Skip to main content

Advertisement

Log in

Synergistic Benefits on Combining Injectable Platelet-Rich Fibrin and Bone Graft Porous Particulate Materials

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

The main aim of this study was to perform an integrative review on the enhanced bone healing by combining a flowable (injectable) platelet-rich fibrin (PRF) and bone graft porous materials. A bibliographical search was carried out on several databases (PubMed, Embase, Cochrane, Scopus, and Web of Science) for relevant studies on the combined effect of platelet-rich fibrin and bone substitutes for bone healing. The chemical, biologic, and physical properties of flowable PRF combined with bone graft biomaterials were discussed in this review. The repair of different bone defects was reported such as alveolar cleft reconstruction, sinus floor elevation, socket preservation, jaw defects, and impacted teeth. Regarding studies evaluating alveolar cleft defects, results showed potential benefits of PRF to enhance bone formation when mixed with autogenous bone graft. Two studies on socket preservation found enhanced bone growth when combining PRF to bone substitutes, although one study found similar results with or without bone substitutes. Also, the addition of PRF to demineralized bovine bone mineral improved the bone healing in the repair of jaw defects. No synergistic effect was reported in bone formation when PRF was associated to particulate bone graft in sinus floor elevation. The combination of PRF and bone graft materials revealed significant outcomes when compared to solely use of bone graft materials in alveolar cleft and jaw defects. In socket preservation, bone healing was improved when PRF and bone graft materials were applied in comparison to the solely use of PRF. On the reconstruction of larger bone defects, PRF can be mixed with a low resorption rate graft material to maintain biological and mechanical stability into the bone defect. In fact, PRF and particulate graft materials appear to exhibit a synergistic effect during bone tissue healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Barone, P. Toti, A. Quaranta et al., Volumetric analysis of remodelling pattern after ridge preservation comparing use of two types of xenografts. A multicentre randomized clinical trial. Clin. Oral Implants Res. 27, e105–e115 (2016). https://doi.org/10.1111/clr.12572

    Article  Google Scholar 

  2. A. Anwandter, S. Bohmann, M. Nally et al., Dimensional changes of the post extraction alveolar ridge, preserved with Leukocyte- and Platelet Rich Fibrin: a clinical pilot study. J. Dent. 52, 23–29 (2016). https://doi.org/10.1016/j.jdent.2016.06.005

    Article  Google Scholar 

  3. J. Mir-Mari, G.I. Benic, E. Valmaseda-Castellón et al., Influence of wound closure on the volume stability of particulate and non-particulate GBR materials: an in vitro cone-beam computed tomographic examination Part II. Clin. Oral Implants Res. 28, 631–639 (2017). https://doi.org/10.1111/clr.12845

    Article  Google Scholar 

  4. A. Temmerman, J. Vandessel, A. Castro et al., The use of leucocyte and platelet-rich fibrin in socket management and ridge preservation: a split-mouth, randomized, controlled clinical trial. J. Clin. Periodontol. 43, 990–999 (2016). https://doi.org/10.1111/jcpe.12612

    Article  CAS  Google Scholar 

  5. C. Dahlin, M. Obrecht, M. Dard, N. Donos, Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Clin. Oral Implants Res. 26, 814–822 (2015). https://doi.org/10.1111/clr.12361

    Article  Google Scholar 

  6. I.A. Urban, H. Nagursky, J.L. Lozada, Horizontal ridge augmentation with a resorbable membrane and particulated autogenous bone with or without anorganic bovine bone-derived mineral: a prospective case series in 22 patients. Int. J. Oral Maxillofac. Implants 26, 404–414 (2011)

    Google Scholar 

  7. A.R. Pradeep, P. Bajaj, N.S. Rao et al., Platelet-rich fibrin combined with a porous hydroxyapatite graft for the treatment of 3-wall intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J. Periodontol. 88, 1288–1296 (2017). https://doi.org/10.1902/jop.2012.110722

    Article  CAS  Google Scholar 

  8. N. Broggini, D.D. Bosshardt, S.S. Jensen et al., Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. J. Biomed. Mater. Res. B Appl. Biomater. 103, 1478–1487 (2015). https://doi.org/10.1002/jbm.b.33319

    Article  CAS  Google Scholar 

  9. G. Hannink, J.J.C. Arts, Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 42(Suppl 2), S22–S25 (2011). https://doi.org/10.1016/j.injury.2011.06.008

    Article  Google Scholar 

  10. G. Mendoza-Azpur, A. de la Fuente, E. Chavez et al., Horizontal ridge augmentation with guided bone regeneration using particulate xenogenic bone substitutes with or without autogenous block grafts: a randomized controlled trial. Clin. Implant Dent. Relat. Res. (2019). https://doi.org/10.1111/cid.12740

    Article  Google Scholar 

  11. G. Avila-Ortiz, P.M. Bartold, W. Giannobile et al., Biologics and cell therapy tissue engineering approaches for the management of the edentulous maxilla: a systematic review. Int. J. Oral Maxillofac. Implants 31, 121–164 (2016). https://doi.org/10.11607/jomi.16suppl.g4

    Article  Google Scholar 

  12. N.R. Pinto, M. Ubilla, Y. Zamora et al., Leucocyte- and platelet-rich fibrin (L-PRF) as a regenerative medicine strategy for the treatment of refractory leg ulcers: a prospective cohort study. Platelets 29, 468–475 (2018). https://doi.org/10.1080/09537104.2017.1327654

    Article  CAS  Google Scholar 

  13. D.M. Dohan, J. Choukroun, A. Diss et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 101, 10 (2006). https://doi.org/10.1016/j.tripleo.2005.07.008

    Article  Google Scholar 

  14. A. Castro, S. Cortellini, A. Temmerman et al., Characterization of the leukocyte- and platelet-rich fibrin block: release of growth factors, cellular content, and structure. Int. J. Oral Maxillofac. Implants (2019). https://doi.org/10.11607/jomi.7275

    Article  Google Scholar 

  15. D.M. Dohan, J. Choukroun, A. Diss et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: Leucocyte activation: a new feature for platelet concentrates? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. (2006). https://doi.org/10.1016/j.tripleo.2005.07.010

    Article  Google Scholar 

  16. H.A. Varela, J.C.M. Souza, R.M. Nascimento et al., Injectable platelet rich fibrin: cell content, morphological, and protein characterization. Clin. Oral Investig. 23, 1309–1318 (2019). https://doi.org/10.1007/s00784-018-2555-2

    Article  Google Scholar 

  17. D.M. Dohan, J. Choukroun, A. Diss et al., Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 101, e45–e50 (2006)

    Article  Google Scholar 

  18. D.M. Dohan Ehrenfest, M. Del Corso, A. Diss et al., Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J. Periodontol. 81, 546–555 (2010). https://doi.org/10.1902/jop.2009.090531

    Article  CAS  Google Scholar 

  19. W. Liu, Fibrin fibers have extraordinary extensibility and elasticity. Science 313, 634–634 (2006). https://doi.org/10.1126/science.1127317

    Article  CAS  Google Scholar 

  20. E.C. Pichotano, R.S. de Molon, R.V. de Souza et al., Evaluation of L-PRF combined with deproteinized bovine bone mineral for early implant placement after maxillary sinus augmentation: a randomized clinical trial. Clin. Implant Dent. Relat. Res. 21, 253–262 (2019). https://doi.org/10.1111/cid.12713

    Article  Google Scholar 

  21. E.C. Pichotano, R.S. de Molon, L.G. Freitas de Paula et al., Early placement of dental implants in maxillary sinus grafted with leukocyte and platelet-rich fibrin and deproteinized bovine bone mineral. J. Oral Implantol. 44, 199–206 (2018). https://doi.org/10.1563/aaid-joi-D-17-00220

    Article  Google Scholar 

  22. H. Tanaka, T. Toyoshima, I. Atsuta et al., Additional effects of platelet-rich fibrin on bone regeneration in sinus augmentation with deproteinized bovine bone mineral: preliminary results. Implant Dent. 24, 669–674 (2015). https://doi.org/10.1097/ID.0000000000000306

    Article  Google Scholar 

  23. J. Alayan, C. Vaquette, S. Saifzadeh et al., Comparison of early osseointegration of SLA®and SLActive®implants in maxillary sinus augmentation: a pilot study. Clin. Oral Implants Res. (2017). https://doi.org/10.1111/clr.12988

    Article  Google Scholar 

  24. E. De Santis, N.P. Lang, G. Cesaretti et al., Healing outcomes at implants installed in sites augmented with particulate autologous bone and xenografts. An experimental study in dogs. Clin. Oral Implants Res. 24, 77–86 (2013). https://doi.org/10.1111/j.1600-0501.2012.02456.x

    Article  Google Scholar 

  25. Z. Mazor, R.A. Horowitz, M. Del Corso et al., Sinus floor augmentation with simultaneous implant placement using Choukroun’s platelet-rich fibrin as the sole grafting material: a radiologic and histologic study at 6 months. J. Periodontol. 80, 2056–2064 (2009). https://doi.org/10.1902/jop.2009.090252

    Article  Google Scholar 

  26. R.J. Miron, M. Fujioka-Kobayashi, M. Hernandez et al., Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin. Oral Investig. 21, 2619 (2017)

    Article  Google Scholar 

  27. I.L. Chenchev, V.V. Ivanova, D.Z. Neychev, R.B. Cholakova, Application of platelet-rich fibrin and injectable platelet-rich fibrin in combination of bone substitute material for alveolar ridge augmentation - a case report. Folia Med. (Plovdiv) 59, 362–366 (2017)

    Article  CAS  Google Scholar 

  28. Z. Mu, Q. He, L. Xin et al., Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: a randomized preclinical study. Am. J. Transl. Res. 12, 7312–7325 (2020)

    CAS  Google Scholar 

  29. S. Cortellini, A.B. Castro, A. Temmerman et al., Leucocyte- and platelet-rich fibrin block for bone augmentation procedure: a proof-of-concept study. J. Clin. Periodontol. 45, 624–634 (2018). https://doi.org/10.1111/jcpe.12877

    Article  CAS  Google Scholar 

  30. C A, J C, M N, et al., Combining autologous particulate dentin, L-PRF, and fibrinogen to create a matrix for predictable ridge preservation: a pilot clinical study. Clin. Oral Investig. 24, 1151–1160 (2020)

    Article  Google Scholar 

  31. A. Scarano, F. Inchingolo, G. Murmura et al., Three-dimensional architecture and mechanical properties of bovine bone mixed with autologous platelet liquid, blood, or physiological water: an in vitro study. Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19041230

    Article  Google Scholar 

  32. W. Cunha, O. Carvalho, B. Henriques et al., Surface modification of zirconia dental implants by laser texturing. Lasers Med. Sci. 37, 77–93 (2022). https://doi.org/10.1007/s10103-021-03475-y

    Article  Google Scholar 

  33. M. Noronha Oliveira, W.V.H. Schunemann, M.T. Mathew et al., Can degradation products released from dental implants affect peri-implant tissues? J. Periodontal. Res. (2018). https://doi.org/10.1111/jre.12479

    Article  Google Scholar 

  34. J.C.M. Souza, M.B. Sordi, M. Kanazawa et al., Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 94, 112–131 (2019)

    Article  CAS  Google Scholar 

  35. F.H. Schünemann, M.E. Galárraga-Vinueza, R. Magini et al., Zirconia surface modifications for implant dentistry. Mater. Sci. Eng. C 98, 1294–1305 (2019)

    Article  Google Scholar 

  36. S. Alam, G. Khare, K.V. Arun Kumar, A comparative study of platelet-rich fibrin and platelet-rich fibrin with hydroxyapatite to promote healing of impacted mandibular third molar socket. J. Maxillofac. Oral Surg. 21, 608–615 (2022). https://doi.org/10.1007/s12663-020-01417-9

    Article  Google Scholar 

  37. W. Ouyyamwongs, N. Leepong, S. Suttapreyasri, Alveolar ridge preservation using autologous demineralized tooth matrix and platelet-rich fibrin versus platelet-rich fibrin alone: a split-mouth randomized controlled clinical trial. Implant Dent. 28, 455–462 (2019). https://doi.org/10.1097/ID.0000000000000918

    Article  Google Scholar 

  38. E. Yüceer-Çetiner, N. Özkan, M.E. Önger, Effect of autogenous dentin graft on new bone formation. J. Craniofac. Surg. 32, 1354–1360 (2021). https://doi.org/10.1097/SCS.0000000000007403

    Article  Google Scholar 

  39. J.K. Dayashankara Rao, A. Bhatnagar, R. Pandey et al., A comparative evaluation of iliac crest bone graft with and without injectable and advanced platelet rich fibrin in secondary alveolar bone grafting for cleft alveolus in unilateral cleft lip and palate patients: a randomized prospective study. J. Stomatol. Oral Maxillofac. Surg. 122, 241–247 (2021). https://doi.org/10.1016/j.jormas.2020.07.007

    Article  CAS  Google Scholar 

  40. A.K. Desai, N. Kumar, P. Dikhit et al., Efficacy of platelet-rich fibrin in secondary cleft alveolar bone grafting. Craniomaxillofac. Trauma Reconstr. Open 3, 162 (2019). https://doi.org/10.1055/s-0039-1678672

    Article  Google Scholar 

  41. H. Shawky, S.A. Seifeldin, Does platelet-rich fibrin enhance bone quality and quantity of alveolar cleft reconstruction? Cleft palate-craniofacial. J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 53, 597–606 (2016). https://doi.org/10.1597/14-290

    Article  Google Scholar 

  42. D. Fang, Z. Long, J. Hou, Clinical application of concentrated growth factor fibrin combined with bone repair materials in jaw defects. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 78, 882–892 (2020). https://doi.org/10.1016/j.joms.2020.01.037

    Article  Google Scholar 

  43. Y. Zhang, S. Tangl, C.D. Huber et al., Effects of Choukroun’s platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation: a histological and histomorphometric study. J. Craniomaxillofac. Surg. 40, 321–328 (2012). https://doi.org/10.1016/j.jcms.2011.04.020

    Article  Google Scholar 

  44. E. Adalı, M.O. Yüce, T. Günbay, S. Günbay, Does concentrated growth factor used with allografts in maxillary sinus lifting have adjunctive benefits? J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 79, 98–108 (2021). https://doi.org/10.1016/j.joms.2020.07.217

    Article  Google Scholar 

  45. de Almeida Barros Mourão CF, Lourenço ES, Nascimento JRB et al., Does the association of blood-derived growth factors to nanostructured carbonated hydroxyapatite contributes to the maxillary sinus floor elevation? A randomized clinical trial. Clin Oral Investig 23, 369–379 (2019). https://doi.org/10.1007/s00784-018-2445-7

    Article  Google Scholar 

  46. N. Nizam, G. Eren, A. Akcali, N. Donos, Maxillary sinus augmentation with leukocyte and platelet-rich fibrin and deproteinized bovine bone mineral: a split-mouth histological and histomorphometric study. Clin. Oral Implants Res. 29, 67–75 (2018). https://doi.org/10.1111/clr.13044

    Article  Google Scholar 

  47. T. Tsujino, H. Masuki, M. Nakamura et al., Striking differences in platelet distribution between advanced-platelet-rich fibrin and concentrated growth factors: effects of silica-containing plastic tubes. J. Funct. Biomater. (2019). https://doi.org/10.3390/jfb10030043

    Article  Google Scholar 

  48. Margolis J, Glass surface and blood coagulation. Nature 178, 805–806 (1956). https://doi.org/10.1038/178805b0

    Article  Google Scholar 

  49. D.M. Dohan Ehrenfest, N.R. Pinto, A. Pereda et al., The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 29, 171–184 (2018). https://doi.org/10.1080/09537104.2017.1293812

    Article  CAS  Google Scholar 

  50. B. Atalay, O. Doganay, The use of platelet-rich fibrin in bone grafting, in Bone grafting. ed. by R. Kummoona (IntechOpen, Rijeka, 2018)

    Google Scholar 

  51. T. Kawase, T. Tanaka, An updated proposal for terminology and classification of platelet-rich fibrin. Regen Ther 7, 80–81 (2017). https://doi.org/10.1016/j.reth.2017.10.002

    Article  Google Scholar 

  52. A.B. Castro, C. Andrade, X. Li et al., Impact of g force and timing on the characteristics of platelet-rich fibrin matrices. Sci Rep 11, 6038 (2021). https://doi.org/10.1038/s41598-021-85736-y

    Article  CAS  Google Scholar 

  53. A.B. Castro, N. Meschi, A. Temmerman et al., Regenerative potential of leucocyte- and platelet-rich fibrin. Part A: intra-bony defects, furcation defects and periodontal plastic surgery. A systematic review and meta-analysis. J Clin Periodontol 44, 67–82 (2017). https://doi.org/10.1111/jcpe.12643

    Article  CAS  Google Scholar 

  54. D.M. Dohan Ehrenfest, G.M. de Peppo, P. Doglioli, G. Sammartino, Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors 27, 63–69 (2009). https://doi.org/10.1080/08977190802636713

    Article  CAS  Google Scholar 

  55. D.M. Dohan Ehrenfest, A. Diss, G. Odin et al., In vitro effects of Choukroun’s PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 108, 341–352 (2009). https://doi.org/10.1016/j.tripleo.2009.04.020

    Article  Google Scholar 

  56. D.M. Dohan Ehrenfest, P. Doglioli, G.M. de Peppo et al., Choukroun’s platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch Oral Biol 55, 185–194 (2010). https://doi.org/10.1016/j.archoralbio.2010.01.004

    Article  CAS  Google Scholar 

  57. A.B. Castro, N. Meschi, A. Temmerman et al., Regenerative potential of leucocyte- and platelet-rich fibrin. Part B: sinus floor elevation, alveolar ridge preservation and implant therapy. A systematic review. J. Clin. Periodontol. 44, 225–234 (2017). https://doi.org/10.1111/jcpe.12658

    Article  CAS  Google Scholar 

  58. M.O. Schär, J. Diaz-Romero, S. Kohl et al., Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clin. Orthop. Relat. Res. 473, 1635–1643 (2015). https://doi.org/10.1007/s11999-015-4192-2

    Article  Google Scholar 

  59. F. Faot, S. Deprez, K. Vandamme et al., The effect of L-PRF membranes on bone healing in rabbit tibiae bone defects: micro-CT and biomarker results. Sci. Rep. 7, 46452 (2017). https://doi.org/10.1038/srep46452

    Article  CAS  Google Scholar 

  60. A.R. Pradeep, N.S. Rao, E. Agarwal et al., Comparative evaluation of autologous platelet-rich fibrin and platelet-rich plasma in the treatment of 3-wall intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J. Periodontol. 83, 1499–1507 (2012). https://doi.org/10.1902/jop.2012.110705

    Article  CAS  Google Scholar 

  61. S. Das, R. Jhingran, V.K. Bains et al., Socket preservation by beta-tri-calcium phosphate with collagen compared to platelet-rich fibrin: a clinico-radiographic study. Eur. J. Dent. 10, 264–276 (2016). https://doi.org/10.4103/1305-7456.178298

    Article  Google Scholar 

  62. A.R. Pradeep, P. Bajaj, N.S. Rao et al., Platelet-rich fibrin combined with a porous hydroxyapatite graft for the treatment of three-wall intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J. Periodontol. (2012). https://doi.org/10.1902/jop.2012.110722

    Article  Google Scholar 

  63. B. Hamzacebi, B. Oduncuoglu, E.E. Alaaddinoglu, Treatment of peri-implant bone defects with platelet-rich fibrin. Int. J Periodontics Restorative Dent. 35, 415–422 (2015)

    Article  Google Scholar 

  64. D.J. Thakkar, N.C. Deshpande, D.H. Dave, S.D. Narayankar, A comparative evaluation of extraction socket preservation with demineralized freeze-dried bone allograft alone and along with platelet-rich fibrin: a clinical and radiographic study. Contemp. Clin. Dent. 7, 371–376 (2016). https://doi.org/10.4103/0976-237X.188567

    Article  Google Scholar 

  65. D. Clark, Y. Rajendran, S. Paydar et al., Advanced platelet-rich fibrin and freeze-dried bone allograft for ridge preservation: a randomized controlled clinical trial. J. Periodontol. 89, 379–387 (2018). https://doi.org/10.1002/JPER.17-0466

    Article  CAS  Google Scholar 

  66. B. Movahedian Attar, N. Naghdi, Sh.M. Etemadi, M. Mehdizadeh, Chin symphysis bone, allograft, and platelet-rich fibrin: is the combination effective in repair of alveolar cleft? J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 75, 1026–1035 (2017). https://doi.org/10.1016/j.joms.2016.12.026

    Article  Google Scholar 

  67. F. Nadon, B. Chaput, J. Perisse et al., Interest of mineralized plasmatic matrix in secondary autogenous bone graft for the treatment of alveolar clefts. J. Craniofac. Surg 26, 2148–2151 (2015). https://doi.org/10.1097/SCS.0000000000001951

    Article  Google Scholar 

  68. S. Comert Kilic, M. Gungormus, S.N. Parlak, Histologic and histomorphometric assessment of sinus-floor augmentation with beta-tricalcium phosphate alone or in combination with pure-platelet-rich plasma or platelet-rich fibrin: a randomized clinical trial. Clin. Implant Dent. Relat. Res. 19, 959–967 (2017). https://doi.org/10.1111/cid.12522

    Article  Google Scholar 

  69. M. Tatullo, M. Marrelli, M. Cassetta et al., Platelet Rich Fibrin (P.R.F.) in reconstructive surgery of atrophied maxillary bones: clinical and histological evaluations. Int. J. Med. Sci. 9, 872–880 (2012). https://doi.org/10.7150/ijms.5119

    Article  Google Scholar 

  70. N. Bolukbasi, S. Ersanli, N. Keklikoglu et al., Sinus augmentation with platelet-rich fibrin in combination with bovine bone graft versus bovine bone graft in combination with collagen membrane. J. Oral Implantol. 41, 586–595 (2015). https://doi.org/10.1563/AAID-JOI-D-13-00129

    Article  Google Scholar 

  71. R. Liu, M. Yan, S. Chen et al., Effectiveness of platelet-rich fibrin as an adjunctive material to bone graft in maxillary sinus augmentation: a meta-analysis of randomized controlled trails. Biomed. Res Int. 2019, 7267062 (2019). https://doi.org/10.1155/2019/7267062

    Article  CAS  Google Scholar 

  72. A. Simonpieri, J. Choukroun, C.M. Del et al., Simultaneous sinus-lift and implantation using microthreaded implants and leukocyte- and platelet-rich fibrin as sole grafting material: a six-year experience. Implant Dent 20, 2–12 (2011). https://doi.org/10.1097/ID.0b013e3181faa8af

    Article  Google Scholar 

  73. N. Tajima, S. Ohba, T. Sawase, I. Asahina, Evaluation of sinus floor augmentation with simultaneous implant placement using platelet-rich fibrin as sole grafting material. Int. J. Oral Maxillofac. Implants 28, 77–83 (2013). https://doi.org/10.11607/jomi.2613

    Article  Google Scholar 

  74. J. Mir-Mari, H. Wui, R.E. Jung et al., Influence of blinded wound closure on the volume stability of different GBR materials: an in vitro cone-beam computed tomographic examination. Clin. Oral Implants Res. 27, 258–265 (2016). https://doi.org/10.1111/clr.12590

    Article  Google Scholar 

  75. J. Lu, Z. Wang, H. Zhang et al., Bone graft materials for alveolar bone defects in orthodontic tooth movement. Tissue Eng. Part B Rev. 28, 35–51 (2022). https://doi.org/10.1089/ten.TEB.2020.0212

    Article  Google Scholar 

  76. A. Mordenfeld, M. Hallman, C.B. Johansson, T. Albrektsson, Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral Implants Res 21, 961–970 (2010). https://doi.org/10.1111/j.1600-0501.2010.01939.x

    Article  Google Scholar 

  77. T. Chackartchi, G. Iezzi, M. Goldstein et al., Sinus floor augmentation using large (1–2 mm) or small (0.25-1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clin. Oral Implants Res. 22, 473–480 (2011). https://doi.org/10.1111/j.1600-0501.2010.02032.x

    Article  Google Scholar 

  78. M. Fujioka-Kobayashi, H. Katagiri, M. Kono et al., The impact of the size of bone substitute granules on macrophage and osteoblast behaviors in vitro. Clin. Oral Investig. 25, 4949–4958 (2021). https://doi.org/10.1007/S00784-021-03804-Z

    Article  Google Scholar 

  79. T. Testori, S.S. Wallace, P. Trisi et al., Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial. Int. J. Periodontics Restor. Dent. 33, 467–475 (2013). https://doi.org/10.11607/prd.1423

    Article  Google Scholar 

  80. S. Ghanaati, M. Barbeck, C. Orth et al., Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 6, 4476–4487 (2010). https://doi.org/10.1016/j.actbio.2010.07.006

    Article  CAS  Google Scholar 

  81. Y. Tanuma, T. Anada, Y. Honda et al., Granule size-dependent bone regenerative capacity of octacalcium phosphate in collagen matrix. Tissue Eng Part A 18, 546–557 (2012). https://doi.org/10.1089/ten.TEA.2011.0349

    Article  CAS  Google Scholar 

  82. E.R. Dawson, R.K. Suzuki, M.A. Samano, M.B. Murphy, Increased internal porosity and surface area of hydroxyapatite accelerates healing and compensates for low bone marrow mesenchymal stem cell concentrations in critically-sized bone defects. Appl. Sci. (2018). https://doi.org/10.3390/app8081366

    Article  Google Scholar 

  83. I.S. Deschamps, G.L. Magrin, R.S. Magini et al., On the synthesis and characterization of β-tricalcium phosphate scaffolds coated with collagen or poly (D, L-lactic acid) for alveolar bone augmentation. Eur. J. Dent. (2017). https://doi.org/10.4103/ejd.ejd_4_17

    Article  Google Scholar 

  84. M. Vallet-Regí, E. Ruiz-Hernández, Bioceramics: from bone regeneration to cancer nanomedicine. Adv. Mater. 23, 5177–5218 (2011). https://doi.org/10.1002/adma.201101586

    Article  CAS  Google Scholar 

  85. A.L. Carvalho, P.E.P. Faria, M.F.M. Grisi et al., Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: a histologic and histometric study in dogs. J. Oral Implantol. 33, 267–276 (2007). https://doi.org/10.1563/1548-1336(2007)33[267:EOGSOT]2.0.CO;2

    Article  Google Scholar 

  86. E. Elgendy, T. Abo Shady, Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects. J. Indian Soc. Periodontol. 19, 61 (2015). https://doi.org/10.4103/0972-124X.148639

    Article  Google Scholar 

  87. J. Werner, B. Linner-Krcmar, W. Friess, P. Greil, Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials 23, 4285–4294 (2002)

    Article  CAS  Google Scholar 

  88. M.J. Coathup, Q. Cai, C. Campion, T. Buckland, G.W. Blunn. The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J. Biomed. Mater. Res. B. Appl. Biomater. 101(6), 902–910 (2013). https://doi.org/10.1002/jbm.b.32895

    Article  CAS  Google Scholar 

  89. A. Berberi, A. Samarani, N. Nader, Z. Noujeim, M. Dagher, W. Kanj, R. Mearawi, Z. Salemeh, B. Badran. Physicochemical characteristics of bone substitutes used in oral surgery in comparison to autogenous bone. BioMed. Res. Int. 2014, 320790 (2014). https://doi.org/10.1155/2014/320790

    Article  CAS  Google Scholar 

  90. J.S. Fernandes, R.L. Reis, R.A. Pires, Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration. Mater. Sci. Eng. C 71, 252–259 (2017). https://doi.org/10.1016/j.msec.2016.10.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the financial support provided by the Portuguese Foundation for Science & Technology (FCT) in Portugal and the National Council for Science & Technology (CNPq) in Brazil. We would also like to thank Dr. José Daniel Suárez for providing the photos acquired on PRF which are shown in this article.

Funding

Financial support provided by FCT-Portugal in the subject of the following projects: UID/EEA/04436/2013, LIBPhys-FCT UID/FIS/04559/2013, SFRH/BPD/123769/2016, and POCI-01-0145-FEDER-031035_LaserMULTICER. Also, financial support provided by CNPq-Brazil, namely CNPq/UNIVERSAL/421229/2018-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio C. M. Souza.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noronha Oliveira, M., Varela, H.A., Caramês, J. et al. Synergistic Benefits on Combining Injectable Platelet-Rich Fibrin and Bone Graft Porous Particulate Materials. Biomedical Materials & Devices 1, 426–442 (2023). https://doi.org/10.1007/s44174-022-00004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00004-5

Keywords

Navigation