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Abstract 

Improving the reliability of railway train systems and preventing potential failures in the train operation process is one 
of the most significant tasks. The failure mode and effects analysis (FMEA) is the most effective and widely applied 
technique for identification, evaluation, and prevention risk of potential failures in diverse fields. Nevertheless, current 
risk prioritization approaches for FMEA overlook the transfer of decision makers’ risk preferences under different risk 
states of potential failures. In addition, little attrition has been paid to addressing the risk prioritization problems in 
FMEA under a dynamic environment. In order to bridge these research gaps, this paper proposes a dynamic prior-
itization approach for FMEA by integrating the Fuzzy Cognitive Map (FCM) and the prospect theory. First, improved 
weighted arithmetic averaging (WAA) operator based on the similarity measure is constructed to aggregate each 
decision maker’s evaluation information. Then, the FCM is applied to obtain the risk matrix and interaction relation-
ships among failures under different risk states. Next, the dynamic prospect theory is built to determine the risk prior-
ity of each failure by considering the risk preference of decision makers, in which the dynamic weight functions are 
derived based on the risk matrix under different risk states. Finally, the proposed dynamic risk prioritization approach 
for FMEA is tested by the failures risk analysis of the railway train bogie system in the railway train systems. The com-
parison study is conducted to demonstrate the reliability and rationality of the proposed risk prioritization approach.

Keywords:  Railway train systems, Risk analysis, Failure mode and effects analysis (FMEA), Fuzzy Cognitive Map (FCM), 
Prospect theory
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1  Introduction
High-speed rail in China has developed rapidly in recent 
years. By the end of 2019, the high-speed railway mileage 
had surpassed 3.5 million kilometers. Furthermore, main-
taining reliability and safety in such a fast-moving process 
is difficult. To enhance the safety and reliability of train 
operations, dervise automatic techniques and systems 
have been adopted (Wang et al. 2018b). As a result, train 
systems are more likely to fail (Ding et  al. 2018). In the 
absence of proactive risk analysis tools, these failures may 
cause various failure modes and unsafe railway operation 

statuses. Previous literature shows that many FMEA (fail-
ure mode and effects analysis)-based risk analysis models 
have been employed for identifying, evaluating and pri-
oritizing risks and enhancing the reliability of complex 
systems (Zheng et  al. 2021; He et  al. 2022). There are, 
however, some limitations to using risk priority numbers 
(RPNs) for (FMEA). Following is a summary of the most 
criticized (Wu et  al. 2021; Hassan et  al. 2022): (i) there 
is no consideration for uncertainty in the process of RPN 
computing. (ii) The risk parameter’s relative importance 
is not considered. (iii) There is no scientific evidence sup-
porting conventional RPN calculations. There are several 
versions of uncertain risk rarting information modeling 
tools that have been extended into risk analysis to over-
come the limitations of RPN methods in FMEA (Wang 
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et  al. 2019b, 2018a, 2018c; Huang et  al. 2017). Further-
more, MCDM (multi-criteria decision-making) methods 
have also been applied to tackle the risk priority calcula-
tion problems in FMEA (Boral and Chakraborty 2021; He 
et  al. 2022; Sayyadi Tooranloo and Saghafi 2021; Wang 
et  al. 2020). Despite the improvements made by these 
extended calculation methods for risk priority in FMEA, 
there remain some limitations in this process.

(1) Most existing risk prioritization models for FMEA 
were proposed with MCDM approaches, which overlook 
the transfer of weight for each risk parameter under dif-
ferent failure states. These models include the TOPSIS 
(technique for order preference by similarity to ideal solu-
tion) based risk prioritization approach (Liu et al. 2019c), 
the VIKOR (VIse Kriterijumska Optimizacija I Kompro-
misno Resenje) based risk prioritization approach (Safari 
et  al. 2014), the QUALIFLEX (qualitative flexible multi-
ple criteria method) based risk prioritization model (Liu 
et al. 2016), the PT (prospect theory) based risk prioriti-
zation approach (Wang et al. 2018c, 2023), and the gener-
alized TODIM (an acronym in Portuguese of Interactive 
and Multi-criteria Decision Making) based risk prioriti-
zation approach (Wang et al. 2018a), etc.

(2) The dynamic MCDM approaches can be adopted 
to address the risk analysis problem under a dynamic 
environment (Ding et al. 2019; Bali et al. 2015), however, 
these approaches have no capability to capture the pat-
terns and trends of past decision making information. In 
addition, current dynamic MCDM approaches based risk 
prioritization approaches cannot simulate the interac-
tions among risk factors under different periods.

(3) A few risk prioritization approaches for FMEA 
have taken into account the risk preference of decision 
makers (Wang et  al. 2018c, 2018a, 2019a; Huang et  al. 
2017), however, none of them can model the risk priori-
ties of train systems failures under different risk states. 
In addition, no research has developed risk prioritization 
approaches for FMEA by using PT and the Fuzzy Cogni-
tive Map (FCM), especially, for train systems failures risk 
assessment.

In the light of these limitations summarized above, 
it is beneficial to develop a dynamic risk prioritiza-
tion approach for failures risk analysis of railway train 
systems within the uncertain and dynamic context, 
in which the transfer of risk scores of failure modes is 
taken into account. Compared with the conventional 
dynamic MCDM techniques, the learning algorithm-
based MCDM techniques can generate a multiple-period 
evaluation matrix. Thus, it is justifiable to incorporate the 
learning algorithm-based MCDM techniques into the 
risk prioritization approach for comping with the FMEA-
based train system failures analysis problem. In addi-
tion, the PT is an effective and widely adopted MCDM 

technique for modeling the risk preference of each 
decision maker in the risk analysis process(Wang et  al. 
2018c), however, it is insufficient to simulate the transfer 
of risk scores of failure modes under different risk status. 
The FCM, introduced by Kosko (1986), is a useful tool 
to depict the system transitions through different states, 
especially in the dynamic decision-making environment. 
Furthermore, no research has been conducted on the 
FCM and PT to construct a risk prioritization approach 
for FMEA. Therefore, we develop a dynamic risk prior-
itization approach based FMEA model for risk analysis of 
railway train systems failures by integrating the FCM and 
the PT. In this hybrid approach, the Jaya algorithm based 
FCM learning is introduced to derive the future risk eval-
uation information of failure modes.

As discussion mentioned above, the novelties of this 
paper and the contributions to the literature on risk pri-
oritization approaches for FMEA can be presented as 
follows:

(1) The proposed dynamic risk assessment frame-
work is the first method incorporating the FCM and 
PT into the FMEA model for risk analysis of train sys-
tems failures. Compared with current FMEA-based risk 
assessment approaches, the proposed risk assessment 
framework not only can simulate the different weights 
of risk parameters but also can take the decision makers’ 
risk preference information under different states into 
account.

(2) The FCM learning is incorporated into the risk 
prioritization approach, which can depict the interac-
tions among the failure modes. This is the first paper that 
applies the intelligent algorithm to model interactions 
among risk factors. In addition, the proposed risk prior-
itization approach in this paper is the first time that the 
learning algorithm is applied to address the risk priority 
determining problem for the FMEA model.

(3) The risk priority ranking order of train systems fail-
ures can be determined under different states, namely, 
short-term, medium-term, and long-term. In this pro-
cess, the different risk preferences can also be captured 
by using past, current, and future risk evaluation infor-
mation. First time in FMEA-related literature, future risk 
evaluation information is derived by using an intelligent 
algorithm.

(4) The risk analysis result of the illustrative example 
indicates that the proposed dynamic risk assessment 
framework outperforms other FMEA-based risk assess-
ments for coping with the train systems failures risk 
analysis problem. The proposed framework can calculate 
the future risk priorities of train systems failures that can 
provide a more flexible, reasonable, and valid risk assess-
ment result for enhancing the safety and reliability of 
train systems.
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The remainder part of this paper is organized as fol-
lows. The next section provides a brief literature review. 
In Sect.  3, the extended PT-based FMEA model is pre-
sented. In Sect. 4, a real risk analysis example is selected 
to demonstrate the application and feasibility of the 
developed FMEA framework. Sensitivity and comparison 
studies are subsequently led to illustrating the effective-
ness of the proposed approach. Finally, the conclusions 
and future research directions are provided in Sect. 5.

2 � Related literature
2.1 � Improvement of FMEA
In current years, the FMEA has attracted considerable 
interest and also has been one of the most popular and 
widely adopted failures risk analysis tools in various fields 
(Liu et  al. 2016, 2019b; Huang et  al. 2019; Wang et  al. 
2019a, 2019c). In the utilization of this tool, one of the 
most significant problems is the calculation of risk prior-
ity for each failure mode. In order to address this prob-
lem, various kinds of risk prioritization approaches have 
been developed. Among these approaches, the MCDM 
techniques-based risk prioritization approaches are the 
most popular research trends (Li et al. 2019; Wang et al. 
2019b; Liu et al. 2019b). The best–worst method (BWM) 
and TOPSIS are used by Lo et al. (2019) for RPN calcu-
lation in FMEA-based risk analysis issue. A MABAC 
(multi-attribute border approximation area comparison) 
method is proposed by Liu et al. (2019a) for risk prioriti-
zation under interval-valued intuitionistic fuzzy environ-
ments. Zhang et  al. (2022) developed ANP approach to 
improve performance of the RPN calculation in FMEA. 
A synthesized GLDS (gained and lost dominance score) 
method is reported by Wang et al. (2019b) to implement 
the RNP calculation for FMEA. To explore the efficience 
of MCDM frameworks in RPN calculation, many other 
MCDM tools are also incorporated into RPN compution 
for strengthening its availability (see for instance, Wang 
et al. (2021), Akram et al. (2020), Boral and Chakraborty 
(2021), Wang et al. (2020), Li and Zhu (2020)).

Recently, the risk preference of each decision maker 
has been taken into the risk prioritization approach for 
the FMEA model. Liu et  al. (2018) proposed a new risk 
prioritization approach for dealing with the large group 
FMEA-based risk analysis problem, in which the PT is 
adopted to model a large number of experts’ risk pref-
erences. In order to simulate the risk preference of each 
decision maker in the risk evaluation process, Wang et al. 
(2018c) introduced an extended PT to improve the per-
formance of the risk prioritization approach. Fang et al. 
(2019)introduced a hybrid risk prioritization approach 
for the FMEA model, in which the risk preference of each 
decision maker is modeled by PT. Sagnak et  al. (2020) 
combined PT with the TODIM method for risk priorities 

calculation procedure in FMEA by taking the risk prefer-
ence of each decision maker into account.

2.2 � Application of FCM
FCM is an effective graphical technique for simulating 
in which various kinds of cause-effect relationships are 
included (Jamshidi et  al. 2017). Compared with other 
modeling approaches for interaction relationships among 
factors, such as DEMATEL, ANP (Analytic network pro-
cess), and Choquet integral, the FCM can depict more 
detailed interactions among factors and also can simulate 
these interaction relationships within a dynamic context 
(Navas de Maya and Kurt 2020). It can provide an accu-
rate prediction of systems’ evolutionary behavior.

Owing to the simplicity and modeling capability of the 
dynamic system, the FCM has been used as a decision 
support technique in various fields such as the logistics 
industry (Jamshidi et  al. 2017), energy (Alipour et  al. 
2017), healthcare (Bevilacqua et al. 2018), food industry 
(Jahangoshai Rezaee et  al. 2018) (for a detailed review 
see: Papageorgiou and Salmeron (2013)). Recently, the 
FCM has been applied to address the risk analysis prob-
lem in an uncertain environment. For example, Lopez 
and Salmeron (2014) developed an FCM-based dynamic 
risk analysis approach to address. Dabbagh and Yousefi 
(2019) developed a hybrid FMEA-based risk analysis 
approach using FCM and MOORA (multi-objective opti-
mization on the basis of Ration Analysis) approach. Bev-
ilacqua et al. (2018) utilized the FCM method to identify 
and analyze the risk of the drug administration process. 
De Maio et  al. (2016) introduced a 2-Tuple linguistic 
variables based FCM to analyze the risk in the software 
development process.

2.3 � Application of PT
The PT, originally proposed by Kahneman (1979), is a 
widely utilized technique for modeling the characteristics 
of decision makers’ bounded rational behavior under the 
risk and uncertain environment. Compared with other 
MCDM approaches, the PT determines the priorities of 
alternatives that can depict the bounded rational decision 
behaviors such as loss aversion, reference dependence, 
and risk aversion. It helps decision-makers to obtain a 
more reasonable priority ranking order of each alterna-
tive under the uncertain environment.

The PT has been extensively adopted to address prior-
ity ranking problems because of its modeling capability 
of decision makers’ behavior characters under the uncer-
tain environment. In order to address the optimal port-
folio selection problem, Zhou et  al. (2019) developed a 
priority ranking calculation approach by using PT. Liu 
et  al. (2019d) introduced a PT-based priority determin-
ing method for emergency alternatives in an uncertain 
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environment. Chen et  al. (2020) introduced an optimal 
renewable energy source determining approach by using 
PT. In order to depict the influences of online reviews on 
customers’ decisions about product ranking, Zhang et al. 
(2020) combined PT with VIKOR to prioritize custom-
ized products.

The literature review mentioned above shows that 
various MCDM approaches have been extended into 
the FMEA model for dealing with the risk prioritization 
problem. But little attention has been paid to developing 
a dynamic MCDM approach-based risk prioritization 
approach for the FMEA model. In addition, no evidence 
shows how to combine the FCM with PT for risk pri-
oritization in FMEA, in which the dynamic risk prefer-
ence of each decision maker is taken into account. On 
the other hand, there has been limited research on train 
system failures using FMEA based risk analysis frame-
work by integrating FCM and PT. Consequently, this 
paper develops a dynamic risk prioritization approach 
for train system failures by using FCM and PT. The pro-
posed risk prioritization approach also aims to improve 
a more effective and reliable risk prioritization approach 
for FMEA-based risk analysis problem under a dynamic 
environment.

3 � A dynamic risk prioritization approach 
for failures risk analysis

IN this section, a dynamic risk prioritization approach-
based FMEA framework is proposed for failures risk 
analysis, in which the FCM and PT are incorporated. 
The proposed risk prioritization approach based FMEA 
framework consists of three phases. The detailed steps of 
this framework are expressed as follows.

3.1 � Description of the dynamic risk prioritization problem 
for FMEA

AS discussed above, let us consider a dynamic risk 
prioritization problem as a dynamic MCDM prob-
lem, in which includes m potential failure modes 
FMi(i = 1, 2, . . . ,m) in terms of n risk indica-
tors cj(j = 1, 2, . . . , n) , which should be evaluated 

by q FMEA team members dk(k = 1, 2, . . . , q) . Let 
the matrix W = ωji m×m

 be the causal relation-
ships among failure modes. Assume that the set 
of all risk states is denoted as t =

{

t1, t2, . . . , tp
}

 . 
The weight vector of risk factors is expressed by 
[w1(tτ ),w2(tτ ), . . . ,wn(tτ )]

T (τ = 1, 2, . . . , p) in which 
wj(tτ ) ≥ 0 and 

∑n
j=1 wj(tτ ) = 1 . The risk matrix at the 

risk state tτ is denoted as A(tτ ) =
(

aij(tτ )
)

m×n
 where 

aij(tτ ) is the value of failure mode FMi with respect to 
risk factor cj at period tτ.

In the application of FMEA based risk analysis prob-
lem, the first step of the risk prioritization approach is 
to gather the FMEA team members’ information about 
rating scores of failure modes with respect to each risk 
factor. Every decision maker in the FMEA team dk is 
asked to determine the rating score of failure mode 
FMi with respect to risk indicator cj by fuzzy linguis-
tic variables which are provided in Tables  1, 2 and 3, 
respectively.

3.2 � Construction of group risk matrix
3.2.1 � Compute the similarity degree
Let the element xkij = (xkij1, x

k
ij2, x

k
ij3) be the risk scor 

offered by decision maker dk , then the similarity meas-
ure and weights of decision makers is obtained as:

First, the mean value of decision makers’ risk scores 
is computed as:

Table 1  Linguistic variable for Severity

Linguistic term Rank c̃
l c̃

m
c̃
u

Very High (VH) 9,10 0.75 1.00 1.00

High (H) 7,8 0.50 0.75 1.00

Medium (M) 4,5,6 0.25 0.50 0.75

Low (L) 2,3 0.00 0.25 0.50

Very Low (VL) 1 0.00 0.00 0.25

Table 2  Linguistic variable for Occurrence

Linguistic term Predicted frequency c̃
l c̃

m
c̃
u

Very High (VH) > 1 in 2, 1 in 8 0.75 1.00 1.00

High (H) 1 in 20, 1 in 40 0.50 0.75 1.00

Medium (M) 1 in 80, 1 in 400, 1 in 1000 0.25 0.50 0.75

Low (L) 1 in 4000, 1 in 20000 0.00 0.25 0.50

Very Low (VL) < 1 in 10
6 0.00 0.00 0.25

Table 3  Linguistic variable for Detection

The parameters c̃l , c̃m and c̃u indicate the values of a triangular fuzzy number

Linguistic term Rank c̃
l c̃

m
c̃
u

None (N) 10 0.8 1.0 1.0

Very Low (VL) 9 0.6 0.8 1.0

Low (L) 7,8 0.4 0.6 0.8

Medium (M) 5,6 0.2 0.4 0.6

High (H) 3,4 0.0 0.2 0.4

Very High (VH) 1,2 0.0 0.0 0.2
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Then, the similarity measure is calculated as:

In which, d(xkij , xij) is denoted as:

3.2.2 � Form the group risk evaluation matrix
Based on Eq.  (3), the decision maker’s weights is com-
puted as:

The group risk evaluation matrix G =
[

g̃ij
]

m×n
 is gener-

ated as:

3.3 � Calculation of dynamic risk priority using PT and FCM
The risk priority of each failure mode is determined by 
the dynamic PT, in which both the dynamic risk pref-
erence of the decision maker and the dynamic weight 
function are taken into account. However, the tradi-
tional PT-based risk prioritization approach is unable to 
address the decision maker’s risk preference and weight 
function under a dynamic environment. Consequently, 
FCM learning is introduced to construct dynamic risk 
matrix and weight functions, and then these risk matrices 
and weight functions are selected as the input of PT. In 
this sub-section, we develop a dynamic risk prioritization 
approach for FMEA by integrating FCM and PT.

3.3.1 � Construction of FCM model for failure modes
In this step, the initial values of concepts 
FMi(i = 1, 2, . . . ,m) are denoted as Ci(0) in the FCM 
model, and the consecutive rows of the aggregated 
risk matrix G =

[

g̃ij
]

m×n
 are adopted. The aggre-

gated interaction matrix W init =
(

ωji

)

m×m
 pro-

vided by decision-makers is used to derive the 
causal relationships among failure modes, in which 

(1)xij =
1

q
(x1ij + x2ij + . . .+ x

q
ij).

(2)
skij(x

k
ij , xij) = 1−

∑3
ρ=1

∣

∣

∣
xkijρ − xijρ

∣

∣

∣

8
−

d(xkij , xij)

2
.

(3)d
(

xkij , xij

)

=

√

√

√

√1
/

3

[

3
∑

l=1

(xkijl − xijl)2

]

.

(4)̟ k
ij =

skij(x
k
ij , xij)

/

∑q
k=1

skij(x
k
ij , xij)

.

(5)

g̃ij =(gij1, gij2, gij3)

=WAA̟ (x1ij , x
2
ij , . . . , x

q
ij) =

∑q

k=1
̟ k

ij x
k
ij

=(

q
∑

k=1

̟ k
ij x

k
ij1,

q
∑

k=1

̟ k
ij x

k
ij2,

q
∑

k=1

̟ k
ij x

k
ij3).

W
init

= [ω11,ω12, . . . ,ω1m,ω21,ω22, . . . ,ω2m, . . . ,ωm1,ωm2, . . . ,ωmm] 
are calculated by using the WAA operator as the fol-
lowing form.

where ω(k)
ji  is denoted as ω(k)

ji =

[

ω
(k)
11

,ω
(k)
12

, . . . ,ω
(k)
1m,

ω
(k)
21

,ω
(k)
22

, . . . ,ω
(k)
2m

, . . . ,ω
(k)
m1

,ω
(k)
m2

, . . . ,ω
(k)
mm

]

.
Then, the ABC algorithm is adopted to optimize the 

interaction matrix W init =
(

ωji

)

m×m
 because this algo-

rithm is able to find optimal solutions with relatively 
modest computational requirements (Hajek and Froe-
lich, 2019). In addition, the ABC algorithm requires 
fewer control parameters than the above-mentioned 
population-based algorithms. In consequence, using 
the ABC algorithm does not require rigorous tuning of 
parameters. Also, recent studies have demonstrated the 
high effectiveness of ABC in learning FCM(Hajek and 
Froelich 2019). The goal of the optimization is to detect 
a matrix W  that leads the FCM model to a steady state. 
The steady states W  of the failure modes are used in the 
objective function f (W ) for the ABC algorithm(Hajek 
and Froelich 2019):

In which,Coutij is the steady-state value of the i-th out-
put failure mode for the j-th risk factor, and the func-
tion H  is the Heaviside function H(x) = 0 for x > 0 and 
H(x) = 1 for x ≤ 0 . And the function f (W ) is defined 
as follows.

Finally, the steady-state risk matrix of failure modes 
under each risk factor can be obtained as follows.

In which, the function Wi′i is the steady state causal 
relationships between each two failure modes FMi and 

(6)

ωji = WAA̟

(

ω
(1)
ji ,ω

(2)
ji , . . . ,ω

(q)
ji

)

=
q
⊕
k=1

̟ k
jiω

(k)
ji

=
(

∑q

k=1
̟ k

jiω
(k)
ji1 ,

∑q

k=1
̟ k

jiω
(k)
ji2 ,

∑q

k=1
̟ k

jiω
(k)
ji3

)

.

(7)

f (W ) =

m
∑

i=1

outm
∑

j=1

H
(

Cmin
outij

− Coutij

)∣

∣

∣Cmin
outij

− Coutij

∣

∣

∣

+

m
∑

i=1

outm
∑

j=1

H
(

Coutij − Cmax
outij

)∣

∣

∣
Cmax
outij

− Coutij

∣

∣

∣.

(8)f (W ) =
1

1+ e−�W
.

(9)C
j(τ+1)

i = f









C
j(τ )
i +

m
�

i′=1
i′ �=i

Wi′iC
j(τ )
i′









.
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FMi′ . And Cj(τ+1)

i  indicates that the risk value of failure 
mode FMi under risk factor cj in the risk state t = τ + 1.

3.3.2 � Development of dynamic PT for risk prioritization
According to the risk matrix A(tτ ) =

(

aij(tτ )
)

m×n
 and 

weight vector [w1(tτ ),w2(tτ ), . . . ,wn(tτ )]
T  under differ-

ent risk states, we can develop the dynamic prospect 
decision matrix V (tτ )

ij  as follows.

In which, the function π
(

wj(tτ )
)

 and v
(

aij(tτ )
)

 can be 
calculated in the following form.

In which, the parameters γ and δ indicate the the 
degree of distortion in the probability assessmen. The 
values of the two parameters are set as γ = 0.61 and 
δ = 0.69 . The paprameters α and β are βare the risk 
attitude coefficient of each decision-maker. Further, 
the weight of each risk factor under risk states wj(tτ ) is 
derived through the entropy method as follows.

In which, the parameter K = 1
/

ln(n).

Then, the risk priority of each failure mode can be 
obtained as follows.

Which is equal to the sum of all the elements of the 
matrix φ(ai(tτ )) , and the risk priority ranking order of 
each failure mode FMi according to the value φ(ai(tτ )).

(10)V (tτ )(FMi, FMl) = π
(

wj(tτ )
)

v
(tτ )
j (FMi, FMl).

(11)

π
�

wj(tτ )
�

=



































�

wj(tτ )
�γ

��

wj(tτ )
�γ

+
�

1− wj(tτ )
�γ �

1/γ

, aij(tτ ) ≻ alj(tτ )

�

wj(tτ )
�δ

�

�

wj(tτ )
�δ

+
�

1− wj(tτ )
�δ
�
1/δ

, aij(tτ ) ≺ alj(tτ )

.

(12)

v
(tτ )
j (FMi, FMl) =

{[

aij(tτ )− alj(tτ )
]α
, aij(tτ ) ≻ alj(tτ )

−θ
[

alj(tτ )− aij(tτ )
]β
, aij(tτ ) ≺ alj(tτ )

.

(13)Ej(tτ ) = −K

m
∑

i=1

[

aij(tτ )
]

ln
[(

aij(tτ )
)]

.

(14)Gj(tτ ) = 1− Ej(tτ ).

(15)
wj(tτ ) =

Gj(tτ )
n
∑

j=1

Gj(tτ )

.

(16)φ(ai(tτ )) =

m
∑

i=1

n
∑

j=1

V (tτ )(FMi, FMl).

3.3.3 � Procedures of the proposed method
According to the specific procedures mentioned above, 
the calculation schematic of the proposed dynamic risk 
prioritization approach for FMEA-based risk analysis is 
provided in Fig. 1, which includes the following steps.

Step1: Determine the risk score of each failure mode 
by using the linguistic terms, and then transform the lin-
guistic risk matrix into a triangular fuzzy numbers-based 
risk matrix.

Step 2: Assign the causal relationships among failure 
modes using linguistic terms.

Step 3: Obtain the group risk matrix G =
[

g̃ij
]

m×n
 and 

weighted group causal relationships W init =
(

ωji

)

m×m
 

using Eqs. (1–6).
Step 4: Construct the FCM model for causal relation-

ships Wi′i and risk matrix Cj(τ+1)

i  of failure modes by 
using Eqs. (7–9).

Step 5: Determine the weight functions for failure 
modes under risk states by using Eq. (11).

Step 6: Calculate the value function v
(

alij(tτ )
)

 for fail-
ure modes under each risk state by using Eq. (12).

Step 7: Obtain the prospect values of failure modes by 
using Eq. (10).

Step 8: Determine the final risk priority of each failure 
mode by using Eq. (16).

4 � Illustrative example
In this section, a real case of failures risk analysis for the 
railway train bogie system in a railway train system (Kou 
et al. 2018) is selected to demonstrate the application of 
the proposed dynamic risk prioritization approach based 
FMEA framework. In addition, the comparison study 
is led to illustrating the effectiveness of the developed 
dynamic FMEA framework.

4.1 � Problem description
In order to demonstrate the specific application pro-
cedures of the proposed framework, the bogie system 
is chosen as the case study. The Bogie system is one of 
the most major complex mechatronic parts of a rail-
way train and can be easily prone to fail. The Bogie sys-
tem can account for a substantial 21.1% based on the 
accumulation of failure data in a couple of years (Kou 
et  al. 2018). In this paper, a specific railway train bogie 
system is applied to illustrate the dynamic risk prioriti-
zation approach for FMEA model-based risk analysis. 
In order to simplify the calculation process, we select 
the most important four components in the bogie sys-
tem as an example. Then, we ask three decision makers 
dk(k = 1, 2, 3) from a certain train operation company 
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Fig. 1  The flowchart of the proposed method

Table 4  The failure modes of import components

Component No Failure modes Component No Failure modes

Frame assembly FM1 Micro crack Wheel FM8 Tread crack

FM2 Crack FM9 Wheel wear

Axle FM3 Micro crack Axle box body FM10 Micro crack

FM4 Crack FM11 Wear

Wheel FM5 Crack FM12 Crack

FM6 Tread scratch FM13 Abnormal temperature

FM7 Tread peeling FM14 Scratch
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to identify the potential failure modes in the five com-
ponents. It should note that the three decision-makers 
include the manager, operator, and railway maintenance 
personnel. The result is shown in Table 4.

4.2 � The application of the proposed approach
The proposed dynamic FMEA framework is employed to 
performe the identified train system failures risk analysis. 
The detailed failure modes are provided in Table 4. The 
application of this framework is described below.

It is necessary to conduct the first stage of the RPN cal-
culation procedure, and the subsequent stages must be 
applied. To assess the risk scores, we use the three risk 
indicators: Severity (S), Occurrence (O), and Detection 
(D). Following the identification of failure modes, three 
decision makers are asked to provide the risk scores 
of the failures by describing it linguistically. Decision-
makers use the five-point linguistic terms provided in 
Tables  1, 2 and 3 when expressing risk scors. Thus, the 
linguistic risk scors for the fourtheen failures given by 
decision makers are listed in Table 5.

In the second stage of this framework, group causal 
relationships and group risk matrices will be constructed. 
First, Eqs. (8–10) are used to determine the similarity of 
each element in the TrFNs-based risk matrix. Then, the 
decision makers’ weights are determined using Eq.  (11). 
Thus, the group risk matrix is generated using Eq.  (12), 
shown in Table 6.

Then, the three decision-makers also are invited to 
determine the causal relationships among each pair 
of failure modes. Drawing the experience of literature 
(Jamshidi et al. 2017), the five-point linguistic terms are 
adopted to evaluate the causal relationships, as shown in 
Table 7. And then, the result is expressed by FCM, shown 
in Fig. 2.

The group causal relationships among failure modes 
can be calculated by using Eq. (13), shown in Table 8.

In order to illustrate the specific procedures of 
the dynamic PT-based risk prioritization approach, 
the prospect values calculation process of all failure 
modes under risk parameter S is selected as an exam-
ple. According to the FCM contribution process, 
the initial weight matrix W init =

(

ωji

)

m×m
  (shown 

in Table  8) and the initial values of the concept 
C initial = [0.521, 0.630, 0.261, . . . , 0.516, 0.012, 0.572] are 
selected as the input of the learning-based FCM model. 
Then, according to the Eqs. (14–16), the simulation pro-
cess in all procedures of the dynamic PT is performed 
using Matlab R2018b. The result in 24 iterations scenarios 
of the simulation process is shown in Table 9 and Fig. 3.

Finally, the steady state of prospect value φ(ai(tτ )) for 
each failure mode FMi can be derived as follows:

Table 5  The linguistic risk matrix of system failures

Failure 
modes

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

d1 S H H M H VL L VL M M H M M VL H

O VH H M H H M L H M H H VH M VH

D L L VL L N N N VL VL L VL VL N L

d2 S H VH M H VL L L L H VH H M VL VH

O H VH L VH VL L M L H VH M VH VL H

D M M VL L N N N N L M L VL N M

d3 S M M M VH L M M M M L H H VL M

O M H H VH VL M M M M VL H H VL M

D VL VL VL M N VL VL VL VL N L L N VL

Table 6  The group risk matrix of system failures

Failure modes Group risk matrix

c̃
l c̃

m
c̃
u

FM1 0.331 0.521 0.711

FM2 0.431 0.646 0.798

FM3 0.123 0.250 0.423

FM4 0.531 0.771 0.903

FM5 0.000 0.000 0.073

FM6 0.056 0.133 0.261

FM7 0.053 0.125 0.248

FM8 0.114 0.229 0.389

FM9 0.202 0.354 0.552

FM10 0.361 0.521 0.623

FM11 0.260 0.438 0.660

FM12 0.318 0.521 0.703

FM13 0.000 0.000 0.048

FM14 0.381 0.583 0.741
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Consequently, it can be seen that the risk priority rank-
ing order of each failure mode of machine tools accord-
ing to the φ(ai(tτ )) is FM12, FM13, FM11, FM2, FM1, FM9, 
FM5, FM7, FM3, FM4, FM6, FM14, FM8, and FM10.

4.3 � The comparison analysis
In order to verify the efficiency of the developed FMEA 
approach, comparison research is performed with other 
approaches based on the example mentioned above. 
The risk priority of each failure mode obtained by the 
proposed risk prioritization approach is compared with 
other risk prioritization approaches including the tra-
ditional RPN method, and PT-based risk prioritization 
approach (Wang et  al. 2018c). The calculation result of 
the three approaches is shown in Table 10.

From Table 10, we can derive the below findings:
Despite their differences, these three models produce 

some consistent results on the ranking orders of failure 
modes. This is similar to what is obtained by PT-based 
prioritization for failure modes FM12 and FM13. Moreo-
ver, the proposed model and the PT-based model both 
indicate that the FM10 and FM8 have the lowest risk prior-
ity. Based on this finding, the proposed FMEA approach 
and PT-based model are relatively homogeneous. Further, 

φ(ai(tτ ))=

[

0.899, 0.921, 0.850, 0.754, 0.884, 0.500, 0.872,

0.175, 0.898, 0.227, 0.929, 0.963, 0.961, 0.453

]

Table 7  The causal relationships among failure modes

Failure modes Failure modes Direction Evaluation 
information from 
the decision 
maker

d1 d2 d3

FM1 FM9 − VL L L

FM2 FM13 + H H VH

FM3 FM1 + M H H

FM4 FM9 + VH VH VH

FM5 FM2 + VL VL M

FM7 FM5 + M H M

FM8 FM7 + L M M

FM8 FM11 + VH VH H

FM8 FM14 + VL M VL

FM9 FM12 + M M M

FM10 FM12 + H VH H

FM11 FM12 + M M L

FM12 FM13 + L L L

FM13 FM11 + H H H

FM13 FM7 + L VL L

FM13 FM2 + H H M

FM14 FM3 + VH H VH

FM14 FM4 + M M M

FM14 FM6 + VL VL L

FM1

FM2

FM1

3

FM1

4

FM4

FM5

FM1

0

FM3

FM1

2

FM1

1

FM6

FM7

FM9

FM8

(M, H, H)
(VL, L, L)

(M, M, M)

(VH, H, VH)

(M, M, M)

(VL, VL, L)

(VH, VH, VH)

(H, VH, H)

(H, VH, H)

(H, H, H)

(M, M, L)

(VH, VH, H)

(L, VL, L)

(M, H, M)

Fig. 2  The causal relationships among failure modes
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duplication rate, however, is an important indicator to 
evaluate FMEA (Wang et al. 2019b). From Table 10, the 
duplication rate of the traditional RPN method is 35.7%, 
28.6% for the PT-based method, and 0.0% for the pro-
posed method. Since the railway train company has lim-
ited resources, the risk manager needs to rank failure 
modes accurately when taking preventative measures. 
Duplication rates should be as low as possible in such 
cases. Therefore, in conclusion, the dynamic PT method 
based FMEA framework provides a valid method for ana-
lyzing the rail systems failures.

A risk priority derived from traditional FMEA differs 
greatly from that obtained by the proposed FMEA frame-
work. On one hand, traditional RPN methods calculate 
risk priorities with crisp numbers without considering 
the dynamic and uncertain nature of risks. However, 
this framework uses the TrFN to express randomness 
and uncertainty, which overcomes the limitations of tra-
ditional RPNs. Moreover, the FCM is used to construct 
the risk matrix by simulating the dynamic risk matrix. In 
contrast, the traditional RPN model considers expert to 
be equally important for risk evaluation aggregation. This 
assumption is not reasonable because some failure modes 
may be over- or underestimated. Using the traditional 

Table 8  The group causal relationships among failure modes

Failure modes Failure modes Group causal 
relationships

Numeric 
impact

c̃
l c̃

m
c̃
u

FM1 FM9 0.667 1.667 0.3167 − 0.179

FM2 FM13 6.833 8.333 9.333 0.821

FM3 FM1 5.167 6.667 8.167 0.667

FM4 FM9 8.500 10.00 10.00 0.963

FM5 FM2 0.000 0.000 1.500 0.038

FM7 FM5 4.333 5.833 7.333 0.583

FM8 FM7 2.667 4.167 5.667 0.417

FM8 FM11 7.667 9.167 9.667 0.892

FM8 FM14 1.167 1.667 3.167 0.192

FM9 FM12 3.500 5.000 6.500 0.500

FM10 FM12 6.833 8.333 9.333 0.821

FM11 FM12 2.667 4.167 5.667 0.417

FM12 FM13 1.000 2.500 4.000 0.250

FM13 FM11 6.000 7.500 9.000 0.750

FM13 FM7 3.500 5.000 6.000 0.488

FM13 FM2 5.167 6.667 8.167 0.667

FM14 FM3 7.667 9.167 9.667 0.892

FM14 FM4 3.500 5.000 6.500 0.500

FM14 FM6 0.333 0.833 2.333 0.108

Table 9  Outputs of failure modes in the iterations

iterations FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12 FM13 FM14

0 0.521 0.63 0.261 0.744 0.018 0.146 0.138 0.24 0.365 0.506 0.449 0.516 0.012 0.572

1 0.613 0.568 0.435 0.747 0.103 0.163 0.141 0.235 0.538 0.501 0.415 0.597 0.237 0.568

2 0.694 0.723 0.497 0.751 0.143 0.198 0.278 0.231 0.597 0.493 0.607 0.674 0.356 0.564

3 0.735 0.795 0.578 0.754 0.178 0.227 0.315 0.227 0.632 0.487 0.683 0.743 0.475 0.561

4 0.787 0.858 0.594 0.751 0.235 0.259 0.398 0.224 0.695 0.479 0.719 0.798 0.533 0.559

5 0.796 0.877 0.646 0.748 0.356 0.278 0.459 0.221 0.747 0.465 0.798 0.852 0.599 0.556

6 0.832 0.884 0.709 0.744 0.469 0.294 0.493 0.219 0.793 0.461 0.833 0.898 0.623 0.552

7 0.873 0.895 0.785 0.741 0.583 0.325 0.534 0.217 0.839 0.455 0.878 0.932 0.674 0.497

8 0.884 0.907 0.803 0.739 0.617 0.362 0.579 0.215 0.876 0.447 0.903 0.961 0.698 0.494

9 0.892 0.916 0.839 0.735 0.719 0.393 0.617 0.213 0.893 0.441 0.917 0.963 0.715 0.491

10 0.898 0.921 0.846 0.731 0.735 0.421 0.658 0.211 0.893 0.436 0.923 0.963 0.762 0.487

11 0.899 0.921 0.85 0.728 0.747 0.463 0.696 0.209 0.893 0.429 0.926 0.963 0.797 0.483

12 0.899 0.921 0.85 0.725 0.752 0.487 0.732 0.206 0.893 0.425 0.929 0.963 0.813 0.481

13 0.899 0.921 0.85 0.721 0.791 0.492 0.787 0.203 0.893 0.416 0.929 0.963 0.845 0.478

14 0.899 0.921 0.85 0.719 0.827 0.5 0.843 0.201 0.893 0.409 0.929 0.963 0.878 0.475

15 0.899 0.921 0.85 0.716 0.835 0.5 0.869 0.198 0.893 0.401 0.929 0.963 0.923 0.471

16 0.899 0.921 0.85 0.712 0.862 0.5 0.872 0.197 0.893 0.396 0.929 0.963 0.956 0.469

17 0.899 0.921 0.85 0.708 0.875 0.5 0.872 0.195 0.893 0.387 0.929 0.963 0.961 0.466

18 0.899 0.921 0.85 0.703 0.883 0.5 0.872 0.194 0.893 0.375 0.929 0.963 0.961 0.462

19 0.899 0.921 0.85 0.701 0.883 0.5 0.872 0.192 0.893 0.364 0.929 0.963 0.961 0.459

20 0.899 0.921 0.85 0.698 0.883 0.5 0.872 0.189 0.893 0.355 0.929 0.963 0.961 0.457

21 0.899 0.921 0.85 0.695 0.883 0.5 0.872 0.187 0.893 0.343 0.929 0.963 0.961 0.455

22 0.899 0.921 0.85 0.687 0.883 0.5 0.872 0.184 0.893 0.319 0.929 0.963 0.961 0.454

23 0.899 0.921 0.85 0.683 0.883 0.5 0.872 0.181 0.893 0.302 0.929 0.963 0.961 0.453
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RPN model, each decision maker assigns a different risk 
score to FM5 and FM7. The risk priorities of both failure 
modes are the same, however, if experts are given equal 
weight. Nevertheless, FM5 has a higher risk priority in 
the proposed model than FM7 since the experts with dif-
ferent weigts. Since the neglect of expert’s weight in the 
conventional RPN model, the ranking order of FM13 has 
also increased.

In contrast to the proposed model, the PT-based 
method has different risk priority ranking orders, which 
can be explained as follows: In addition to accounting 
for the risk preferences of each decision maker, the latter 
model considers the correlation between failure modes. 
From Table  10, PT-based methods reveal a decrease in 
the ranking orders of some failure modes. Compared 
with the proposed model, FM14 has been ranked lower 
from 9 to 12 in terms of priority. PT ranks failure modes 
with prospect values which considers risk preference. 
In contrast, in the traditional PT, the reference points 
stay static which may decrease the risk priority. The risk 
preferences of decision makers cannot be captured by 

Fig. 3  The prospect values of failure modes under iterations

Table 10  The comparison analysis result of different approaches

Failure modes Risk priority ranking order of each failure 
mode

Traditional RPN 
method

PT-based 
method

The 
proposed 
method

FM1 3 5 5

FM2 2 3 4

FM3 8 8 9

FM4 1 9 10

FM5 11 7 7

FM6 10 10 11

FM7 11 7 8

FM8 9 11 13

FM9 7 6 6

FM10 5 12 14

FM11 6 4 3

FM12 4 1 1

FM13 11 2 2

FM14 2 9 12
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this method since the influence of different risk states. 
Furthermore, the PT-based method neglects the inter-
dependence among failures, which may result in an over-
estimated or underestimated risk evaluation result. It is 
possible that this unreasonable result in the risk analysis 
will cause misleading risk prevention measures.

In summary, compared with the traditional RPN model 
and its extended frameworks, the proposed dynamic 
FMEA framework has the following properties: first, in 
the dynamic FMEA model-based framework, the differ-
ent risk preference of each decision maker is simulated 
in the risk prioritization process. Second, the dynamic 
weight functions in the PT are modeled in the risk pri-
ority determining procedure, which is obtained by using 
the learning algorithm and entropy method. Then, it is 
incorporated into PT to construct a comprehensive way 
to determine the ultimate risk priority of each failure 
mode of train failures. Moreover, the proposed frame-
work takes into account the dynamic relationships among 
failure modes and overall reflects the potential correla-
tions among these failure modes in the risk prioritization 
process.

5 � Conclusions
An extended risk priority compution method based on 
dynaminc PT is reported in this work for enhancing the 
serviceability of FMEA framework for the train systems 
risk analysis. Further, the FCM is integrated with the con-
ventional PT to tackle train system failures risk analysis 
under dynamic and uncertain situation. Then, this new 
FMEA framework is tested through a real case of train 
system. The results show the improved model has the 
following feayures. (1) This introduced model is able to 
hold the failure risk assessment problem considering 
the dynamic risk preference and interdepent failures. 
Besides, this method also reflects the impact of dynamic 
reference effects on final failures ranking. (2) In addition, 
the proposed risk prioritization approach for the FMEA 
model not only can effectively address risk evaluation 
and prioritization problems with dynamic and uncertain 
risk information but also can determine the risk prior-
ity of failure mode by considering the decision maker’s 
dynamic risk preference and interactions among failure 
modes. In addition, the comparison analysis shows that 
the proposed FMEA framework can be adopted to actual 
risk analysis of train system failures, especially within the 
context where the risk preference of each decision maker 
is dynamic and uncertain.

Further research may focus on these directions, which are 
provided as follows. Firstly, the risk evaluation information 
is provided by decision makers using fuzzy numbers, which 
may lead to a subjective result. Thus, in future research, the 
data of failure modes from detection devices can be used. 

Secondly, there are only three experts in this paper, which 
cannot fully reflect the real risk states of failure modes. 
Hence, a large group decision-making method can be used 
in the risk prioritization procedure. Finally, the proposed 
dynamic risk prioritization approach can be extended to 
different risk analysis problems in various fields.
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