
Vol:.(1234567890)

Biomedical Materials & Devices (2024) 2:34–57
https://doi.org/10.1007/s44174-023-00086-9

1 3

REVIEW

Advancements of Nanotechnology and Nanomaterials 
in Environmental and Human Protection for Combatting the COVID‑19 
During and Post‑pandemic Era: A Comprehensive Scientific Review

Yudha Gusti Wibowo1  · Bimastyaji Surya Ramadan2 · Tarmizi Taher3 · Khairurrijal Khairurrijal4,5

Received: 8 March 2023 / Accepted: 27 April 2023 / Published online: 10 May 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC 2023

Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identi-
fied as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive 
papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper 
used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion 
related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts 
have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, 
as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomateri-
als and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To 
eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and 
global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical 
role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
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Introduction

In December 2019, an unknown pneumonia was confirmed 
in Wuhan City, Hubei Province, China. This unidentified 
pneumonia was later known as a novel coronavirus called 
SARS-CoV-2 and the disease caused by this virus is called 
Covid-19 (coronavirus disease 2019) spreading to many 
countries. In January 2020, the World Health Organization 

(WHO) declared a global emergency due to the rapid spread 
and increasing number of cases in China. As of now, it has 
infected more than 213 countries [1].

The COVID-19 pandemic poses a significant challenge 
for researchers to find solutions as soon as possible. Studies 
have shown that SARS-CoV-2, the virus causing COVID-19, 
can be found in various environments, such as specimens, 
blood, faeces, and solid waste from infected patients [2]. 
The use of single-use plastics for personal protective equip-
ment (PPE) has also led to a significant increase in plastic 
waste production, contributing to the growing problem of 
chemical waste [3]. The proper treatment of solid waste pro-
duced during the pandemic is essential, especially in devel-
oping countries where waste is often not treated according 
to established protocols. A recent study in Wuhan, China, 
showed that various disinfectant strategies, such as ozone, 
ultraviolet irradiation, and chlorine-based solutions, were 
effective in eliminating SARS-CoV-2 [4]. However, these 
technologies are costly, requiring expert operators and high 
energy consumption.

Nanotechnologies and nanomaterials have been used suc-
cessfully as alternative materials for wastewater treatment, 
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soil remediation, and air pollution control [5]. While there 
is no evidence of their effectiveness in eliminating viruses 
in the environment, combining nanotechnology and medi-
cine shows potential. For example, a medical study reported 
that chloroquine, combined with nanoparticles, could inhibit 
the endocytosis process and potentially be used to treat 
COVID-19 patients [6]. While there are currently no pub-
lished papers on using nanotechnology and nanomaterials to 
eliminate SARS-CoV-2 in the environment, there is potential 
for modifying these materials for environmental remediation 
during the pandemic.

Combining a chemical activator with a disinfectant may 
offer a promising approach for developing novel materials to 
remediate the environment during the COVID-19 pandemic. 
This review aims to identify the potential of nanotechnol-
ogy and nanomaterials in combatting the pandemic, while 
highlighting the challenges and opportunities associated 
with their use. By providing insights into this exciting field, 
we hope to inspire further research and development in this 
field. Therefore, this review will be beneficial for researchers 
and diagnostic experts who aim to use or develop nanomate-
rials and nanotechnology for defending, treating, or combat-
ting COVID-19.

Methods

This paper used the combination of systematic literature 
network analysis (SLNA) and content analysis to develop a 
comprehensive discussion related to the use of nanotechnol-
ogy and materials in environmental and human protection. 
This hybrid review is considered as practical and in-depth 
enough to develop a good literature review and get a faster 
content analysis compared to systematic literature review 
(SLR) or bibliometric analysis (BA) alone [7]. The SLNA is 
used to understand the current and past research trend, iden-
tify the most interesting topic in the field and analyze the 
potential gaps for future research direction [8]. Meanwhile, 
the content analysis was used to develop in-depth discussion 

in the recent advancements of the topic and deepen under-
standing of several materials that has been developed by 
researchers around the world [9]. The study began with 
metadata collection using PRISMA 2020 protocols and net-
work analysis using bibliometric analysis [9]. Then, qualita-
tive content analysis was employed. The detailed instruction 
of the methodology is explained for enabling any replication 
for this paper in the future (Fig. 1).

Data Collection

In this following section, we first describe the stages of 
employing systematic literature review protocols for select-
ing and evaluating the metadata related to nanotechnology 
and materials in environmental and human protection. As 
it is previously described, the procedures of collecting data 
were conducted based on PRISMA 2020 protocols which 
was written by Page et al. [10]. PRISMA 2020 protocols is 
the basic theoretical foundation for developing a good sys-
tematic review. First, identification of the research opportu-
nity in the field was justified by analyzing the relevance and 
understanding the importance of the research topic through 
the broadest analysis of many related scientific papers [11]. 
Then, data collection was done by choosing the research 
database and papers where the metadata selection took 
place. We used Scopus® database as this database is acces-
sible by the authors. Therefore, Scopus® is also a multidis-
ciplinary abstract and citation database for many scientific 
literatures worldwide. After choosing the database, several 
steps included for the SLNA, which consists of (1) the iden-
tification of the metadata related topic via databases and 
registers, (2) screening the records automatically by using 
the automation tools and assessment of the eligibility of 
the documents, and (3) inclusion of the studies for further 
analysis. We limited the search of database to the manuscript 
indexed before April 9, 2023.

During the metadata identification, selecting appropriate 
keywords becomes the most important thing to do first. In 
this study, we used two combinations of keywords, which 

Fig. 1  Research methodologies



36 Biomedical Materials & Devices (2024) 2:34–57

1 3

the first was nanotechnology AND nanomaterial AND 
environmental AND human AND protection. We found 
1267 documents for this effort. The keywords selection was 
followed by automation filter to limit the paper selection, 
then reducing the number of papers that is relevant to our 
research goals. Several inclusion criteria including the lan-
guage, publication year, document types, and source types 
were added to cut the amount of metadata. The language 
was chosen as English, the document types was limited to 
original research article, and conference proceeding, and the 
source types was restricted to journal. Those restriction cri-
teria were applied since we need to ensure the accessibility 
of each manuscript for further qualitative content processing. 
The publication year was limited to only from 2018 to 2023 
as we want to know the pattern of the research related to the 
topic during the three period: before (2018–2019), during 
(2020–2021), and after COVID-19 outbreak (2022–2023). 
After several restrictions by automation tools, we got 192 
metadata of the documents. Finally in the inclusion phase, 
the comma separated value (.csv) format of those metadata 
was extracted to be analyzed in the bibliometric and content 
analysis for developing the current research trends, gaps, 
and in-depth analysis.

Data Analysis

In the bibliometric analysis, we followed Song et al. concept 
to perform the performance and science mapping analysis. 
The performance analysis assesses the different parameters 
such as the journals, countries, and institutions [12]. Very 
principal indicators for this analysis are the counting of the 
number of articles or the quantity of the research and cita-
tions which refer to the quality of the research. We used 
VOSviewer and Excel software to develop co-authorship, 
citation, and co-occurrence keyword mapping. VOSviewer 
software is an open-source platform that can be used to 
visualize scientific landscapes easily [13]. The minimum 
threshold for the number of documents of a country and 
occurrences of a keyword in the co-authorship analysis and 
co-occurrence keyword was set to 2. Several scientific maps 
are generated using the help of software.

For bibliometric analysis especially through the title and 
abstract, Orange Data Mining software as a powerful open-
source platform for big data analysis and visualization [14]. 
A set of text mining analysis in the Orange Data Mining was 
used to perform the bibliometric analysis based on the title 
and abstract. Text mining is the automated extraction which 
can make unstructured data text become structured informa-
tion, whereas bibliometric is the statistical approach to ana-
lyze the current research trends and patterns in the metadata. 
Both of those approaches are really useful in SLR which 
sometimes overlap, but have the same pattern to summarize 

information and identify the relationship between literatures 
to gather new scientific concepts [15].

Word cloud was generated using Orange Data Mining 
software to give additional information related to the most 
occurrence words in the metadata. The bigger the size of 
the word, indicating the bigger frequency of the words in 
the corpus [16]. Therefore, this widget can be used as a pre-
liminary statistic, to monitor the effect of preprocessing in 
the bag of words. The corpus dataset was preprocessed by 
several preprocessors such as transformation (lowercase, 
remove accents, and parse html), tokenization (Regexp), 
and filtering (stopwords in English, numbers, regexp, and 
document frequency relative to 0.10–0.90). Topic modelling 
is used as the tools to analyze and identify which topics are 
the most interesting, discussed, and debated in the dataset 
[17]. The model to generate the hidden semantic structure 
is shown in Fig. 2. The title and abstract of the collected 
papers were used to find the topics. Latent Dirichlet Alloca-
tion (LDA) was used as the generative statistical models in 
this study since LDA is easily interpreted and doesn’t have 
negative value. Multidimensional scaling (MDS) was used 
to observe the similarities between the generated topics [18]. 
Boxplot, scatterplot, and data table are used to visualize the 
relationship between the chosen topics.

Qualitative content analysis was employed for in-dept 
analysis of the topic of nanotechnology and materials in 
environmental and human protection. Therefore, we fol-
lowed Mayring et al. to develop the framework and proce-
dures of qualitative content analysis. We used mixed proce-
dures between inductive and deductive category principal 
for defining, summarizing, extracting, and synthesizing 
new concept through literature survey [19]. Based on previ-
ous review works, content analysis can be used as a strong 
methods to filling up the method gaps of bibliometric review 
methods.

3. Research Overview

Performance Analysis

In this part, we explain the result of the performance analysis 
using VOSviewer and Excel software. The analysis indica-
tors consist of the number of publications, the number of 
affiliation country, and occurrences of keywords. Based on 
the collected metadata, the number of published documents 
related to the topic of nanomaterials and nanotechnology on 
environmental and human protection are increase dramati-
cally in 2018–2019. Then, a slight decrease can be found 
in 2020–2021 which indicates the shift and shock of the 
worldwide researchers during COVID-19 outbreak. During 
2021–2022, the number of research increased a bit but may 
increase again until the end of 2023. The biggest and the 



37Biomedical Materials & Devices (2024) 2:34–57 

1 3

most productive journals publishing documents related to 
the topic is chemosphere, followed by Science of the Total 
Environment, ACS Applied Materials and Interfaces, Envi-
ronmental Research, and Nanoimpact (See Fig. 3).

As can be seen in Fig. 4, From the total of 192 articles, 
there are 58 countries found, and 42 meet the thresholds. 
The biggest contributor of the study on nanotechnologies 
and nanomaterial in human and environmental protection 
is India (40 documents), then followed by United States (32 
documents), China (34 documents), Italy (21 documents), 
and Brazil (14 documents). The oldest publication can be 
found in the European countries such as France, Germany, 
Denmark, and Bulgaria, while the newest publication 
found in the Asian countries such as Malaysia, Bangladesh, 

Pakistan, and Saudi Arabia. During the COVID-19 outbreak 
(2020–2021), the US, China, and India are the leading coun-
tries who studied about the topic. There are seven clusters 
generated from the co-authorship countries which indicate 
the affiliation countries which are connected between the 
documents. The biggest cluster was found in yellow and 
green cluster. While the yellow cluster is centered in United 
States and China, the green clusters is focused on India. 
Probably, due to the biggest cases of COVID-19 and the big-
gest populated countries are found in that area, the number 
of documents can be higher than other countries.

From Fig. 5, some information can be extracted from the 
mapping. Of the 685 keywords, 78 meet threshold and 5 
items are not shown because it is not connected with the 

Fig. 2  Topic modelling through the corpus: Title and abstract

Fig. 3  Documents by year to 
the related topic and top five 
journals publishing the research 
paper related to the general 
topic
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largest set of connected items. The oldest keywords in 
the set of metadata are found such as “risk assessment”, 
“nanotoxicity”, “nanosafety”, and “risk management.” This 
result indicates that the oldest keywords, especially in the 
year before COVID-19 outbreak, are focusing on the risk 
evaluation caused by the production of nanomaterials and 
nanotechnology. The newest publication which indicates the 
year after pandemic is determined on food engineering and 
biochemistry research based on the keywords, such as “food 
packaging”, “food preservation”, “food safety”, “food pollut-
ants”, “green chemistry”. During the outbreak, the research-
ers are focusing on the human prevention of the spreading 
of coronavirus. It is also indicated by the occurrence several 
terms such as “SARS-COV-2”, “COVID-19”, “nanovac-
cines”, “engineered nanomaterials.” There are 11 clusters 
that can be generated in the set of keywords. The biggest 
keywords are found in the red cluster, while it is indicating 
the use of nanotechnology and nanomaterials in the water 

and wastewater treatment as environmental protection. The 
second cluster can be found in the green cluster indicates the 
use of nanomaterials for human protection from COVID-19. 
This finding is interesting since the use of nanotechnology 
is focusing on such themes.

LDA Modelling

Before we conducted the LDA modelling, we used word 
cloud to confirm that the preprocessing activity was done 
in a good way so then we can model the text using LDA 
approaches. As can be seen in Fig. 6, several words can be 
generated from the title and abstract. It appears that beyond 
the keywords that is used for data collection, the top 5 inter-
esting words that can be extracted are “nanoparticles” (145 
words), “applications” (124 words), “food” (114 words), 
“water” (107 words), and “health” (97 words). There are 
10 topics that are derived from the metadata of title and 

Fig. 4  Co-authorship based on affiliation countries: a Overlay and b network visualization
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abstracts as it can be seen in Table 1. Several new topics 
are shown to be generated using previous text mining by 
VOSviewer.

From the marginal topic probability (MTP) shown in 
Fig. 7., the biggest value of MTP can be generated in Topic 
5 which is environmental risk assessment of nanomaterials 
and nanotechnology development. The corpus data shows 
that the biggest trends fall to the environmental applicabil-
ity of the nanomaterials and technology. Then, topics 10, 8, 
and 1 are following the biggest topic that can be generated. 
The topic is focused on the use of nano-based products for 

environmental protection and food sensing, and specifically 
the employment of carbon-based material. Besides, the low-
est MTP values is shown in the Topic 3 which is about the 
use of nanomaterial for plant development. This could be the 
research gaps for further interventions (Figs. 8).  

Based on MDS results, there are similarities between 
Topic 1, 4, and 9. This is also confirmed using the result 
presented in Table 1. The result showed that all topics are 
generally discussed about the use of nanomaterials and 
technology for the environment. The Topic 1 and 9 even 
almost similar where the difference is only about the effect 

Fig. 5  Co-authorship based on affiliation countries: a Overlay and b network visualization
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of the application to the environment. Topic 4 is focused on 
the development of nanomaterials from organic material. 
All topics presented in the Table and LDA results, showed 

that the use of nanomaterials and technology for environ-
mental applications are more broadly discussed than the 
use for human protection, considering the future research 

Fig. 6  Word cloud

Table 1  Generated topics

Topic number Topic label Topic key words

1 Nano-based product for environmental application Nanomaterials, application, based, plant, nano, nanotechnology, 
nanoparticles, light, field, using

2 Synthesis of new nano materials Using, analysis, study, materials, methods, effect, properties, deliv-
ery, synthesis, synthesized

3 Nano-based product for plant development Nanomaterial, nanotechnology, plant, nanomaterials, different, 
carbon, society, global, novel, based

4 Development of nano-based product from organic material Various, nanotechnology, nanomaterials, review, nanoparticles, dif-
ferent, used, organic, potential, development

5 Environmental risk assessment of nanomaterials and tech-
nology development

Nanomaterials, risk, assessment, environmental, health, exposure, 
nano, nanotechnology, research, risks

6 Drug-based nanomaterial Water, nanomaterials, drug, release, nanoparticles, based, delivery, 
carbon, due, potential

7 Food preservation and packaging Exposure, food, nanotechnology, applications, effects, oxide, toxic-
ity, delivery, safety, health

8 Carbon-based nanomaterial and technology Based, carbon, chemical, synthesis, biological, metal, food, nano-
materials, applications, physical

9 Effect of the application of nanomaterials in environment Nanoparticles, potential, environment, application, plant, nanoma-
terial, nm, nanomaterials, effects, increase

10 Nano-engineered materials for food sensing Nano, food, based, properties, materials, nanomaterials, nanotech-
nology, products, use safety
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application related to the topic itself. However, to confirm 
this all-statistical analysis, further in-depth analysis should 
be done to get a comprehensive view of the research core.

SARS‑COV‑2 and Post‑pandemic Overview

In December 2019, China Health Authority alerted the 
WHO about unknown pneumonia in Wuhan City, Hubei 
Province. The first case was reported on 8th December 
2019 from Traditional Huanan Seafood Market. In January 
2020, WHO abbreviated coronavirus as 2019-nCoV, and the 
disease was named COVID-19 (Coronavirus disease 2019). 
This virus is a pathogen that attacks the human respiratory 
and is called severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2). According to WHO, 9.93 Million people 
were confirmed positive for COVID-19 around the world 
(25th June 2020); since December 2019, more than 481 
thousand people were dead, and 4.72 million have recov-
ered. This pandemic has been spreading to more than 213 
countries around the world. The USA is one of the most 
significantly infected people around the world. More than 
2.4 million people in this country were infected with new 
cases, more than 39,000 each day (data available on https:// 
www. world omete rs. info/ coron avirus/?).

SARS-CoV-2 is a member of Coronaviridae and Nidovi-
rales. These families consist of two sub-families, Toroviri-
nae and Coronavirinae. The family of Coronavirinae was 
subdivided into four genera, such as Alphacoronavirus. 
This virus is a human coronavirus, two of the identified 
human coronavirus (HcoV) are HcoV-NL63 and HcoV-
229E, the second genera of Coronavirinae are Betacoro-
navirus includes HcoV-OC43, SARS-HcoV (Severa Acute 
Respiratory Syndrome Human Coronavirus), MERS-CoV 
(Middle Eastern respiratory syndrome coronavirus) and 
HcoV-HKU1. Gamacoronavirus includes viruses of birds 
and whales, and the last is Deltacoronavirus, including 
viruses isolated from birds and pigs. SARS-CoV and MERS-
CoV is not more pathogen than SARS-CoV-2; this virus 
has + ssRNA (single-stranded RNA) virus [20].

SARS-CoV-2 is a pathogenic virus with a genome indi-
cated to two bat-derived-SARS-like 2018 coronaviruses in 
eastern China (Bat-SL-COVZXC21 and bat-SL-CoVZC45) 
and 79% similar to MERS-CoV [21]. Another detected coro-
navirus caused by bats was confirmed in Yunan Province 
(92% genome sequence identity). This virus is called Bat-
CoV RaTG13 [22]. A recent study informed that there is 
no evidence of recombination of the SARS-CoV-2 genome 
from original viruses from the bat (i.e., SARSr-CoVs, Bat-
CoV RaTG13, and SARS-CoV). Thus, a study is needed 
to analyze an intermediate host who transmitted this virus 

Fig. 7  LDA results

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
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to humans. The first study assumed that Huanan Seafood 
Traditional market is the first place where this virus found. 
In this place, the researcher assumed that SARS-CoV-2 was 

transmitted from animals to humans. However, a genomic 
study has provided a shred of evidence that this pneumo-
nia was transmitted from another, no one confirmed that 
this virus is spreading from Huanan Traditional Market in 
December 2019, first.

According to the isolated patient of COVID-19 from 
Wuhan Traditional Seafood Market, the genome of Wuhan-
Hu-1 coronavirus (WHCV) was detected. The detected 
strain of SARS-CoV-2 is 29.9 kb, while MERS-CoV and 
SARS-CoV have a positive-sense of the RNA genome of 
27.9 kb and 30.1 kb [23]. The ACE2 was founded in the 
respiratory cell from the infected patient with COVID-19. 
It is also known as the receptor for SARS-CoV and regu-
lates of human to human transmission and cross-specimen 
[24]. A research institute in China confirmed the diagnostic 
criteria for SARS-CoV-2. The key to the detection of SARS-
CoV-2 is nucleic acid detection in the nasal and throat swab 
sampling or respiratory track sampling by real-time PCR. 
On 7th January 2020, the tested virus from infected people 
from Wuhan informed us that the virus has more than 95% 
homology with bat coronavirus and 75% similarity with 
SARS-CoV. This paper also confirmed that environmental 
samples from Huanan Traditional Marker also tested posi-
tive and told the virus urinated from there [25]. After 1st 

Fig. 8  MDS map

Fig. 9  Nanotechnology and nanomaterial for nanomedicine and virus 
detection
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January 2020, China confirmed the person to person trans-
mission. This transmission of SARS-CoV-2 is direct contact, 
possible aerosol transmissions, and droplet. Human sneezes 
cough, talks or laugh, aerosol or droplets are generated and 
fall from the mouth due to gravity [26]. The transmission of 
SARS-CoV-2 from the material (i.e., door, window, table, 
and many more) was founded. The aerosol and droplets from 
infected people maybe attach to goods and become a SARS-
CoV-2 transmission. In addition to the transmission caused 
by physical contact, research on the transmission of Covid-
19 in pregnant women to their babies is interesting to study. 
A recent study informed that a total of 31 infected pregnant 
moms with COVID-19 showed no COVID-19 infection in 
their placentas or neonates [27]. Unfortunately, samples of 
this research are limited, and two of the samples were died 
due to respiratory complications. Transmission of COVID-
19, also reported by fecal–oral, independent laboratories 
from Wuhan, China, declared that they have successfully 
isolated infected patients infected from the digestive system. 
This fact informed that SARS-CoV-2 could infect people 
through the digestive system [28].

A recent study informed that by sampling, 1099 con-
firmed cases in the laboratories from China. The typi-
cal clinical manifestation of positive COVID-19 is fever 
(88.7%) and cough (67.8%). Shortness of breath (18.6%), 
fatigue (38.1%), production of sputum (33.4%), headache 
(13.66%), and sore throat (13.9%) [29] and part of patients 
manifested vomiting (5.0%) and gastrointestinal symptoms 
with diarrheal (3.8%). This data confirmed consistency with 
previous data in Hubei Province, where fever and cough are 
the dominant symptoms [30]. Based on the current situation, 
the critical condition of patients always shows symptoms 
of complications such as severe illness, acute respiratory 
distress syndrome (ARDS), shock, arrhythmia, acute cardiac 
injury, acute kidney injury, liver dysfunction, and secondary 
infection. A recent study also showed that elderly patients 
with ARDS and comorbidities showed a higher death risk 
[30].

The incubation period of SARS-CoV-2 is estimated to be 
between 3 and 7 days or range 2–14 days for long transmis-
sion. The necessary reproduction number of SARS-CoV-2 
estimates ranged from 1.4 to 6.49 with a mean of 3.28. This 
value is more prominent than SARS-CoV (the reproduc-
tion number of SARS-CoV is 2–5). Several treatments were 
treated to solve this pandemic. The possible treatment for 
SARS-CoV-2 is general, antiviral therapy, cellular therapy, 
immunotherapy, and traditional Chinese medicine. General 
treatment is the treatment with general activity such as bed 
rest, maintaining and ensuring sufficient energy. This treat-
ment should use monitoring vital signs such as pulse, heart 
rate, oxygen saturation, blood pressure, and respiratory 
rate). The second treatment is antiviral therapy, including 
interferon-alpha, lopinavir/ritonavir, ribavirin, chloroquine, 

arbidol (umifenovir), and remdesivir. The third therapy is 
cellular therapy, including natural killer cells and mesen-
chymal stem cells (MSCs), and the fourth therapy includes 
immunotherapy, including convalescent plasma therapy and 
monoclonal antibodies [31]. The definitive therapy is Chi-
nese traditional medicine that uses glycyrrhizin as an active 
component of the root. Glycyrrhizin reported successfully 
to treat positive SARS [31]. This material also can bind 
ACE2 with potential anti-COVID-19 effect. Another one of 
traditional medicine from China is quercetin. This material 
also reported the antiviral effect by inhibiting the 3Clpro 
of SARS-CoV [32] and successfully blocked the entry of 
SARS-CoV into host cell [33].

In post-pandemic era nanotechnology and nanomateri-
als reported the crucial role for predict and defence of new 
pandemic using nanosensor [34]. Strategy for synergy of 
prevention, detection and diagnosis reported by nanomate-
rial sensor such as silicon, nanowires, p-type Si nanowires 
and n-type Si nanowores [34]. Another sensor that need to 
develop in post-pandemic condition are chemical sensor, 
gas sensor, DNA sensor, electro-chemical sensor, and opti-
cal sensor [34]. These sensors need to develop due to their 
powerful abilities for viruses detection. Thus, when the virus 
can be detected before spreading as pandemic, the pandemic 
can be hold.

Overview of Nanotechnology for Manage 
the SARS‑CoV‑2 During and Post‑pandemic

Nanotechnology and nanomaterials have the potential to 
manage the pandemic. Detecting infected viruses quickly is 
crucial in stopping the spread of the pandemic. The complete 
sequence of the SARS-CoV-2 genome was determined and 
shared globally, aiding in the development of vaccines and 
medicines. Cryo-electron microscopy was used to character-
ize the nanoscale features of the virus. Traditional lab-based 
tests for measuring antibody levels and viral load have been 
in high demand, leading to an emphasis on point-of-care 
and self-administered rapid antigen testing using nanopar-
ticles like colloidal gold [35]. Nanopore-based sequencing 
techniques and nanomaterial-based sensors have also been 
developed for virus detection [36]. These advancements have 
allowed for timely identification of asymptomatic cases in 
various settings, including healthcare.

Nanotechnology has emerged as a promising tool for 
managing the SARS-CoV-2 virus during and after the pan-
demic. One of the critical challenges in controlling the pan-
demic has been rapid and accurate detection of the virus. 
Nanotechnology can help in this aspect by enabling faster 
and more sensitive virus detection. For example, traditional 
lab-based tests for measuring antibody levels and viral load, 
such as RT-PCR [37], have been in high demand during 
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the pandemic. Therefore, greater emphasis has been placed 
on point-of-care and self-administered rapid antigen testing 
using nanoparticles such as colloidal gold. In addition to 
virus detection, nanotechnology can also aid in the develop-
ment of effective therapeutics and vaccines. Nanoparticles 
can be used as drug carriers to deliver drugs directly to the 
site of infection, reducing side effects and increasing efficacy 
[38]. Nanoparticles can also be used to improve the stability 
and immunogenicity of vaccines, increasing their effective-
ness [39, 40].

Nanotechnology can also help in developing effective 
disinfection strategies to prevent the spread of the virus. 
Nanomaterials such as silver nanoparticles and copper oxide 
nanoparticles have been found to have potent antimicrobial 
properties and can be used as disinfectants [41, 42]. Fur-
thermore, nanotechnology can help in the development of 
robust and reliable diagnostic tools and sensors for the early 
detection of future pandemics. Nanopore-based sequencing 
techniques and nanomaterial-based sensors have already 
been developed for virus detection, and further advance-
ments are expected in this field. Overall, nanotechnology has 
the potential to revolutionize the way we manage pandemics 
like SARS-CoV-2, enabling faster and more effective detec-
tion, prevention, and treatment of infectious diseases.

Various types of nanoparticles, such as colloidal gold 
nanoparticles, quantum dots, rare earth nanoparticles, mag-
netic nanoparticles, and carbon nanotubes, can be utilized in 
immunoassays for detecting different targets. These tests can 
use samples from nasal swabs, throat swabs, sputum, saliva, 
or serum. As of May 2022, there are 49 US FDA-approved 
antigen diagnostic devices for COVID-19, most of which 
are colloidal gold nanoparticle-based Lateral Flow Assays 
(LFAs). In immunological assays, different nanoparticles are 
coupled with antibodies to either produce a visible color 
change or allow for fluorescent, electrochemical, or mag-
netic signal detection when the conjugated antibody binds 
to the antigen. Colloidal gold nanoparticle based LFA is 
the most common type, providing the benefits of low cost 
and an uncomplicated method for reading results. The flu-
orescence-based detection method uses fluorophores such 
as quantum dots and rare earth nanoparticles, which offer 
higher sensitivity and a lower detection limit compared to 
colorimetric detection. QD-based fluorescence assays can 
achieve at least 10 times higher sensitivity than gold-based 
ones. However, specific fluorescence reading instruments 
are needed for reading the results. Magnetic LFA is another 
method for antigen testing, measuring the stray field changes 
from the magnetic nanoparticles, offering high sensitivity 
and low detection limits due to no or negligible background 
noise. Nevertheless, specific instruments such as giant mag-
netoresistance sensors are needed for detection and are thus 
not widely used yet. Recently, hybrid nanoparticles such as 
QD-loaded mesoporous silica-based LFA could enhance 

detection sensitivity by up to 104 times compared to com-
mercial colloidal gold-based LFA and may, therefore, be 
used for early detection of SARS-CoV-2 infection. Table 2 
informed the nanomaterials and nanotechnologies com-
monly used in treating, detection and defeat viruses.

Nanotechnology and Nanomaterials Before 
and During Pandemic

In recent decades, research on nanotechnology and nanoma-
terials has been developing in various countries. Nanotech-
nology has a broad range of applications, including semicon-
ductor chips and microelectronics, ceramics, metal oxides, 
lighter-weight alloys and metallic compounds, fuel cells, 
batteries, purification, pharmaceuticals, and enzymes. In 
the medical field, nanotechnology is being used to develop 
drug delivery systems that can specifically target cancer 
cells. Additionally, nanotechnology is being utilized as an 
alternative method for solving the problem of contaminated 
soil, sediments, and solid waste [43]. Sorption the contami-
nants fir water and air pollution, oil and water separation 
[44], destructing of bacteria (i.e., anthrax, E Colli, etc.), and 
purifying clean water without chlorination [45, 46].

The development of nanotechnology in environmental 
issues includes treatment and remediation. The EPA has 
been developing nanotechnology as a treatment-technolo-
gies for effectively treat environmental pollutants. Besides, 
EPA was also developing this technology as a remediation 
technology for environmental pollutants [47]. Several inter-
national organizations put close attention to this issue, such 
as The Federal Water Pollution Control Act (FWPCA), the 
Marine Protection, Research and Sanctuaries Act (MPRSA), 
the Safe Drinking Water (SDWA) and the Oil Pollution Con-
trol Act (OPA). These organizations were put on interna-
tional congress in 1977, renamed the FWPCA the Clean 
Water Act (CWA), and substantially revamped and revised 
the control of toxic water pollutants. In recent decades, 
nanotechnology and nanomaterials have been developing. 
The extraordinary feature and novel properties of nanoma-
terials are metals, ceramics, metals oxide, polymers, and 
modified carbon materials (i.e., fullerenes and carbon nano-
tubes), even this material also developing into Fanta black. 
The development of nanotechnology and nanomaterials is 
about modifying metals, iron, aluminum, nickel, silver, gold, 
copper, silica products, mixed oxide, iron oxide, zinc oxide, 
titanium, and aluminum dioxide.

The nanomaterial was produced by high-temperature pro-
cesses (i.e., plasma-based and flame-hydrolysis), chemical 
vapor deposition (CVD), sol–gel processing, electrodeposi-
tion, mechanical crushing via high-energy ball milling, and 
naturally occurring materials [48]. One of the robust materi-
als used for wastewater treatment is carbon nanotubes and 
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buckyballs. These materials are a seamless cylinder com-
posed of carbon in a hexagonal arrangement. This material 
also produced in a single-wall nanotube of multiwall nano-
tubes. This material has a surface area of more than 1500 
 m2/g and a density of 1.40 g/cm3 [49]. Carbonnanotubes 

and buckyballs are excellent material as adsorbent and coat-
ing material [50, 51]. Researchers Huston’s Rice University 
found the buckyballs vaporizing carbon, allowing it to con-
dense and form highly stable crystals composed of 60 atoms 
of carbon apiece (C-60) [52].

Table 2  Nanomaterials/Nanotechnologies for beating pandemic COVID-19

Material/Nanotechnology Description References

Graphene oxide To make masks that are highly effective at filtering out particles [75–80]
Silver nanoparticles An antiviral agent that can help prevent the spread of viruses 81–87]
Nanoscale copper To kill viruses and bacteria, making it useful in masks and other protec-

tive equipment
[88–91]

Zinc oxide nanoparticles To kill viruses and bacteria, making it useful in hand sanitizers and other 
disinfectants

[92–95]

Carbon nanotubes To make more durable and effective filters for masks [96–99]
Nanofibers To make masks and other protective equipment to increase filtration 

efficiency
[100–103]

Quantum dots To detect the presence of viruses and bacteria [104–110]
Gold nanoparticles To deliver drugs directly to infected cells, increasing the efficacy of treat-

ments
[11, 111–113]

Liposomes To deliver drugs directly to infected cells and can also be used as vaccine 
delivery system

[114, 115]

Iron oxide nanoparticles To be used in diagnostic tests to detect the presence of viruses and 
bacteria

[116–120]

Nanodiamonds To make more durable and effective filters for masks [121, 122]
Antimicrobial coatings To be applied to surfaces to prevent the spread of viruses and bacteria [123–128]
Nanosensors To detect the presence of viruses and bacteria in the air or on surfaces [12, 34, 82, 100, 116, 129]
Nanoporous materials To be used in filters to increase filtration efficiency [101, 103, 130–133]
Fullerenes To make more durable and effective filters for masks [10, 134, 135]
Nanorobots To deliver drugs directly to infected cells [136, 137]
Natural nanoparticles To be used as an antiviral agent and can help prevent the spread of 

viruses
[138, 139]

Titanium dioxide nanoparticles To make self-cleaning surfaces, which can help prevent the spread of 
viruses and bacteria

[9, 140–143]

Hydrogels To be used in masks and other protective equipment to increase filtration 
efficiency

[67, 144, 145]

Metal–organic frameworks To be used in diagnostic tests to detect the presence of viruses and 
bacteria

[43, 146]

Magnetic nanoparticles To be used in diagnostic tests and as a drug delivery system [147–151]
Electrospun fibers To be used in masks and other protective equipment to increase filtration 

efficiency
[140, 146, 152–156]

Nanowires To be used in sensors to detect the presence of viruses and bacteria [157–160]
Nanoscale silica To be used as an antiviral agent and can help prevent the spread of 

viruses
[12, 161–166]

Dendrimers To be used to deliver drugs directly to infected cells [167–172]
Nanocellulose To be used to make more durable and effective filters for masks [129, 173–177]
Nanofluidics To be used in diagnostic tests to detect the presence of viruses and 

bacteria
[178–183]

Nanocatalysts To be used to sterilize surfaces and prevent the spread of viruses and 
bacteria

[184–192]

Quantum well/ quantum dot structures To be used in sensors to detect the presence of viruses and bacteria [193–198]
Nanoscale iron To kill viruses and bacteria, making it useful in masks and other protec-

tive equipment
[12, 113, 162–166, 199–203]

Virus-like particles To be used as a vaccine delivery system [144, 204–209]
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The development of nanotechnology and nanomaterial 
never be the same after this material found. Advanced com-
posites are one of the expansions of nanomaterials to solve 
the environmental problem. A combination of polymer-
matrix nanocomposite was reported in 2015. This novel 
material developed for wastewater treatment using mem-
brane technology [53]. Unfortunately, this material has been 
growing in the lab scale. The progress of nanocomposites 
as an alternative solution for wastewater treatment has been 
developing in the lab scale. It was two years since the paper 
published, no one scientific paper reported the membrane of 
nanocomposite applied in wastewater treatment. Generally, 
nanomaterials (ZnO, Ag, Cu, GO,  TiO2, graphene,  Al2O3, 
 Fe3O4, zeolite, clay, and  SiO2) reported enhancing the hydro-
philicity of the polymeric membrane. This paper also sug-
gested that membrane nanocomposite must combine with 
other technologies (membrane bio-reactor, electro filtration, 
and photocatalyst) [54]. Thus, nanotechnology development 
must be improved until this technology can be applied in the 
environmental remediation.

The application of nanotechnology for soil contamina-
tion was reported—several nanomaterials used as novel 
materials to solve pollutants from contaminated soil. Sev-
eral materials were used: solid lipid N.P.s, liposomes, poly-
meric N.P.s, gold N.P.s, quantum dots, carbon nanotubes, 
and dendrimers cerium oxide N.P.s and nanogels [55]. Most 
heavy metals such as Pb, Cd, As, Cu, Hg, Ni, and many 
more were containing the soil. These heavy metals can be 
removed by applying nanotechnology. Colloid and an aque-
ous slurry of nanoparticles can be removed heavy metals in 
contaminated soil using gravity or pressure. Adsorptive and 
reactive materials used to solve heavy metals contaminated 
in soil, adsorptive materials can remove contaminants from 
soil using adsorption (due to high surface area and unique 
structure). A nanomaterial called zero-valent iron reported 
can solve various pollutants in soil. This material success-
fully reduces  Hg2+,  Ni2+,  Cd2+,  Cr6+, and  Pb2+ from con-
taminated soil [56]. Standard redox potential from heavy 
metals is a mechanism during the decontamination process. 
Cd and Zn have more negative redox potential values than 
zero-valent iron. This treatment can be adsorbed on an iron 
shell. Besides, Ni and Pb have slightly positive redox poten-
tial that can be reduced by zero-valent iron and also can be 
adsorbed on zero-valent iron nanoparticles [57].

The utilization of nanotechnology was developed to solve 
the air pollution. A recent study informed that nanomaterial 
promoted as a novel material for gasses and particulates on 
the atmosphere. Several types of equipment used to control 
particulate matter such as gravity settlers, electrostatic pre-
cipitators, cyclones, fabric filters, and mechanical collectors 
[58]. Nanotechnology also used to remove sulfur dioxide 
from boiler flue gas [59]. Nanomaterial reported as a novel 
material for absorption and adsorption air pollution. Several 

factors for environmental remediation using nanotechnol-
ogy are availability space, equipment location, maximum 
allowable emission, adequate utilities, the contribution of air 
pollution for wastewater and solid waste, and the last is air 
pollution contribution for plant noise level. In another study, 
nanotechnology is used as a tool for air quality monitoring. 
This technology successfully builds a sensitive sensor for 
very low pollutants in the air (i.e., NO, CO,  NO2,  O3). This 
semiconductor targeted to detected CO in 3 ppm concentra-
tion,  NO2 in 50 ppb, NO in 100 ppb, and  O3 in 20 ppb [60].

Nanotechnology has been developing in medical thera-
peutics. Nowadays, nanotechnology is a potential issue 
in life science, especially for health care and medicine. A 
novel material developed as biocompatible nanomaterials 
for artificial tissues and organs, and novel materials such as 
alumina ceramics and toughened with nanosized zirconia, 
these nanomaterials are being developed to extend the life of 
ceramic hip and knee replacement materials [61]. Nanotech-
nology and nanomaterials also reported as future medicine, 
these materials used for orthopedic medical applications. In 
this field, nanotechnology was used as a bone implantation 
material, this material used for hip or knee prosthesis and 
osteointegration. The nanophase carbon fiber compacts are 
better than conventional carbon fiber for bone cells (material 
is less than 1 μm) [60].

Nanotechnologies and Nanomaterials 
for Environmental Protection 
in Post‑pandemic

The recent study informed that 2D Material is a potential 
nanomaterial for antimicrobial in post-pandemic era. As the 
COVID-19 post-pandemic era, there is a need to monitor the 
effectiveness of current nanomaterials against emerging var-
iants and tailor their properties for specific needs. In silico 
computational analysis can help to screen antiviral or anti-
bacterial properties of 2D materials by performing docking 
analysis between pathogens and the materials. The success 
of mRNA-lipid nanoparticle vaccines against COVID-19 
highlights the importance of developing nanotechnology-
based delivery vectors, which 2D materials can contribute 
to. Besides, 2D materials possess photocatalytic and photo-
active properties that have great potential in cancer therapy, 
membrane filtration, and pathogen inactivation. However, 
there are some challenges to address, such as the lack of 
standard synthesis techniques, small-scale production, 
retention time, and the actual mechanism of disinfection. 
As developments in the antibacterial studies of 2D materials 
may hold promise for antiviral studies of the same materi-
als, scientists should explore the potential of 2D materials 
for both applications. Research efforts should also aim to 
evaluate both antibacterial and antiviral properties of 2D 
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materials to develop and design novel antimicrobial agents 
for the future.

In addition, 2D materials also reported can solve the 
future pandemic in material disinfection. This condition 
will be helpful for defence the new pandemic after post-
pandemic era. Environmental pollutants such as pathogens, 
organic and inorganic wastes can cause health issues. For 
instance, Escherichia coli (E. coli) can cause illnesses and 
deaths in children globally through contaminated water. 
Common disinfection methods like UV light, chlorination, 
and ozonation can be ineffective and costly due to pollution, 
toxic by-product generation, and high energy consumption. 
Natural enzymes like peroxidase are also impractical due 
to poor stability, production cost, and complicated purifica-
tion. Thus, researchers have explored 2D materials like GO, 
MoS2, and MXenes for their innate antimicrobial properties. 
These materials have unique properties such as large surface 
area, stability, catalytic activity, low toxicity, and energy-
conversion ability. Researchers have found that 2D materials 
can induce oxidative stress on pathogens and activate pho-
tothermal effects through NIR light, making them effective 
in antimicrobial applications.

Applied of Nanotechnology and Material 
for Preventing Virus Transmission

Nanotechnology has been using for semiconductors, nano-
material, thin-film, and censors. These materials were used 
for electronic, environmental remediation, and medicine. 
Nowadays, more than nine million people are globally 
affected by the viral disease (COVID-19). This pandemic 
causes a severe impact on millions of dead people and 
human health and socio-economic development. Research-
ers have been developing antiviral therapy using nanoma-
terials. Nanomaterials have different morphologies and 
shapes, due to nanometric size, nanomaterials allow drug 
delivery through impermeable barriers, high surface area 
to volume ratio is beneficial for improved efficacy and large 
drug loads. Increased possibility of personalized therapy and 
decreases the emergence of drug resistance. The combina-
tion of nanotechnology and medicine called nanomedicine. 
Nanomedicine has been using in several viruses treatment 
(i.e., Human Immunodeficiency Virus (HIV), Hepatitis B 
Virus (HBV), Hepatitis C Virus (HCV), Herpes Simplex 
Virus (HSV), Human Papilloma Virus (HPV), Influenza, 
Human Parainfluenza Virus (HPIV) and Ebola Virus Dis-
ease (EDV)) (Fig. 9).

A combination of nanotechnology and medicine created 
nano-vaccines. This novel combination has several advan-
tages, such as small size. Thus, it is readily identified by the 
human immune system, nano-vaccines are better vaccine 
than conventional vaccines in numbers of the way such as 

more stable, nano-vaccines do not need to be transported 
in cold chambers due to can be lyophilized, and nano-vac-
cines have a longer shelf life for vaccines than conventional 
vaccines. One successful nano-vaccines from lipid-based 
nanosystems for HAV treatment, another one succeed nano-
vaccines is liposal based vaccine for the prevention of HBV, 
and a virosomal adjuvant-based vaccine is administered to 
prevent influenza. The application of nanotechnology for the 
detection and treatment of disease was developed, especially 
for molecular diagnostic nanoparticle used in biomolecular 
in this field detection system of these nanoparticles based 
on noble metal nanoparticles (silver and gold) due to their 
unique physicochemical and optical properties. This mate-
rial can be synthesized as a single inorganic compound, core 
shells, or alloys, all of these materials have different shapes 
and sizes. Based on a previous study, the SARS-CoV-2 can 
be detected by diagnostic in nucleic acid. A recent study 
informed the utilization of nanotechnology for diagnostic 
nucleic acid using non-diagnostic. This technology can be 
identified as the genome sequencing of pathogens and pos-
sible to identify specific DNA fingerprints for strains and 
organisms.

The diagnostic system using nanotechnology-based on 
noble metal nanoparticle detection can be done by several 
techniques such as colorimetric [62], electrochemical [63], 
fluorescence [64], lateral flow [65], SERS, and others, of 
the technique have weaknesses and strengths. Utilization of 
colorimetric reported in 2015. This technology successfully 
detected influenza A virus using antibody-functionalized 
gold nanoparticles. In this study, the researcher reported they 
succeeded to developed colorimetric immuno-sensor based 
on gold nanoparticles modified with the monoclonal anti-
hemagglutinin antibody. They assumed that this technology 
is a fast, selective detection of influenza A virus and simple, 
this technology can be detected with naked eyes when the 
color has been changed from red to purple and quantified 
with the absorption of spectral measurement [62] Detec-
tion of influenza virus also reported in 2016, researchers 
from Oxford University was developed rapid electrochemi-
cal with silver nanoparticles. This technology called the art 
nano-electrochemical technique. This technique successfully 
detected a single virus level in real time [63]. Various strate-
gies were developed and combined with nanotechnology, 
including developing a homogeneous colorimetric assay, 
one of the applied nanotechnology in medical applications. 
This technology utilized the UV–Vis spectra behavior of 
noble metal nanoparticles and is using Au nanoparticles. 
This technology is the basis of a plethora of colorimetric 
detection scheme.

Aggregation of nanoparticles may be included by DNA 
hybridization of DNA crosslinkers, increasing ionic strength 
and protein scaffolding [66]. Nanotechnology also devel-
oped for H5N1 influenza virus detection. This material is 
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fluorescent aptasensor based-on the core–shell nanoparti-
cles metal-enhanced fluorescence. A fluorescent aptasensor 
system was developed as a sensitive detection for recombi-
nant hemagglutinin (rHA) H5N1 protein in human serum. 
Combination of guanine-richen anti-rHA aptamers by 
SELEX immobilized in the  AgSiO2 nanoparticle surface, 
which performed as a metal-enhanced fluorescence. This 
nanotechnology reported successfully to investigate the 
ability of the sensing system to detect rHA protein from 
the complex matrix [64]. Although this technique reported 
successfully developing as a detector for the H5N1 virus, 
but this technique not yet applied for SARS-CoV-2. How-
ever, the potential application for SARS-CoV-2 detection 
may be applied. In recent fact, a patient in Indonesia was 
dead due to SARS-CoV-2 infection, but the double rapid test 
showed his negative for COVID-19. These technologies may 
be developed as a simple, fast, and accurate technology for 
SARS-CoV-2 detection.

Nanotechnology also reported success as infection dis-
ease treatment. Several nanomedicines developed in the 
world, such as carbon nanotubes and fullerenes, can reduce 
E. coli DH5-alpha, Vibrio fischeri, and Bacillus subtilis 
with cell membrane damage mechanism. Nanotechnology 
also developed with biology to solve the bacterial problem 
from human health. Combination of nanotechnology, biol-
ogy, and medicine called biological-based antibacterial 
nanomedicine. Several nanomaterials in this combination 
are chitosan nanofiber, targeted drug-carrying phage medi-
cines, and poly-L-lactide nanoparticles. These nanomate-
rials can solve bacterial infection using mechanisms such 
as loss of membrane permeability, antimicrobial delivery 
to the pathogen, and release of antimicrobial protein nisin 
[67]. As a nanosensor, nanotechnology successfully detected 
viruses, but we need more than just detected. The potential 
of nanotechnology utilization for viruses treatment need to 
be developed. The various study explained about nanotech-
nology for bacterial treatment in human health. Thus, is 
that possible to use nanotechnology and nanomaterials as a 
virus treatment? Utilization of nanotechnology used in HIV 
treatment. The nanoparticle was used in drug targeting and 
prolog circulation. This treatment used in antiretroviral ther-
apy (i.e., parenteral/ oral/ pulmonary/ transdermal route), 
vaccine delivery, and microbicides. However, until 2015 
no efforts have been successful in laboratory trials. How-
ever, the nanoparticles platform shows promising results. 
Research of nanoparticle to solve virus infection has been 
developing. The research from this field includes drug tar-
geting and prolog circulation, drug solubility enhancement, 
transport across blood–brain-barrier, toxicity reduction and 
dose reduction, chemotherapy using metallic nanoparticles, 
gene therapy, immunization, microbicide, and vaccines [68].

A recent study informed that nanotechnology has been 
using for several diseases caused by virus attack (i.e., HIV, 

HBV, influenza, HSV, HPV, and other viruses). HBV is one 
of disease caused by a virus; this virus attack liver with 
chronic infection and was approximately more than 240 mil-
lion people. Current nanotechnology applied for this disease 
is nano therapy including interferon (IFN)-alpha, lamivu-
dine (Epivir®), pegylated IFN (Pegasys®), entecavir cir 
(Viread®), tenofovir (Viread®), and telvivudine (Tyzeka®) 
[69]. The application of nanotechnology also reported for 
HCV treatment. A combination of IFN-Alpha and GNPs 
with solid binding with hyaluronic acid successfully deliv-
ered a nanoparticle medicine for HCV infection. These com-
plex nanomedicine materials were reviewed successfully to 
deliver medicine and close the virus's gap in as an effort to 
prevent [70]. The next challenge is how to treat the virus in 
goods using nanotechnology and nanomaterials. The next 
challenge for nanomaterial and nanotechnology researchers 
is developing antivirus and antimicrobial properties based on 
copper, zinc, and silver in goods to fight COVID-19. A com-
bination of nanomaterial in PPE can help doctors, nurses, 
and medical assistants to keep safe and fight with SARS-
CoV-2. A combination of nanomaterial and nanotechnol-
ogy with the solution (iodide, chlorine, sulfide, and another 
liquid disinfectant), which are known for fighting an antiviral 
effect, could be a helpful world. A recent study informed that 
the treatment of non-woven, hair cups, and respirators using 
copper ions could help prevent the unwanted nosocomial 
virus from medical personnel [71]. In principle, the utiliza-
tion of nanomaterials (metal ions) could be a potential mate-
rial to reduce the viability of CoV on their substrates. The 
common touching surface goods with Cu could be helpful. 
Moreover, a combination of complex nanomaterial with Cu 
in polymer matrices could help the tuning of metal release, 
and at the same time, this combination could minimize the 
risk of nanoparticle release in the environment. Recent pub-
lication informed the utilization of gold nanoparticles in bio-
compatible polymers showed antiviral activity for HIV-1 and 
influenza virus such as H3N1, H1N1, and H5N1 [72].

Utilization of nanotechnology for wastewater treatment 
was reported, several materials such as silver, carbon nano-
tubes, and titanium oxide are known as an antibacterial for 
wastewater treatment. The microbial mechanism is diverse, 
includes photocatalytic production of reactive exigent spe-
cies that cleave DNA and inactive virus. However, the uti-
lization of nanomaterial for SARS-CoV-2 was not found. 
Disinfectant strategies for the fight with SARS-CoV-2 are 
limited to chlorine and ozone utilization. However, this liq-
uid phase of disinfectant only treats the SARS-CoV-2 from 
wastewater. A combination of nanomaterial with disinfect-
ant (i.e., chlorine, ozone, and others) is the recommenda-
tion. Utilization of nanomaterial coating with disinfectant 
could reduce pollutants (i.e., heavy metals, chemical oxygen 
demand, and biological oxygen demand) due to high surface 
area, high pores. This material also could be promoted for 
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virus treatment due to antiviral and antimicrobial effects 
from disinfectant. A nanoparticle disinfectant for wastewa-
ter treatment was developed in 2015. Research collaboration 
from the USA and China showed that nanoparticles based on 
 TiO2, NiO, ZnO,  SiO2, and  Al2O3 are potential for disinfect-
ant water treatment system [73]. They tried to adsorb col-
loid particles from the environment. This process will affect 
transport, face, viability, or reproduction of viruses [74]. 
Unfortunately, research on nanomaterials for virus treat-
ment in the environment is limited. Thus, this topic will be 
a challenge for the researcher to find the best nanotechnol-
ogy and nanomaterial for fighting viruses, especially in this 
pandemic, this research will be very beneficial for humans.

Nanotechnologies and Nanomaterials 
for Human Health in Post‑pandemic

With the widespread use of highly effective COVID-19 vac-
cines in many countries, there is a concern about the abil-
ity to quickly redesign vaccines with nanotechnology when 
new, more virulent variants emerge. One potential solution 
is the use of mRNA delivered in lipid nano-carriers, which 
has several advantages over other types of nanoparticles. 
Metal nanoparticles, such as selenium and gold, have been 
investigated for antiviral therapy and have shown promise in 
delivering antiviral medicines to prevent apoptosis induced 
by the human influenza virus and reduce membrane fusion 
caused by MERS-CoV. However, concerns about poor 
biodegradability exist. Lipid-based nanoparticles, such as 
liposomes, are attractive for clinical use due to their good 
biocompatibility and biodegradability. Lipid nanoparticles 
have been used to deliver antiviral agents for treating vari-
ous infections, including hepatitis C and B, herpes simplex, 
and HIV. Additionally, lipid nanoparticles could be used to 
deliver DNA gene therapies and CRISPR gene-editing thera-
pies. Other types of nanoparticles, including polymer nano-
particles, protein-based nanoparticles, inorganic nanoparti-
cles, and exosomes, could also be useful for future vaccine 
development. Nanoparticles can also exert their own anti-
viral actions against multiple viruses by mimicking binding 
sites. For example, nanosponges have been developed that 
can bind to and neutralize the SARS-CoV-2 virus, prevent-
ing it from infecting cells, and this approach is not expected 
to be affected by viral mutations.

Recommendation for Future Research 
Direction and Limitation

Based on current research and advancements in the field 
of nanotechnology and nanomaterials for beating pandem-
ics, here are some recommendations and future research 

directions are developing more efficient and effective antivi-
ral agents: Nanoparticles, such as silver and graphene oxide, 
have shown promise as antiviral agents. Further research 
is needed to optimize these nanoparticles and develop new 
ones that are even more effective. Creating more durable 
and effective filters for masks: Nanomaterials such as car-
bon nanotubes, nanofibers, and nanodiamonds have shown 
potential for creating more durable and effective filters for 
masks. Further research is needed to optimize these materi-
als and develop new ones that can filter out even smaller par-
ticles. Developing new vaccine delivery systems: Liposomes 
and virus-like particles have shown potential as vaccine 
delivery systems. Further research is needed to optimize 
these systems and develop new ones that can deliver vac-
cines more effectively and efficiently. Creating self-clean-
ing surfaces: Nanomaterials such as titanium dioxide and 
nanostructured surfaces have shown potential for creating 
self-cleaning surfaces that can prevent the spread of viruses 
and bacteria. Further research is needed to optimize these 
materials and develop new ones that can be used in a wider 
range of applications. Developing nanosensors for detecting 
viruses: Nanosensors have the potential to detect viruses and 
other pathogens in the air or on surfaces.

Further research is needed to optimize these sensors and 
develop new ones that can detect a wider range of viruses 
and bacteria. Developing nanorobots for drug delivery: 
Nanorobots have the potential to deliver drugs directly to 
infected cells, increasing the efficacy of treatments. Further 
research is needed to optimize these robots and develop 
new ones that can deliver drugs more effectively and effi-
ciently. In conclusion, nanotechnology and nanomaterials 
have shown great potential for beating pandemics such as 
COVID-19. Further research is needed to optimize these 
materials and develop new ones that can be used in a wider 
range of applications.

Nanoparticles are potentially harmful because they can 
circulate throughout the bloodstream and lymph streams, 
penetrate various cells, tissues, and organs, and interact with 
macromolecules. This toxicity can damage organs and alter 
their functions. The physical and chemical characteristics of 
nanoparticles, such as their size, shape, surface charge, and 
chemical composition, significantly impact their toxicity. 
Some nanoparticles are not detected by the body's immune 
system, leading to their accumulation in tissues and organs 
and causing severe toxicity or even death.

Conclusions

The COVID-19 pandemic caused by the SARS-COV-2 virus 
has become a global problem. This virus is recorded to have 
caused death in more than 9 million people worldwide and 
infected in more than 213 countries. Until now, the handling 
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of the SARS-CoV-2 virus is still limited to the use of disin-
fectants. Nanotechnology and nanomaterials are technolo-
gies that are expected to make a positive contribution to the 
war against the pandemic and post-pandemic era. The use of 
nanotechnology is still limited to the virus detection process 
using super-sensitive sensors. The development of nanotech-
nology and nanomaterials towards the treatment of solid and 
liquid waste that has been contaminated with SARS-CoV-2 
is still very minimal. Nanotechnology is reported to have 
been used successfully in the treatment of HIV, HVB, and 
HVC viruses, research into the use of nanotechnology and 
nanomaterials in reducing the reactive SARS-CoV-2 virus is 
highly recommended. In addition, the combination of nano-
materials and disinfectants is the direction of future research 
in the fight against the COVID-19 pandemic. The resulting 
combination product is expected to kill the SARS-CoV-2 
virus in the environment while reducing other pollutant 
parameters.
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