters of 
the original TPGG model. Simulation results reveal that 
heterogeneous cognitive bias shows the opposite affec-
tion in populations with a high and low cooperation 
threshold. That is, cognitive bias is more conducive to 
cooperation where the cooperative environment is rela-
tively tough but inhibits cooperation in the population 
that has originally achieved a high level of cooperation. 

Fig. 10 Comparison curves of ρc as a function of punishment factor δ under different cooperation thresholds T  and updating speed ν . a 
T = 7, ν = 0 ; b T = 7, ν = 0.2 ; c T = 10, ν = 0 ; d T = 10, ν = 0.2 . Other parameters: b = 10 , f = 1.5 , and ν = 0.01
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This opposite effect is further exacerbated as the initial 
heterogeneity of the bias increases, resulting in similar 
levels of cooperation for different groups, even if the 
conditions under which they could achieve common 
benefits differ significantly. Besides, the findings indicate 
that the effectiveness of incentive methods is smoothed 
by cognitive bias with strong heterogeneity, while the 
updating process of bias brings more uncertainty to the 
system. In addition, the effect of bias heterogeneity is 
related to the inherent parameters of the PGG. Thus, it 
is possible to maximize the outcome of collective actions 
at a given level of cognitive bias by adjusting the payoff 
structure of the PGG.

Our study mainly focuses on the evolutionary dynam-
ics when cognitive bias is heterogeneous and affected by 
the initial distribution and learning mechanism. How-
ever, this work is limited in several ways. Firstly, all these 
simulations conducted above are based on a well-mixed 
population. In the future, interaction structures between 
individuals can be introduced to the current frame-
work. Besides, the learning process evidently has an 
impact on both the evolution of cognitive bias and coop-
eration. Therefore, considering different social learn-
ing mechanisms may contribute to understanding how 
beliefs and cooperative behavior change in various social 
circumstances.
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