Skip to main content
Log in

Evaluation of Adhesion, Growth and Differentiation of Human Umbilical Cord Stem Cells to Osteoblast Cells on PLA Polymeric Scaffolds

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Tissue engineering is used for regenerating bioartificial tissues using suitable cells and biocompatible scaffold materials. The present study aims to prepare poly (lactic acid) (PLA) nanoparticles as an extracellular matrix to use in bone tissue engineering. For this purpose, the stem cells originating from the human umbilical cord were extracted and their adhesion, growth, and osteoblastic differentiation on the PLA scaffold were studied. First, the PLA nano-scaffold was fabricated by solvent casting/salt leaching method, and then its properties including formation, surface properties, porosity, pore size, pore distribution, biocompatibility, and biodegradability were evaluated. After extracting mesenchymal stem cells (MSCs) from the umbilical cord of human embryos, they were cultured on the scaffold, and then flow cytometry was used to prove their stemness. The morphological properties of the scaffold and differentiated cells attached to it were investigated using scanning electron microscopy (SEM), Alizarin red, and Von kossa staining. The results of SEM and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests for evaluating its biocompatibility showed that this scaffold has suitable surface properties for cell growth and proliferation. The result of flow cytometry demonstrated more than 90% expression of CD105 and CD90 markers (MSCs markers) and no expression of CD45 (hematopoietic marker) on the cell’s surface. The images of Alizarin red staining, Von kossa staining, and SEM confirmed calcium deposition on the scaffold containing cells differentiated to osteoblasts. This study showed that MSCs can adhere, proliferate and differentiate to bone cells (osteoblasts) on PLA scaffold in vitro. Thus, additional experiments on this scaffold should be done for regenerating bone tissues in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. J.J. Chung, H. Im, S.H. Kim, J.W. Park, Y. Jung, Toward biomimetic scaffolds for tissue engineering: 3d printing techniques in regenerative medicine. Front. Bioeng. Biotechnol. 8, 586406 (2020). https://doi.org/10.3389/fbioe.2020.586406

    Article  Google Scholar 

  2. A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. PNAS USA 103(8), 2480–2487 (2006). https://doi.org/10.1073/pnas.0507681102

    Article  CAS  Google Scholar 

  3. B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in regenerative medicine. Adv Mater 21(32–33), 3307–3329 (2009). https://doi.org/10.1002/adma.200802106

    Article  CAS  Google Scholar 

  4. T. Winkler, F.A. Sass, G.N. Duda, K. Schmidt-Bleek, A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res. 7(3), 232–243 (2018). https://doi.org/10.1302/2046-3758.73.bjr-2017-0270.r1

    Article  CAS  Google Scholar 

  5. J.R. Perez, D. Kouroupis, D.J. Li, T.M. Best, L. Kaplan, D. Correa, Tissue engineering and cell-based therapies for fractures and bone defects. Front. Bioeng. Biotechnol. 6, 105 (2018). https://doi.org/10.3389/fbioe.2018.00105

    Article  Google Scholar 

  6. J.J. Nielsen, S.A. Low, Bone-targeting systems to systemically deliver therapeutics to bone fractures for accelerated healing. Curr. Osteoporos. Rep. 18(5), 449–459 (2020). https://doi.org/10.1007/s11914-020-00604-4

    Article  Google Scholar 

  7. X. Chen, H. Fan, X. Deng, L. Wu, T. Yi, L. Gu, C. Zhou, Y. Fan, X. Zhang, Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterial 8(11), 960 (2018). https://doi.org/10.3390/nano8110960

    Article  CAS  Google Scholar 

  8. Y. Chen, J. Xu, Z. Huang, M. Yu, Y. Zhang, H. Chen, Z. Ma, H. Liao, J. Hu, An innovative approach for enhancing bone defect healing using PLGA scaffolds seeded with extracorporeal-shock-wave-treated bone marrow mesenchymal stem cells (BMSCs). Sci Rep 7, 44130 (2017). https://doi.org/10.1038/srep44130

    Article  Google Scholar 

  9. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22(7), 354–362 (2004). https://doi.org/10.1016/j.tibtech.2004.05.005

    Article  CAS  Google Scholar 

  10. D.M. Faulk, R. Londono, M.T. Wolf, C.A. Ranallo, C.A. Carruthers, J.D. Wildemann, C.L. Dearth, S.F. Badylak, ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 35(30), 8585–8595 (2014). https://doi.org/10.1016/j.biomaterials.2014.06.057

    Article  CAS  Google Scholar 

  11. W. Wang, D. Deng, B. Wang, G. Zhou, W. Zhang, Y. Cao, P. Zhang, W. Liu, Comparison of autologous, allogeneic, and cell-free scaffold approaches for engineered tendon repair in a rabbit model-a pilot study. Tissue Eng. Part A 23(15–16), 750–761 (2017). https://doi.org/10.1089/ten.tea.2016.0447

    Article  CAS  Google Scholar 

  12. L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, G. Vunjak-Novakovic, Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol. Bioeng. 88(3), 379–391 (2004). https://doi.org/10.1002/bit.20252

    Article  CAS  Google Scholar 

  13. B. Sharma, J.H. Elisseeff, Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 32(1), 148–159 (2004). https://doi.org/10.1023/b:abme.0000007799.60142.78

    Article  Google Scholar 

  14. F. Donnaloja, E. Jacchetti, M. Soncini, M.T. Raimondi, Natural and synthetic polymers for bone scaffolds optimization. Polymers 12(4), 905 (2020). https://doi.org/10.3390/polym12040905

    Article  CAS  Google Scholar 

  15. C.J.P. Colón, I.L. Molina-Vicenty, M. Frontera-Rodríguez, A. García-Ferré, B.P. Rivera, G. Cintrón-Vélez, S. Frontera-Rodríguez, Muscle and bone mass loss in the elderly population: advances in diagnosis and treatment. J. Biomed. 3, 40–49 (2018). https://doi.org/10.7150/jbm.23390

    Article  Google Scholar 

  16. B. Farkas, M. Rodio, I. Romano, A. Diaspro, R. Intartaglia, S. Beke, Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies. Beilstein J. Nanotechnol. 6, 2217–2223 (2015). https://doi.org/10.3762/bjnano.6.227

    Article  CAS  Google Scholar 

  17. M.V. Nasonova, T.V. Glushkova, V.V. Borisov, E.A. Velikanova, A.Y. Burago, Y.A. Kudryavtseva, Biocompatibility and structural features of biodegradable polymer scaffolds. Bull Exp Biol Med 160(1), 134–140 (2015). https://doi.org/10.1007/s10517-015-3114-3

    Article  CAS  Google Scholar 

  18. L. Perry, M.Y. Flugelman, S. Levenberg, Elderly patient-derived endothelial cells for vascularization of engineered muscle. Mol Ther 25(4), 935–948 (2017). https://doi.org/10.1016/j.ymthe.2017.02.011

    Article  CAS  Google Scholar 

  19. W.W. Hu, Y.C. Wu, Z.C. Hu, The development of an alginate/polycaprolactone composite scaffold for in situ transfection application. Carbohydr Polym 183, 29–36 (2018). https://doi.org/10.1016/j.carbpol.2017.11.030

    Article  CAS  Google Scholar 

  20. T. Sun, M. Liu, S. Yao, Y. Ji, Z. Xiong, K. Tang, K. Chen, H. Yang, X. Guo, Biomimetic composite scaffold containing small intestinal submucosa and mesoporous bioactive glass exhibits high osteogenic and angiogenic capacity. Tissue Eng Part A 24(13–14), 1044–1056 (2018). https://doi.org/10.1089/ten.tea.2017.0398

    Article  CAS  Google Scholar 

  21. K.M. Tohamy, M. Mabrouk, I.E. Soliman, H.H. Beherei, M.A. Aboelnasr, Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol 112, 448–460 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.181

    Article  CAS  Google Scholar 

  22. M.A. Nazeer, O.C. Onder, I. Sevgili, E. Yilgor, I.H. Kavakli, I. Yilgor, 3D printed poly (lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater. Today Commun. 25, 101515 (2020). https://doi.org/10.1016/j.mtcomm.2020.101515

    Article  CAS  Google Scholar 

  23. M. Savioli-Lopes, A.L. Jardini, R. Maciel-Filho, Poly (lactic acid) production for tissue engineering applications. Procedia Eng. 42, 1402–1413 (2012). https://doi.org/10.1016/j.proeng.2012.07.534

    Article  CAS  Google Scholar 

  24. C.E. Corcione, F. Gervaso, M. Madaghiele, A. Sannino, A. Licciulli, Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram. Int. 45, 2803–2810 (2019). https://doi.org/10.1016/j.ceramint.2018.07.297

    Article  CAS  Google Scholar 

  25. R. Casasola, N.L. Thomas, S. Georgiadou, Electrospinning of poly(lactic acid): theoretical approach for the solvent selection to produce defectfree nanofibers. J. Polym. Sci. Polym. phys. 54(15), 1483–1498 (2016). https://doi.org/10.1002/polb.24042

    Article  CAS  Google Scholar 

  26. Y. Ramot, M. Haim-Zada, A.J. Domb, A. Nyska, Biocompatibility and safety of PLA and its copolymers. Adv. Drug. Deliver. Rev. 107(15), 153–162 (2016). https://doi.org/10.1016/j.addr.2016.03.012

    Article  CAS  Google Scholar 

  27. S. Yang, K.F. Leong, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I: traditional factor. Tissue Eng. 7(6), 679–689 (2001). https://doi.org/10.1089/107632701753337645

    Article  CAS  Google Scholar 

  28. M. Grompe, Embryonic stem cells without embryos? Nature Biotechnolog 23, 1496–1497 (2005). https://doi.org/10.1038/nbt1205-1496

    Article  CAS  Google Scholar 

  29. T.T.T. Dao, C.T.H. Nguyen, N.B. Vu, H.T.N. Le, P.D.N. Nguyen, P.V. Pham, Evaluation of proliferation and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells in porous scaffolds. Adv Exp Med Biol 1084, 207–220 (2019). https://doi.org/10.1007/5584_2019_343

    Article  CAS  Google Scholar 

  30. S. Stamnitz, A. Klimczak, Mesenchymal stem cells, bioactive factors, and scaffolds in bone repair: from research perspectives to clinical practice. Cells 10(8), 1925 (2021). https://doi.org/10.3390/cells10081925

    Article  CAS  Google Scholar 

  31. M.P. Bernardo, B.C.R. Da Silva, A.E.I. Hamouda, M.A.S. De Toledo, C. Schalla, S. Rütten, R. Goetzke, L.H.C. Mattoso, M. Zenke, A. Sechi, PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci. Rep. 12, 2333 (2022). https://doi.org/10.1038/s41598-022-05207-w

    Article  CAS  Google Scholar 

  32. H.S. Wang, S.C. Hung, S.T. Peng, C.C. Huang, H.M. Wei, Y.J. Guo, Y.S. Fu, M.C. Lai, C.C. Chen, Mesenchymal stem cells in the Wharton’s Jelly of the human umbilical cord. Stem Cells 22(7), 1330–1337 (2004). https://doi.org/10.1634/stemcells.2004-0013

    Article  Google Scholar 

  33. M.A. Pattison, S. Wurster, T.J. Webster, K.M. Haberstroh, Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26(15), 2491–2500 (2005). https://doi.org/10.1016/j.biomaterials.2004.07.011

    Article  CAS  Google Scholar 

  34. N. Johari, H.M. Hosseini, A. Samadikuchaksaraei, Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering. Mater. Sci. Eng C Mater. Biol. Appl. 79, 783–792 (2017). https://doi.org/10.1016/j.msec.2017.05.105

    Article  CAS  Google Scholar 

  35. Y. Ikada, Tissue engineering fundamentals and application, 1st edn. (Elsivier Ltd, 2006)

    Google Scholar 

  36. A.A. Van de Loosdrecht, R.H.J. Beelen, G.J. Ossenkoppele, M.G. Broekhoven, M.M.A.C. Langenhuijsen, A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immonol. Methods 174(1–2), 311–320 (1994). https://doi.org/10.1016/0022-1759(94)90034-5

    Article  Google Scholar 

  37. B. Chuenjitkuntaworn, P. Supaphol, P. Pavasant, D. Damrongsri, Electrospun poly (L-lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering. Polym. Int. 59(2), 227–235 (2010). https://doi.org/10.1002/pi.2712

    Article  CAS  Google Scholar 

  38. C. Spadaccio, A. Rainer, M. Trombetta, G. Vadala, M. Chello, E. Covino, V. Denaro, Y. Toyoda, J.A. Genovese, Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann. Biomed. Eng. 37(7), 1376–1389 (2009). https://doi.org/10.1007/s10439-009-9704-3

    Article  Google Scholar 

  39. C. Qiao, W. Xu, W. Zhu, J. Hu, H. Qian, Q. Yin, R. Jiang, Y. Yan, F. Mao, H. Yang, X. Wang, Y. Chen, Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol. Int. 32(1), 8–15 (2008). https://doi.org/10.1016/j.cellbi.2007.08.002

    Article  CAS  Google Scholar 

  40. K.W.D. Lee, P.K. Chan, X. Feng, Morphology development and characterization of the phase-separated structure resulting from the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient. Chem. Eng. Sci. 59(7), 1491–1504 (2004). https://doi.org/10.1016/j.ces.2003.12.025

    Article  CAS  Google Scholar 

  41. A. Gregor, E. Filová, M. Novák, J. Kronek, H. Chlup, M. Buzgo, V. Blahnová, V. Lukášová, M. Bartoš, A. Nečas, J. Hošek, Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11, 31 (2017). https://doi.org/10.1186/s13036-017-0074-3

    Article  CAS  Google Scholar 

  42. A. Grémare, V. Guduric, R. Bareille, V. Heroguez, S. Latour, N. L’heureux, J.C. Fricain, S. Catros, D.L. Nihouannen, Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 106(4), 887–894 (2018). https://doi.org/10.1002/jbm.a.36289

    Article  CAS  Google Scholar 

  43. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001). https://doi.org/10.1126/science.1064829

    Article  CAS  Google Scholar 

  44. B. Holmes, K. Bulusu, M. Plesniak, L.G. Zhang, A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27(6), 064001 (2016). https://doi.org/10.1088/0957-4484/27/6/064001

    Article  CAS  Google Scholar 

  45. Z. Ren, S. Ma, L. Jin, Z. Liu, D. Liu, X. Zhang, Q. Cai, X. Yang, Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication 9(2), 025036 (2017). https://doi.org/10.1088/1758-5090/aa747f

    Article  CAS  Google Scholar 

  46. R. Baptista, M. Guedes, Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater. Sci. Eng. C 118, 111528 (2021). https://doi.org/10.1016/j.msec.2020.111528

    Article  CAS  Google Scholar 

  47. S.H. Han, M. Cha, Y.Z. Jin, K.M. Lee, J.H. Lee, BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed. Mater. 16, 1 (2021)

    Article  Google Scholar 

  48. T. Yang, Y. Hu, C. Wang, B.P. Binks, Fabrication of hierarchical macroporous biocompatible scaffolds by combining pickering high internal phase emulsion templates with three-dimensional printing. ACS Appl Mater Interfaces 9(27), 22950–22958 (2017). https://doi.org/10.1021/acsami.7b05012

    Article  CAS  Google Scholar 

  49. A. Bharadwaz, A.C. Jayasuriya, Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. C 110, 110698 (2020). https://doi.org/10.1016/j.msec.2020.110698

    Article  CAS  Google Scholar 

  50. F. Silver, G. Pins, Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Eff Med Implants 2(1), 67–80 (1992)

    CAS  Google Scholar 

  51. S. Kestendjieva, D. Kyurkchiev, G. Tsvetkova, T. Mehandjiev, A. Dimitrov, A. Nikolov, S. Kyurkchiev, Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int 32(7), 724–732 (2008). https://doi.org/10.1016/j.cellbi.2008.02.002

    Article  CAS  Google Scholar 

  52. A. Can, S. Karahuseyinoglu, Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25(11), 2886–2895 (2007). https://doi.org/10.1634/stemcells.2007-0417

    Article  Google Scholar 

  53. L. Wang, N.H. Dormer, L.F. Bonewald, M.S. Detamore, Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Eng. Part A 16(6), 1937–1948 (2010). https://doi.org/10.1089/ten.tea.2009.0706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the University of Mohaghegh Ardabili and we have greatly appreciated Damghan University and Golestan University of Medical Sciences for supporting this research.

Funding

This work was supported by funding from the University of Mohaghegh Ardabili and we are greatly appreciative of supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mohsen Esmaeilzadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest.

Consent for Publication

All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilzadeh, M., Asadi, A., Goudarzi, F. et al. Evaluation of Adhesion, Growth and Differentiation of Human Umbilical Cord Stem Cells to Osteoblast Cells on PLA Polymeric Scaffolds. Biomedical Materials & Devices 1, 772–788 (2023). https://doi.org/10.1007/s44174-023-00062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00062-3

Keywords

Navigation