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Abstract
Plastic fibers are ubiquitous in daily life with additives incorporated to improve their performance. Only a few restrictions 
exist for a paucity of common additives, while most of the additives used in textile industry have not been clearly regulated 
with threshold limits. The production of synthetic fibers, which can shed fibrous microplastics easily (< 5 mm) through 
mechanical abrasion and weathering, is increasing annually. These fibrous microplastics have become the main composi-
tion of microplastics in the environment. This review focuses on additives on synthetic fibers; we summarized the detection 
methods of additives, compared concentrations of different additive types (plasticizers, flame retardants, antioxidants, and 
surfactants) on (micro)plastic fibers, and analyzed their release and exposure pathways to environment and human beings. 
Our prediction shows that the amounts of predominant additives (phthalates, organophosphate esters, bisphenols, per- and 
polyfluoroalkyl substances, and nonylphenol ethoxylates) released from clothing microplastic fibers (MFs) are estimated to 
reach 35, 10, 553, 0.4, and 568 ton/year to water worldwide, respectively; and 119, 35, 1911, 1.4, and 1965 ton/year to air, 
respectively. Human exposure to MF additives via inhalation is estimated to be up to 4.5–6440 µg/person annually for the 
above five additives, and via ingestion 0.1–204 µg/person. Notably, the release of additives from face masks is nonnegligi-
ble that annual human exposure to phthalates, organophosphate esters, per- and polyfluoroalkyl substances from masks via 
inhalation is approximately 491–1820 µg/person. This review helps understand the environmental fate and potential risks 
of released additives from (micro)plastic fibers, with a view to providing a basis for future research and policy designation 
of textile additives.

 * Qiqing Chen 
 chenqiqing@sklec.ecnu.edu.cn

 Yuye Chen 
 Ye13918597662@163.com

 Qun Zhang 
 772366084@qq.com

 Chencheng Zuo 
 51213904041@stu.ecnu.edu.cn

 Huahong Shi 
 hhshi@des.ecnu.edu.cn

1 State Key Laboratory of Estuarine and Coastal Research, 
East China Normal University, Shanghai 200241, China

2 Yangtze Delta Estuarine Wetland Ecosystem Observation 
and Research Station, Ministry of Education & Shanghai 
Science and Technology Committee, Shanghai, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s44169-022-00023-9&domain=pdf
http://orcid.org/0000-0002-3247-7861


 Reviews of Environmental Contamination and Toxicology (2022) 260:22

1 3

22 Page 2 of 25

Graphical Abstract

Abbreviations
2,4-DTBP  2,4-Di-tert-butyl-phenol
A01010, Irganox 1010  Pentaerythritol tetrakis(3-(3,5-

di-tert-butyl-4-hydroxyphenyl) 
propionate

AO168  Tris(2,4-di-tertbutylphenyl) 
phosphite

APEO  Alkylphenol polyethoxylates
ASE  Accelerated solvent extraction
BBP  Benzyl butyl phthalate
BFR  Brominated flame retardants
BHA  Butyl hydroxyanisole
BHT  2,6-Di-tert-butyl-4-methyl phenol
BPA  Bisphenol A
BPF  Bisphenol F
BPS  Bisphenol S
DCM  Dichloromethane
DEHP  Bis(2-ethylhexyl) phthalate
DIBP  Di-iso-butyl phthalate
DnBP  Dibutyl phthalate
FTOHs  Fluorotelomer alcohols
HFIP  1,1,1,3,3,3-Hexafluoro-2-pro-

panol
Irganox 1076  Octadecyl-3-(3,5-di-tert-buty-

4-hydroxyphenyl) propionate
MAE  Microwave-assisted extraction

MF  Microplastic fiber
NP  Nonylphenol
NPE  Nonylphenol ethoxylates
OPE  Organophosphorus esters
OPFR  Organophosphorus flame 

retardants
PAE  Phthalate
PBB  Polybromobiphenyls
PBDE  Polybrominated diphenyl ethers
PFAS  Per- and polyfluoroalkyl 

substances
PFCA  Perfluoroalkyl carboxylic acids
PFOS  Perfluorooctanesulphonate
PFSA  Perfluoroalkyl sulfonic acids
PP  Polypropylene
TCEP  Tris(2-chloroethyl) phosphate
TCIPP  Tris(2-chloropropyl) phosphate
TCPP  Tris(2-chloroisopropyl) 

phosphate
TEHP  Tri(2-ethylhexyl) phosphate
TEP  Triethyl phosphate
THF  Tetrahydrofuran
TMPP  Trimethylphenyl phosphate
TnBP  Tributyl phosphate
TNPP  Tris(4-nonyl-phenyl) phosphate
TPhP  Triphenyl phosphate
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TRIS  Tris (2,3-dibromopropyl) 
phosphate

USE  Ultrasonic extraction
XRF  X-ray fluorescence

Introduction

Fibers are ubiquitous polymers in daily life. Common fiber 
products include clothes, carpets, face masks, etc. There are 
mainly three types of fibers: natural fibers (cotton, wool), 
synthetic fibers (polyethylene terephthalate (polyester), pol-
yamide (nylon), acrylic, polyurethane (spandex), polypro-
pylene, polyvinyl chloride, etc.), and artificial fibers (rayon, 
viscose fiber, cellulose acetate, etc.). Global fiber production 
was about 109 million tons in 2020, of which synthetic fib-
ers, natural fibers, and artificial fibers account for about 62%, 
32%, and 6%, respectively, and the synthetic fiber production 
is estimated to approach 100 million t/y by 2030 (Pepper 
2021). During manufacturing, different additives are incor-
porated into these textiles to improve their performance for 
different applications.

The definition of “microplastic” refers to plastic parti-
cles < 5 mm in size. The shape of microplastics includes 
fragments, fibers, and beads (Zhao et al. 2022). Fiber is 
the predominant shape of microplastics detected in both 
the atmospheric and aquatic environment (Lin et al. 2018; 
Liu et al. 2019b; Su et al. 2018). Fibrous microplastics, i.e., 
microplastic fibers (MFs), refer to synthetic fibers, including 
polyethylene terephthalate, polyamide, acrylic, polypropyl-
ene, etc. MFs are mainly released during use and wear of 
synthetic textile products and also become the main source 
of secondary microplastics in the environment. Microfibers 
have a broader definition than MFs, which contain both natu-
ral and synthetic fibers smaller than 5 mm. Microfibers in the 
air mainly originate from drying of textiles, daily wear and 
tear, and solid waste incineration (De Falco et al. 2020; Dris 
et al. 2016; Liu et al. 2019a), while those in aquatic environ-
ment mainly originate from activities such as the washing 
of textiles and use of fishing nets (Napper and Thompson 
2016; Xue et al. 2020).

The most common additives are dyes, flame retardants, 
plasticizers, antibacterial agents, antistatic agents, antioxi-
dants, etc. (Rovira and Domingo 2019). Some chemicals 
on textiles have been restricted or banned according to 
the REACH (Registration, Evaluation, Authorization and 
Restriction of Chemicals), including phthalates (bis (2–ethyl-
hexyl) phthalate (DEHP), dibutyl phthalate (DBP), restricted 
concentration < 0.1%), bisphenol A (BPA, restricted concen-
tration < 0.02% for thermal paper), nonylphenol ethoxylates 
(NPE, restricted concentration < 0.01%), flame retardants 
(tris (2,3-dibromopropyl) phosphate (TRIS)), and polybro-
mobiphenyls (PBB), which should not be used in textiles 

contacting with the skin (Schäfer and Herter 2021). How-
ever, there is a wide variety of additives up to more than 
twenty thousand (https:// polym er- addit ives. speci alchem. 
com/). With the emergence of more and more novel addi-
tives (e.g., synthetic phenolic chemicals) (Tan et al. 2021; 
Wu et al. 2019), most of the additives have not been rea-
sonably controlled and studied. In most cases, additives 
are physically rather than chemically bound to the plastic 
polymer (Hahladakis et al. 2018). Thus, MFs can release 
additives to the surrounding environment easily during the 
process of laundry, abrasion, and transport (Akhbarizadeh 
et al. 2021; Hahladakis et al. 2018). When MFs enter organ-
isms, additives will be released and migrate out. In such 
cases, the bioaccumulation of pollutants can be altered with 
the presence of MFs especially in above-fugacity scenario 
(Li et al. 2022).

Many studies have focused on the release of MFs from 
synthetic textile products; however, little attention has been 
paid to the “trojan horse” effects of MFs for additives. The 
objectives of this paper are to (1) overview the extraction 
and quantification methods of additives on textiles and MFs; 
(2) summarize the types and concentrations of additives on 
both traditional (i.e., clothes) and emerging MFs contribu-
tors (i.e., face masks); (3) analyze the migration and release 
capability of these additives; (4) and finally, estimate the 
annual release of additives together with MFs into aquatic 
and atmospheric environment, and the mass of additives 
inhaled and ingested into human body through the carrier 
of MFs.

Analytical Methods for Additives 
on (Microplastic) Fibers

In this section, we mainly introduce the pretreatment meth-
ods (especially additive extraction methods) and analytical 
techniques of the predominant plastic additives, including 
plasticizers, antioxidants, flame retardants, and surfactants 
(Fig. 1).

Sample Pretreatment and Extraction

Pretreatment of Fiber Products

For the extraction of plasticizers, antioxidants, and sur-
factants on synthetic textile products, solvent extraction 
is the most common method (Kim et al. 2016; Wang et al. 
2019a). Ultrasonic extraction (USE) and microwave-assisted 
extraction (MAE) have the advantages of high extraction 
efficiency, short time consumption, low solvent amount, 
and extensive adaptability (Khan and Jahangir 2020; Kim 
et al. 2016; La Nasa et al. 2021; Llompart et al. 2019). For 
instance, USE can be effectively applied in the extraction 

https://polymer-additives.specialchem.com/
https://polymer-additives.specialchem.com/
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of phthalates (PAEs) from polyethylene films and synthetic 
antioxidants from disposable face masks, with recovery 
rates of 83.2–116.9% and 51–113%, respectively (Kim et al. 
2016; Liu and Mabury 2021). Accelerated solvent extraction 
(ASE) is another prominent method for organic pollutants 
extraction from sediment, which has not been widely used 
for textiles yet (Giergielewicz-Możajska et al. 2001; Hu et al. 
2020). Additionally, some conventional solvent extraction 
methods, such as Soxhlet extraction, can also be used with 
recovery rates of up to 90% or more; however, it is often 
time-consuming (more than four hours) (Kim et al. 2016; 
Li et al. 2015).

In addition to the solvent extraction methods, direct quali-
tative determination techniques are emerging in recent years, 
such as X-ray fluorescence (XRF), total fluorine (F) analysis 
technique, and inductively coupled plasma-optical emission 
spectrometry (ICP-OES). For instance, bromine (Br) and 
phosphorus (P) contents can be screened in fiber products 
with XRF and ICP-OES (Negev et al. 2018; Petreas et al. 
2016; Young et al. 2021). The total fluorine (F) analysis 
technique can be conducted before the extraction of per- and 
polyfluoroalkyl substances (PFAS) to screen samples con-
taining F quickly (Muensterman et al. 2022; Schellenberger 
et al. 2022). After the USE step of PFAS, some researches 
also apply solid phase extraction (SPE) to eliminate matrix 
compound interference and further concentrate samples 
(Gremmel et al. 2016; Muensterman et al. 2022).

Pretreatment of Microplastic Fibers

Currently, there are limited methods that specifically target 
additives extraction from MFs. The bottleneck of additives’ 
extraction from MFs is mainly because of the mass of fiber 
samples collected from the natural environment is often too 

low to meet the detection limits of instruments. Recently, 
Sorensen et al. (2021) proved that when the collected MFs 
were heavier than 0.1 g, the additives on MFs can be suc-
cessfully extracted by the USE and quantified.

The pretreatment methods of microplastic particles can 
provide referential experiences for MFs. Some pretreat-
ment methods, i.e., Soxhlet extraction and USE methods 
for microplastics can be applied for MF additives extrac-
tion. For instance, Zhang et al. (2018) extracted PAEs and 
organophosphorus esters (OPEs) from microplastic particles 
(0.01–0.5 g) by the Soxhlet extraction method with dichlo-
romethane (DCM). Besides, Rani et al. (2017) extracted the 
antioxidants (Irganox 1010, Irganox 1076, 2,6-di-tert-butyl-
4-methylphenol (BHT)) from plastic powders by the USE 
method with DCM. In addition to conventional extraction 
methods, direct analysis in real-time high-resolution mass 
spectrometry (DART-MS) can be used as a rapid fingerprint-
ing method to screen microplastic additives. The complex 
mixture of polymer degradation products (i.e., “chemical 
fingerprints” of environmental microplastics) resulted from 
thermal desorption and pyrolysis can reflect the composi-
tion of both the polymers and the additives, which has been 
successfully used to detect plasticizers and antioxidants in 
microplastics (Zhang et al. 2020d). Of note, this method can 
preliminarily identify the presence of some additives, but 
it cannot be used for accurate quantification. In the future, 
more studies should be carried out on developing sensitive 
novel extraction or determination methods for trace contami-
nants in MFs.

Extraction Solutions Selection

For extraction of plasticizers, antioxidants, and flame retard-
ants on fibers, traditional extractants include DCM, acetone, 

Fig. 1  Analytical methods of 
additives on synthetic textiles. 
(BFRs: brominated flame 
retardants; PFRs: phospho-
rus flame retardants; DCM: 
dichloromethane; THF: C; 
HFIP: 1,1,1,3,3,3-hexafluoro-
2-propanol. ASE: accelerated 
solvent extraction; XRF: X-ray 
fluorescence; ICP-OES: induc-
tively coupled plasma-optical 
emission spectrometry; GC–
MS/MS: Gas chromatography-
tandem mass spectrometry; 
TD-GC–MS: thermal desorp-
tion-gas chromatography-mass 
spectrometry; LC–MS: liquid 
chromatography-mass spec-
trometry; HPLC: high-perfor-
mance liquid chromatography)
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ethyl ether, acetonitrile, n-hexane, and methanol. (Abdallah 
et al. 2017; Freire et al. 2019; Fu et al. 2012; Hajiouni et al. 
2022; Negev et al. 2018; Wang et al. 2011). The mixture of 
hexane and acetone is the most common extraction solution. 
For example, n-hexane/acetone (1:1) was used to extract 15 
PAEs from children’s clothes, resulting in high recovery 
rates ranging from 81.9 to 107%; and this recipe has also 
been successfully applied to extract 39 BFRs and 16 OPEs 
from children’s sleeping nap mats (made of polyurethane) 
(Stubbings et al. 2018; Tang et al. 2020). For extraction of 
surfactants like per- and polyfluoroalkyl substances (PFAS), 
methanol is commonly used (Muensterman et al. 2022; 
Schellenberger et al. 2022; Zheng and Salamova 2020). 
Since PFAS consists of a large number of substances, there 
are also different extraction solutions and analytical methods 
for volatile and nonvolatile PFAS, respectively (Table 2). 
For volatile PFAS (fluorotelomer alcohols (FTOHs)), ethyl 
acetate and n-hexane can be used as extraction solutions, 
while methanol and acetone/acetonitrile can be a choice for 
nonvolatile PFAS, such as perfluoroalkyl carboxylic acids 
(PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) (Grem-
mel et al. 2016; Vestergren et al. 2015).

In addition to the traditional extractants mentioned above, 
some unconventional extraction solutions are also gradu-
ally applied. For extraction of phthalate plasticizers, tetrahy-
drofuran (THF) is recommended by the ISO 14389: 2014 
(Wang et al. 2019b) and the Chinese national standard (Tex-
tile—Determination of the phthalate content—Tetrahydro-
furan method (in Chinese), GB/T 20388–2016). Some stud-
ies prove that the THF extraction for PAEs usually exhibits 
better performance than other solvents, with higher recov-
ery rate of 96.7–110.5% than that of methyl tert–butyl ether 
(MTBE) (38.3–58.0% recovery) or toluene (62.0–83.8%) 
(Al–Natsheh et al. 2015; Khan and Jahangir 2020).

Moreover, extractants that enable fibers to be “dissolved” 
exhibit better extraction efficiency than traditional extract-
ants. Miyake et al. (2017) developed a novel complete dis-
solution extraction method, i.e., using 25% 1,1,1,3,3,3-hex-
afluoro-2-propanol (HFIP)/chloroform as extractant to 
extract 18 brominated flame retardants (BFRs) and 15 
phosphorus flame retardants (PFRs) in polyester curtains. 
By applying the complete dissolution method, more flame 

retardants were extracted than that via the conventional USE 
method using toluene or acetone (only 0.5–10% of those 
measured by the complete dissolution method). Similarly, 
Li and Kannan (2018) compared two extraction solutions 
of 25% HFIP/chloroform and acetone/DCM (v/v, 1:4); the 
former one showed up to 286 times higher extraction effi-
ciency than the latter one. The two examples above confirm 
that HFIP can well dissolve fibers, such as polyester, nylon, 
and spandex. Future experiments should focus more on this 
solvent to gain a better extraction effect.

Extraction Time Selection

The extraction time varies largely among different extraction 
methods. USE uses small amounts of solvents and allows 
batch processing of multiple samples. When the additives 
on fibers are extracted by ultrasonication, the extraction 
process is usually repeated at least twice, with extraction 
time ranging from 30 to 60 min (Abdallah et al. 2017; Khan 
and Jahangir 2020; Wang et al. 2019a). It has been found 
that for polybrominated diphenyl ethers (PBDEs) extraction 
from textiles, 30 min is the optimal extraction time, since 
there is no significant change in the recovery rate beyond 
30 min (Abdallah et al. 2017). MAE also has a relatively 
shorter extraction time of about 15–30 min (Sanchez–Prado 
et al. 2010). In contrast, Soxhlet extraction method requires 
longer time, usually at least 4 h for each extraction, making 
it more costly (Kim et al. 2016; Li et al. 2015; Xu 2021). 
ASE owns the advantage of high efficiency and automa-
tion, with the extraction time of about 15–20 min per sam-
ple (Giergielewicz-Możajska et al., 2001). However, ASE 
cannot be used for batch extraction and may take longer 
time in case of large number of samples. We summarize the 
appropriate extraction methods for four additives (Table 1).

Instrumental Analysis

Gas chromatography-mass spectrometry (GC–MS) and 
liquid chromatography-mass spectrometry (LC–MS) are 
widely used for quantification of additives extracted from 
synthetic textiles. GC–MS is especially suitable for additives 
with low boiling point and good thermal stability. Bernard 

Table 1  Recommended extraction methods for four types of additives on plastic (micro)fibers

USE ultrasonic extraction

Additives Pretreatment Extraction solution Extraction time

Conventional Novel

Plasticizers USE Tetrahydrofuran, n-hexane, acetone HFIP / chloroform (completed dissolved) 20 min × (2–3 times)
Antioxidants USE Acetone, DCM, ethyl acetate
Flame retardants USE Acetone, n-hexane, DCM
Surfactants USE Methanol
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et al. (2017) compared eight different analytical methods 
for determination of plasticizers and found that GC–MS 
possessed higher sensitivity (LOD values ranging from 
0.03–0.5 µg/ml) than other methods. LC–MS determination 
of pollutants is not limited by boiling point. Thus, it can be 
used to analyze large molecule substances with poor ther-
mal stability and weak-volatilization ability, such as flame 
retardants like tri(2-ethylhexyl) phosphate (TEHP), triph-
enyl phosphate (TPHP), trimethylphenyl phosphate (TMPP), 
nonvolatile PFAS, etc. (Lorenzo et al. 2016; Muensterman 
et al. 2022). Tandem mass spectrometry (MS/MS) realizes 
selective reaction monitoring (SRM), which greatly reduces 
the noise level and improves selectivity in the analysis of 
complex sample matrices (Wang et al. 2020). Currently, 
high-performance liquid chromatography-tandem mass 
spectrometry (HPLC–MS/MS), and ultrahigh-performance 
liquid chromatography-tandem mass spectrometry (UPLC-
MS/MS) have become very important techniques for the 
analysis of flame retardants, novel synthetic antioxidants, 
and surfactants, because of their good selectivity and sen-
sitivity, high precision, and low detection limits (Abdallah 
2016; Bastiaensen et al. 2018; Gremmel et al. 2016; Guo 
et al. 2016; Vestergren et al. 2015; Wang et al. 2019a; Wu 
et al. 2019). The ionization of molecules has an important 
influence on the final quantification. Electron ionization (EI) 
is very suitable for polar chemicals (Bourdeaux et al. 2016; 
Stubbings et al. 2019). However, EI is not suitable for high 
molecular weight chemicals due to the fragments’ difficulty 
for volatilization and poor thermal stability after ionization. 

Some soft ionization techniques such as electrospray ioni-
zation (ESI) and atmospheric pressure chemical ionization 
(APCI) interfaces can effectively solve this limitation (Wang 
et al. 2020). For example, Halloum et al. (2017) found that 
the detection limits of GC-APCI-MS/MS were 2.5–25 and 
50–100 times lower than those of GC-EI-MS/MS, respec-
tively, for the quantification of non-brominated OPEs and 
brominated OPEs.

In recent years, emerging quantification techniques that 
do not require pretreatment have become increasingly pop-
ular (Anuar et al. 2022; Jin et al. 2022; Xu et al. 2022). 
Thermal desorption-gas chromatography-mass spectrometry 
(TD-GC–MS) and pyrolysis gas chromatography-mass spec-
trometry (Py-GC–MS) exhibit the advantages of high sensi-
tivity, automation, and solvent interferences-free (Humbert 
et al. 2022). TD-GC–MS has been found to be effective for 
the quantification of brominated flame retardants (especially 
for BDE-209) in curtains and car interiors (Shin and Baek 
2012); meanwhile, Py-GC–MS has been increasingly used 
for the detection of PAEs, flame retardants, ultraviolet sta-
bilizers, and bisphenols. (Akoueson et al. 2022; Deng et al. 
2022).

There are also some new analytical methods, such as 
time of flight mass spectrometry (TOF–MS), electron probe, 
and environmental forensic microscopy. The principle of 
TOF–MS is to measure the time for ions to reach the detector 
from the ion source. The heavier the ion mass, the longer the 
time to reach the receiver; and vice versa. As a result, ions of 
different masses can be separated according to their specific 
m/z. The advantage of TOF–MS is the fast scan speed and 
high sensitivity. Ionas et al. (2015) have used the ambient 
high-resolution mass spectrometry (direct probe-TOF–MS) 
to qualitatively screen flame retardants in textiles (curtains 
and carpets). TOF–MS was capable of quickly screening 
BFRs and PFRs in positive and negative ion APCI modes 
with [M + H] and [M–Br +  O]+–, respectively. Moreover, 
the environmental forensic microscopy is also suitable for 
investigation of Br distribution (originated from BFRs) on 
textile surface (Ionas et al. 2015). Nevertheless, environmen-
tal forensic microscopy is only recommended for the surface 
distribution analysis of additives with relatively high con-
centration. There are also techniques that can quickly screen 
out samples containing F. Some studies conducted the total 
F analysis by combustion ion chromatography (CIC) before 
the extraction of PFAS (Rodgers et al. 2022; Schellenberger 
et al. 2022). Total F concentration can also be measured 
by the particle-induced gamma emission (PIGE) technique 
(Muensterman et al. 2022; Xia et al. 2022). The advantage 
of CIC or PIGE technique is that total F concentration can be 
quickly obtained. However, these fast-screening techniques 
cannot avoid the interference of substances containing fluo-
rine; therefore, they are used as preliminary screening meth-
ods. The commonly used extraction methods, solvents, time, 

Fig. 2  The concentration of typical additives in a clothes and b face 
masks (ng/g). The maximum, minimum, and median values were 
obtained from the literature. The upper and lower boundaries of each 
box represent the 75th and 25th percentiles, respectively. The hori-
zontal line represents the median value. The small square represents 
the mean value. c–g: The concentration (ng/g) (mean ± SD) of addi-
tives on different fiber types. Data were collected from the literature 
and presented as average values (Brigden et  al. 2013, 2012; Li and 
Kannan 2018; Sait et al. 2021; Tang et al. 2020; Wang et al. 2019a, 
2022; Xie et al. 2022; Xue et al. 2017; Zheng and Salamova 2020). 
h The concentration (ng/g) (mean ± SD) of PAEs, OPEs, and PFAS 
in surgical and N95 face masks. Data were collected from the litera-
ture and presented as average values (Fernandez–Arribas et al. 2021; 
Muensterman et  al. 2022; Wang et  al. 2022). Of note, the original 
data of PFAS concentrations are 46 µg/m2 and 15 µg/m2. To match 
the unit of “ng/g,” we cut 10  cm2 of surgical and N95 masks, respec-
tively, and weighed them to obtain mass average values, followed by 
a unit conversion to obtain the concentration of ng/g. Statistical anal-
ysis was performed using SPSS Statistics 26.0 software. Normality of 
the data was tested by the Shapiro–Wilk test. Difference between con-
centrations of additives in surgical and N95 masks was determined 
through Mann–Whitney U test (*p < 0.05). (DEHP: bis(2-ethylhexyl) 
phthalate; DnBP: dibutyl phthalate; DiBP: di-iso-butyl phthalate; 
BPA: bisphenol A; BPS: bisphenol S; BPF: bisphenol F; 2,4-DTBP: 
2,4-di-tert-butyl-phenol; TPhP: triphenyl phosphate; TCEP: tris(2-
chloroethyl) phosphate; TCIPP: tris(2-chloropropyl) phosphate; 
TEHP: tri(2-ethylhexyl) phosphate; TEP: triethyl phosphate; PFAS: 
per- and polyfluoroalkyl substances; NPE: nonylphenol ethoxylates)

◂
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and quantification equipment, as well as chemical recoveries 
for additives in fiber products are summarized (Table 2).

Occurrence of Additives on Plastic Fibers

The main processes in the textile production include siz-
ing (improving the abrasion resistance of fibers), desizing 
(removing sizing chemicals from textiles), scouring (remov-
ing impurities from fibers), bleaching (removing unwanted 
colored matters), mercerizing (improving the strength and 
luster of textiles), dyeing & printing (adding colors or pat-
terns to textiles) (Athira et al. 2018). To improve the soft-
ness, flame resistance, and stability of textiles, various 
additives and aids are incorporated. As a consequence, 
some of them, such as aromatic amines, plasticizers, flame 
retardants, phenolic antioxidants, surfactants, antimicrobial 
agents, ultraviolet stabilizers (benzotriazole), anti-wrinkling 
resins, heavy metals, etc., may remain in the clothes (Licina 
et al. 2019). PAEs, bisphenols, and OPEs have been widely 
detected in synthetic fibers (Fig. 2a) (Tang et al. 2020; Wang 
et al. 2019a; Xue et al. 2017).

The types of additives are closely related to textile mate-
rial and functions. Plasticizers are one of the most widely 
used plastic additives; the addition amount can reach 
10–70% (Hahladakis et al. 2018; Hermabessiere et al. 2017). 
Plasticizers are mainly used in polyurethane (PU) or PVC 
coating of textiles. In some cases, PVC can even contain 
80% of plasticizers (Hahladakis et al. 2018). Clothing hav-
ing abundant colors with rich prints and coats often exhibits 
higher concentrations of PAEs (Tang et al. 2020). Nylon 
(15,203 ± 10,382 ng/g) contains a higher PAEs concentra-
tion than polyester (9732 ± 6988 ng/g) (Fig. 2c). Tang et al. 
(2020) measured that total concentrations of 15 PAEs in 
children clothing (blends of polyester, nylon, and spandex) 
were 3.35–33.42 μg/g, indicating a moderate level of incor-
porated phthalates in plastics. REACH regulates that for toys 
or childcare articles, the individual or combined concentra-
tion of DEHP, DBP, BBP equal to or greater than 0.1% (by 
weight) (1 ×  106 ng/g) should not be put on market (Negev 
et al. 2018). From the collected data (Fig. 2a), it can be seen 
that the concentration of major PAEs in the clothes does 
not exceed the standard (1 ×  106 ng/g). Meanwhile, PAEs 
are widely detected in air particulate matter (Li and Wang 
2015); in addition to additives remained during manufactur-
ing, fiber fabrics may also adsorb and accumulate airborne 
plasticizers emitted by indoor furniture (Shi et al. 2018; 
Zhang et al. 2020b).

Flame retardants are added to reduce the flammability 
of objects; the addition amount is 3–25% for BFRs and 
0.7–3% for PFRs in plastic materials (Hahladakis et al. 
2018). Synthetic fibers should be treated with flame retard-
ants, because the molten drops caused by combustion may 

burn the skin and lead to the burning of combustible materi-
als around (Bourbigot 2008). Since the ban or restriction of 
some traditional BFRs according to the Stockholm Conven-
tion (Wu et al. 2020), the global consumption of organo-
phosphate flame retardants in textile is increasing yearly 
(from 186,000 t in 2001 to 680,000 t in 2015) (Pantelaki 
and Voutsa 2019; Reemtsma et al. 2008). The content of 
flame retardants in synthetic fibers is often higher than that 
in cotton fabrics. The average concentration of ∑20OPEs 
(1.52 ×  103 ng/g) in synthetic fibers (polyester, nylon, vinyl) 
was higher than that in cotton fabrics (442 ng/g), triphenyl 
phosphate (TPhP), accounting for the highest percentage 
(40.2% of the total concentration) (Zhu et al. 2020). It is 
noticed that although the presence of BFRs (e.g., PBDEs) 
has been detected in textiles, such as carpets, curtains, and 
seat leather (Abdallah et  al. 2017; Portet-Koltalo et  al. 
2021; Shin and Baek 2012), there are no available reports 
about BFRs on clothing according to our best knowledge. 
It may be explained that organophosphorus flame retard-
ants (OPFRs) are more multi-functional, which can act as 
both flame retardants and plasticizers. On the other hand, 
some chlorinated OPEs contain both halogens and phos-
phorus (e.g., tris(2-chloroethyl) phosphate (TCEP), tris(2-
chloroiso-propyl) phosphate (TCIPP)), which are versatile 
in flame retardant action, with less odor and lower toxicity 
(Pandit et al. 2020). In addition to the elimination of some 
traditional BFRs, the flame retardants in clothing are there-
fore dominated by OPFRs. Moreover, fibers may also adsorb 
semi-volatile flame retardants from the air, since electronic 
products in offices are sources of flame retardants in air 
(Fig. 3) (Saini et al. 2016a; Saito et al. 2007).

Antioxidants are used to delay the overall oxidative degra-
dation of plastics, the addition amount of which is 0.05–3% 
in plastic materials (Hahladakis et al. 2018). Antioxidants 
include phenolic antioxidants (e.g., BPA, BPS, BHT, 
Irganox 1010, Irganox 1076) and organophosphite antioxi-
dants (tris(4-nonyl-phenyl) phosphate (TNPP), tris(2,4-di-
tertbutylphenyl) phosphite (AO168), etc.) (Hahladakis et al. 
2018). The concentration of bisphenols is closely related 
to the type of the fibers; spandex exhibits higher levels of 
bisphenols, especially for fibers blended of nylon and span-
dex (Fig. 2e). Socks (blends of spandex, nylon, polyester, 
and cotton) are found to contain higher levels of PAEs and 
BPA than other clothing (Tang et al. 2020; Xue et al. 2017). 
Spandex is a typical elastic fiber widely used in stretchable 
clothing; the addition of bisphenols improves its flexibil-
ity (Bodaghi 2020). A study found that the mean concen-
tration of ∑7 bisphenols in pantyhose made of 21–50% 
spandex (535,000 ng/g) was significantly higher than that 
in pantyhose made of 0–20% spandex (170,000 ng/g) (Li 
and Kannan 2018). Studies have also shown that polyes-
ter products contain more additives than cotton ones (Xue 
et al. 2017). Clothes made of polyester and spandex had 
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high concentrations of bisphenols (1823 ng/g for BPA and 
536 ng/g for BPS), while mean concentration of bisphenols 
(BPA + BPS) was only 21 ng/g in cotton clothes (Wang et al. 
2019a). The use of synthetic phenolic antioxidants has grad-
ually increased in recent years; synthetic antioxidants have 
been detected in disposable face masks (Liu and Mabury 
2021). However, there are only few reports on synthetic anti-
oxidants on clothing. Thus, more attention should be paid 
to the content of synthetic antioxidants in clothing fibers in 
the future.

To improve softness, smoothness, and water resistance 
of clothes, especially for functional garments, surfactants 
(e.g., per- and polyfluoroalkyl substances (PFAS), alkyl-
phenol polyethoxylates (APEO), NPE) are often added dur-
ing production process (Gremmel et al. 2016; Heydebreck 
et al. 2016; Holmquist et al. 2016; Licina et al. 2019; Zhang 
et al. 2015). The environmental hazards of PFAS have been 
gradually recognized due to their environmental persistence 
and low degradability. Perfluorooctane sulfonate (PFOS) and 
perfluorooctanoic acid (PFOA) have been listed in Stockholm 
Convention (Groffen et al. 2021). Exposure to PFAS poses 
various health risks, including effects on fertility, endocrine 
function, obesity of children, etc. (Espartero et al., 2022). 
The concentration of PFAS did not show significant differ-
ence among fiber types; the mean concentration in polyes-
ter (193 ± 268 ng/g) is higher than in nylon (98 ± 100 ng/g) 
(Fig. 2f). PFAS has also been detected in furniture textile 

products (e.g., curtain, carpet, table cloth) (Vestergren et al. 
2015). A study indicated that the concentrations of PFOS in 
two carpet samples (0.74 µg/m2 and 1.04 µg/m2) approached 
or even exceeded the EU regulation (1 µg/m2) (Herzke et al. 
2012). PFAS function as surfactants, fabrics with fluorinated 
coatings may release fewer fibers after washing; however, 
fluorinated wastewater has a negative impact on the envi-
ronment (Schellenberger et al. 2019). NPE compounds are 
another cheap and common surfactants. NPE and their deg-
radation products, nonylphenol, are typical endocrine dis-
ruptors, which can affect sperm quality and lead to cancer 
development (Noorimotlagh et al. 2017, 2020). A survey 
conducted by Greenpeace International in 2012 revealed 
that NPE compounds were the most frequently detected 
substances in 20 branded textile products, with a detection 
rate of 63% and median concentration of 5.2–1500 mg/kg 
(Brigden et al. 2012). For 8 luxury brands, the detection 
rate of NPE was 44%, with concentrations ranging from 1.7 
to 760 mg/kg (Brigden et al. 2013). It can be seen that the 
concentrations of NPE in some clothes exceed the REACH 
standard (1 ×  106 ng/g) (Fig. 2a). The concentrations of NPE 
in polyester (84,789 ± 179,215 ng/g) are higher than that in 
nylon (10,000 ng/g); the presence of spandex has no effect 
on NPE concentration (Fig. 2g). In addition, it has been 
found that the mean concentration of ∑20OPEs in water-
repellent fabrics made of nylon or polyester (1940 ng/g) was 
significantly higher than that in conventional fabrics made of 

Fig. 3  Migration and release pathways of additives from microplastic fibers. Icons are created with BioRender.com. (SVOCs: semi-volatile 
organic chemicals with boiling points range between 240 °C and 400 °C (Lucattini et al. 2018))
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cotton or polyester (313 ng/g) (Zhu et al. 2020), suggesting 
that functional garments may contain more additives.

With the Covid-19 pandemic, face masks made of non-
woven polypropylene (PP) or polyethylene terephthalate 
have become emerging MFs contributors to the environment 
(Fadare and Okoffo 2020; Wang et al. 2022). Chemicals such 
as antioxidants, plasticizers, and surfactants may be added 
during the manufacturing of face masks (Liu and Mabury 
2021; Muensterman et al. 2022; Sungur and Gulmez 2015; 
Xie et al. 2022). Total concentrations of PAEs and synthetic 
antioxidants in face masks ranged from 115 to 37,700 ng/g 
and from 20.0 to 575 μg/g, respectively (Liu and Mabury 
2021; Xie et al. 2022). DEHP, DnBP, DiBP, 2,4-di-tert-
butyl-phenol (2,4-DTBP), pentaerythritol tetrakis(3-(3,5-
di-tert-butyl-4-hydroxyphenyl) propionate) (AO1010), and 
AO168 have been frequently detected in face masks (Liu and 
Mabury 2021; Xie et al. 2022). The antioxidant contents in 
face masks are quite high (Fig. 2b), while the types of anti-
oxidants on face masks are different from those of clothes. 
Bisphenols are widely detected in clothes, while lower or 
undetectable levels of bisphenols are found in face masks. 
Only one study reported the presence of BPA in surgical 
masks leachates (0.8–3.2 μg/L) (Liu et al. 2022). This phe-
nomenon may be attributed to high toxicity of bisphenols. 
Some other phenolic antioxidants such as BHT and butyl 
hydroxyanisole (BHA) may be relatively “safer,” which 
can even be used as food additives to extend the shelf life 
of fried foods (Liu and Mabury 2020; Wang et al. 2021). 
On the other hand, some novel antioxidants (e.g., AO168, 
AO1010) receive less attention and lack of effective regula-
tory measures.

Different types of face masks exhibit different addi-
tive concentrations (Fig. 2h). N95 masks contained more 
flame retardant OPEs and PAEs (OPEs:11.6 ± 10.3 µg/
mask (2924.4 ± 2873.2  ng/g), PAEs: 2300 ± 150 to 
5200 ± 800 ng/mask (556.0 ± 124.5 ng/g)) than surgical 
masks (OPEs:0.24 ± 0.27  µg/mask (93.6 ± 107.1  ng/g), 

PAEs: 55 ± 35–1700 ± 140 ng/mask (230.9 ± 236.6 ng/g)) 
(Fernandez–Arribas et al. 2021; Wang et al. 2022). How-
ever, this phenomenon has not been clearly interpreted. We 
speculate that this may be due to the higher filtering capacity 
of N95 masks for bacteria or particulate matter. The density 
of polypropylene in N95 masks is higher than in normal 
masks. Therefore, the manufacturing process is more com-
plex, resulting in higher OPEs or PAEs levels. However, 
there are exceptions that not all N95 masks have higher addi-
tive levels. For instance, Muensterman et al. (2022) found 
that the total PFAS concentrations in surgical masks (46 µg/
m2, converted to be 521.7 ng/g) were higher than that in N95 
masks (15 µg/m2, converted to be 64.8 ng/g).

Compared with non-fiber plastics or microplastics, the 
contents of additives in plastic fibers are generally equivalent 
to the same order of magnitude or even higher. For example, 
the concentrations of 16 PAEs in PP take-out food containers 
were 1.62–8.62 μg/g, while the concentrations of 15 PAEs in 
clothing fibers were 3.35–33.42 μg/g (Han et al. 2021; Tang 
et al. 2020). Compared with PP fragments (Table 3), face 
mask fibers (made of PP) exhibit lower levels of phenolic 
antioxidants and higher levels of plasticizers such as PAEs.

Release of Additives from (Micro)Plastic 
Fibers

Release to Water

Washing of synthetic textiles is one of the most important 
routes for the release of additives from plastic fibers (Luongo 
et al. 2016; Wang et al. 2019a; Zheng and Salamova 2020). 
Abrasion of synthetic textiles during laundry is also an 
important source of microplastics released to aquatic envi-
ronment (Siegfried et al. 2017). About 2.1 ×  105 MFs could 

Table 3  Comparison of typical additive concentrations in plastic fibers and other shapes of plastics

Additives Concentration of additives 
in fibers

Reference Concentration of additives in 
plastics

Reference

PP fibers (face masks) Liu and Mabury (2021) PP plastic fragments Rani et al. (2017)
AO1010 0.0898–65.4 μg/g 17–155 μg/g
AO1076 0–49.9 μg/g 0–169 μg/g
BHT 0–2.38 μg/g 0.02–1.0 μg/g
2,4-DTBP 0–22.5 μg/g 0.64–11 μg/g
∑ phenolic anti-

oxidants
4.44–91.5 μg/g 53.2–200.3 μg/g

PP fibers (face masks) PP flakes and fragments Zhang et al. (2018)
PAEs 115–37,700 ng/g Xie et al. (2022) 0.29–27.2 ng/g
OPEs 9.71–5835 ng/g Fernandez–Arribas et al. (2021) 6.38–2377.5 ng/g
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be released from polyester clothes during a single machine 
wash (Sillanpaa and Sainio 2017).

The release of MFs and additives is affected by the fol-
lowing factors summarized in Table 4: water volume, tem-
perature, duration, washing program, use of detergent/
softener/textile finishes, fabric types, numbers of washing, 
fabric weave construction, and chemical properties of addi-
tives (De Falco et al. 2018; Hernandez et al. 2017; Kelly 
et al. 2019; Napper and Thompson 2016; Saini et al. 2016b; 

Wang et al. 2019a) (Table 4). The factors affecting cotton 
fiber release were also included, since cotton fibers and plas-
tic fibers may have the same release pattern (such as the use 
of textile finishes released more fibers, regardless of the fiber 
type). On the other hand, different fiber types may have dif-
ferent release patterns during washing.

The release of MFs to water depends on the wash-
ing conditions, while the release of additives is related to 
their chemical properties. Additives with higher polarity 

Table 4  Factors affecting the release of plastic fibers, natural fibers, and fiber additives to water

Target Factors References

MFs release Water volume High water volume wash caused 
more MFs release than lower 
water volume

Kelly et al. (2019)

Temperature/time Higher temperature and longer 
time caused more MFs release

Cotton et al. (2020); Dalla Fontana 
et al. (2020)

Detergent/softener The use of detergent caused more 
MFs release, while the use 
of softener reduces the MFs 
release

De Falco et al. (2018); Hernandez 
et al. (2017)

Fiber type* Polyester or acrylic fabrics shed 
more fibers than cotton blended 
fabric

Napper and Thompson (2016)

Polyester fabrics released fewer 
fibers than cotton ones

Sillanpaa and Sainio (2017)

Polypropylene and polyurethane 
face masks released fewer 
microfibers than cotton ones

De Felice et al. 2022)

Fabric weave construction Textile with short spun-staple 
yarn construction shed more 
MFs than those with woven 
construction and filamentous 
yarns

Vassilenko et al. (2021)

Fabrics sewed with double heat-
sealing released less MFs than 
those sewed with normal thread

Dalla Fontana et al. (2021)

Mechanical treatment (brushed, sanded or sheared) Mechanically treated fabrics shed 
more MFs than untreated ones

Vassilenko et al. (2021)

Textile finishes* Fabrics treated with finishes 
(dyes, durable press, and water 
repellent) shed more microfib-
ers during laundering than 
untreated ones

Zambrano et al. (2021)

Additives release Chemical properties of additives Polarity (log  KOW) Polar chemicals (log  KOW < 4, 
e.g., aliphatic OPEs: TnBP, 
TCEP, TCIPP) are more likely 
to be released to water; non-
polar chemicals (log  KOW > 6, 
e.g., DEHP, BFRs) hardly 
release to water

Saini et al. (2016b)

Hydrophilicity Migration rate of PFAS from 
infant clothes reached 100% at 
20 °C and 50 °C

Zheng and Salamova (2020)

Salinity For polyamide MFs, 2 chemicals 
were identified in the 14–-day 
seawater leachates, but not in 
freshwater leachates

Sait et al. (2021)
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or hydrophilicity are more prone to be released to aquatic 
environment (Table 4). Besides, additives can be released 
to the surrounding environment since most of them are not 
chemically bound to the polymer matrix (exception: TBBPA 
is chemically bounded) (Hermabessiere et al. 2017).

In addition to the washing of synthetic fiber products, 
discarding cigarette butts or face masks can also cause MFs 
or chemicals released to aquatic environment (Fig. 3). Dis-
carded cigarette butts result in about 300,000 tons of cellu-
lose acetate MFs entering the aquatic environment annually. 
What accompanied is the release of toxic chemicals such 
as nicotine, carcinogenic tar, polycyclic aromatic hydrocar-
bons, and heavy metals (cadmium, lead), which have been 
proven to pose toxic risk to marine organisms (Shen et al. 
2021; Torkashvand et al. 2020; Wright et al. 2015). Micro 
and nano scale polymeric fibers and heavy metals such as 
cadmium, lead, and antimony have also been detected in face 
mask leachate. The presence of heavy metals may be attrib-
uted to the dyes used in production of colored masks (Sul-
livan et al. 2021; Sungur and Gulmez 2015). MFs released 
from face masks can also become carriers of additives and 
contaminants. It is estimated that approximately 3.4 billion 
disposable face masks are discarded globally every day, 
which cause complex environmental problems (Aragaw 
2020; Benson et al. 2021). Moreover, there is also growing 
interest in novel environmental friendly face masks, such 
as polylactic acid (PLA) biodegradable masks (Soo et al. 
2022). With the advantage of faster degradation rate, bio-
degradable fibers are also more likely to release additives.

Once MFs enter the aquatic environment, ultraviolet 
irradiation will accelerate fiber degradation and additives 
release. Ultraviolet exposure of two months resulted in 
surface degradation (holes appearance) of polyamide fib-
ers and fragmentation (length reduction) of polyester fibers. 
In seawater leachates, the concentration of additives (TPhP, 
TCEP, etc.) released by MFs increased with increasing time 
(Sorensen et al. 2021). The leaching of additives caused by 
fragmentation or degradation of plastic fibers deserves fur-
ther attention.

Release to Air

The release of MFs and additives to the air is also an impor-
tant pathway. Via daily wear of polyester clothes and human 
activity, one person can release about 1.03 ×  109 MFs to the 
air per year (De Falco et al. 2020). The drying process is 
another important source of MFs release (Kapp and Miller 
2020). A household tumble dryer could release 433,128 
(cotton) and 561,810 (polyester) microfibers in 15 min; the 
annual release of microfibers by a dryer may be even greater 
than the number of microfibers released through washing 
(Tao et al. 2022). Although many literatures reported the 
release of MFs to the air, little attention has been paid to the 

additives on MFs. Future study should focus more on addi-
tives release to the air together with MFs.

There are two main pathways for additives to be released 
to the air from MFs: (1) direct release by evaporation effect; 
(2) indirect release by the MFs generated by abrasion. The 
latter pathway is less studied. Schellenberger et al. (2022) 
explored the emission mechanism of PFAS from functional 
textiles (polyamide) under outdoor weathering conditions, 
revealing that in addition to the direct evaporation release, 
PFAS could also be released from abrasion and degrada-
tion of fibers. Moreover, some flame retardants (e.g., deca-
bromodiphenylethane (DBDPE), PBDEs) released from 
electronic dryer may become indirect source of additives 
released to the air together with MFs (Saini et al. 2016b; 
Schecter et al. 2009).

MFs can account for up to 33% of the total microplas-
tics in urban dust (Dehghani et al. 2017). These MFs can 
become carriers of additives during suspension, deposition, 
and migration in the air. PAEs, bisphenols, and flame retard-
ants have widely been detected in airborne dust (Mitro et al. 
2016). Zhang et al. (2020a) reported that the concentration 
of BPA in indoor dust samples was proportional to the con-
centration of polycarbonate (PC)-based microplastics, which 
also further confirmed that microplastic (fibers) is an impor-
tant source of contaminants in dust.

After the outbreak of Covid-19 pandemic, face masks 
have become a contributor of polypropylene MFs. Additives 
like PAEs, OPEs, or synthetic antioxidants in them may be 
released to the air together with the use and abrasion of face 
masks. The exposure to MFs or additives through inhalation 
deserves attention. In regard to the humidity during breath-
ing and higher temperature in summer, the release of some 
additives (e.g., OPEs) from face masks may increase (Fer-
nandez–Arribas et al. 2021).

Release in Organisms

Plastics can act as a carrier of additives and transport over 
long distances. The disposal of face masks has become an 
emerging environmental problem in the last two years. For 
the first time, a PP face mask has even been found in the 
feces of a green sea turtle (Chelonia mydas) near the coast 
of Japan; the risk of exposure to additives through plastics 
ingestion is of concern (Chowdhury et al. 2021; Fukuoka 
et al. 2022). MFs are ubiquitous in the marine environment, 
which are easily ingested by organisms of all trophic lev-
els due to their small sizes. Ingestion of MFs by aquatic 
organisms can lead to growth inhibition, impairment of the 
immune system, and disruption of the gut microbiota; MFs 
have higher acute toxicity for lower taxa aquatic organisms 
(Rebelein et al. 2021). However, many exposure studies of 
MFs fail to distinguish between the toxicity effects of MFs 
and their additives (Alnajar et al. 2021). Although some 
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indoor exposure experiments point out that MFs can be 
excreted gradually by organisms from their bodies through 
digestion (Grigorakis et al. 2017; Song et al. 2019), the 
additives loaded on MFs may be desorbed under intestinal 
conditions.

Most current experiments only focus on the biological 
effects of MFs, ignoring the exposure risks caused by addi-
tives in MFs. Additives have been proven to be released 
in organism from plastics or microplastics. In addition to 
chemical property of additives (log  KOW), unique gastric 
environment of certain organisms such as higher temperature 
(body temperature of seabirds ≈ 40℃), low pH value, and 
the occurrence of stomach oil may accelerate the leaching 
of additives (Andrade et al. 2021; Kühn et al. 2020; Sun 
et al. 2021; Tanaka et al. 2013). At present, indoor exposure 
experiments on biological effects of microplastics and chem-
icals mostly focus on granular microplastics, due to the ease 
of purchase or preparation of granular microplastics. How-
ever, fibrous microplastics rather than granular ones are the 
most common type of microplastics in actual aquatic envi-
ronment. In view of this, there exists a vacancy in research 
on the release of additives to organisms from fibers or MFs.

Estimation of Additive Amounts Released 
by Microplastic Fibers

As estimated by De Falco et al. (2020), one person could 
release about 2.98 ×  108 polyester MFs to water via laundry 
and 1.03 ×  109 to air via wearing polyester clothes per year. 
We converted the MF number concentration to mass con-
centration referring to the formula of Leusch and Ziajahromi 
(2021), i.e., 129.2 g to water and 446.5 g to air.

Here, we took the most common plastic additives PAEs 
as an example. According to the collected data, the con-
centration of PAEs in clothes ranges about 3.35–33.42 μg/g 
(Chai et al. 2017; Li et al. 2019; Liu et al. 2020; Tang et al. 
2020). Assuming that the concentration of PAEs on the MFs 
is the same as clothes, i.e., the additives in clothes can all 
be released with the fiber without loss. The mass of PAEs 
released per person per year:

Based on a global population of 8 billion, the global 
mass of PAEs released to water is 3.46–34.55 t per year 
via washing, and to air is 11.97–119.39 t per year via wear-
ing polyester clothes. Similarly, the global mass of OPEs, 
bisphenols, PFAS, and NPE released from MFs per year 
is 0.0050–10.09 t, 0.0060–552.98 t, 0.0046–0.39 t, and 
1.24–568.48 t to water, respectively; and 0.017–34.88 t, 

Towater ∶ (3.35 ∼ 33.42) × 129.2 = 0.43−4.32 mg

To air ∶ (3.35 ∼ 33.42) × 446.5 = 1.50−14.92 mg

0.021–1911.02 t, 0.016–1.36 t, and 4.29–1964.6 t to air, 
respectively (Table 5).

Exposure and Health Risks

Dermal Exposure

Clothes cover approximately 85% of human skin and act 
as a barrier to block environmental pollutants. However, 
clothes can also be a potential exposure source of certain 
chemicals (Fig. 4). For textiles (especially clothes), dermal 
exposure is an important exposure pathway. Dermal expo-
sure doses of PAEs and bisphenols were 11.83–950 ng/kg 
BW/d (302.3–24,272.5 μg /year) and 0.21–0.26 ng/kg BW/d 
(5.4–6.6 μg/year), respectively (Liu et al. 2020; Tang et al. 
2020; Xue et al. 2017). Socks containing BPA had great 
effect on infant, with a maximum BPA exposure dose of 
7.28 ng/kg BW/d (Xue et al. 2017). As mentioned above, 
PVC prints are mostly found in children’s clothing, which 
contain high levels of PAEs. Children and infants are the 
most vulnerable groups to endocrine disruptors. Sweating 
can increase the risk of dermal exposure to additives such as 
PAEs or BPA (Liu et al. 2020; Xue et al. 2017). Bad habits 
such as biting and sucking fingers of infants and children 
may also pose exposure risk of oral ingestion. According 
to a survey, the mean levels of PAEs (DEHP 6.74%, DINP 
1.32%) in childcare products (toys, baby mattresses and 
textiles, baby diaper pads) exceed the 0.1% standard of the 
European Union, which are likely to pose high oral or der-
mal exposure risks (Negev et al. 2018).

Inhalation and Ingestion (of Microplastic Fibers)

Human beings and other organisms are exposed to MFs 
mainly via three routes, including inhalation, ingestion, and 
dermal exposure. Only the former two exposure routes can 
cause actual MF intake. Inhalation of MFs can adversely 
affect the respiratory tracts (Lim et al. 2021; Moolgavkar 
et al. 2001), which has also been suggested to be associated 
with the formation of ground glass nodules in human lungs 
(Chen et al. 2022). Ingestion of MFs has been confirmed 
in various organisms, including aquatic organisms (fish, 
decapods, bivalves, zooplankton, etc.), terrestrial organ-
isms (earthworm, snails), and even human beings (Lahive 
et al. 2022; Rebelein et al. 2021; Song et al. 2019; Zhang 
et al. 2022). MFs ingestion can cause oxidative stress and 
inflammation in fish (Zhao et al. 2021), MFs ingestion may 
be associated with inflammatory bowel disease in human 
beings (Yan et al. 2022), and even immune disorders and 
increased risk of neoplasia in the long run (Prata et al. 2020).

As a necessity under the Covid-19 pandemic, the additive 
inhalation risks caused by wearing face masks deserve 
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  attention. N95 masks may cause higher inhalation 
risk than general surgical masks (Table 5). According to the 
collected estimated daily intake (EDI) values, the exposure 
amounts of additives from face masks are 0.7–1820 μg/per-
son/year through inhalation and 546–2912 μg/person/year 
through ingestion (Fig. 4, Table 5). Attentionally, although 
the EDI value of DEHP is at a safe level (not exceed the 
TDI value of 50,000 ng/kg BW/d, Table 5), wearing N95 
masks for long time (occupational groups, such as doctors), 
taking high physical activity, and under higher temperature 

or humidity in summer may pose higher inhalation risk (Fer-
nandez-Arribas et al., 2021; Muensterman et al. 2022). The 
chemicals in face masks may be inhaled or ingested orally 
under long time of wearing; thus, it is necessary to regulate 
the type and content of additives in face masks in the context 
that Covid-19 will possibly coexist with humans for a long 
time.

In addition to the risk caused by direct release of addi-
tives on fiber products, there are also effects posed by addi-
tive release from MFs, posing higher risks than plastic 

Fig. 4  The additives in MFs and human exposure pathways of addi-
tives in textiles. The exposure amounts (i.e., estimated daily intake 
(EDI) values, expressed in the unit of ng/kg BW/d or μg/kg BW/d), 
were obtained from the literature (Fernandez–Arribas et al. 2021; Liu 
and Mabury 2021; Liu et  al. 2020; Muensterman et  al. 2022; Tang 
et al. 2020; Wang et al. 2022; Xue et al. 2017). Average body weight 
was assumed to be 70 kg for adult. We assumed that the mask is worn 

260 days per year and clothes are worn 365 days per year. The unit of 
exposure amounts is expressed as μg/year in Fig. 4. Icons are created 
with BioRender.com. (MFs: microplastic fibers; PAEs: phthalates; 
BPA: bisphenol A; OPEs: organophosphorus esters; AOs: synthetic 
antioxidants, including synthetic phenolic antioxidants and organo-
phosphite antioxidants; PFAS: per- and polyfluoroalkyl substances)
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monomers (Rodrigues et al. 2019). MFs can enter organ-
isms directly via inhalation through the respiratory tract 
or ingestion through the digestive tract. We calculated the 
exposure amounts of additives through microplastic fibers 
inhalation and ingestion and are listed in Table 5. Based on 
the data provided by Zhang et al. (Zhang et al. 2022, 2020c), 
i.e., one person could ingest approximately (2.3–8.5) ×  104 
microfibers via dining and inhale (0–3.0) ×  107 microplastics 
per year. Since airborne microplastics are mainly fibrous, 
we assumed that 90% of the inhaled MPs are fibers. After 
conversion, the mass of microfibers inhaled and ingested 
per person per year is 0–11.71 g and 0.10–0.37 g, respec-
tively (the conversion of MF mass and quantity refer to the 
formula of Leusch and Ziajahromi (2021)). We selected 
the three most common chemicals (DEHP, BPA, TCIPP) 
as an example. For instance, one person may inhale about 
0–37.71 μg DEHP (the most typical PAE with high detection 
frequency and concentration) and ingest about 0.27–1.19 μg 
DEHP with MFs per year (Table 5). The tolerable daily 
intake (TDI) value of DEHP is 50 μg/kg BW/d. Assum-
ing that average body weight to be 70 kg for adult, the TDI 
value for DEHP is 1.28 g/person per year (50 μg/kg BW/d 
*70 kg*365 d = 1.28 g), the mass of DEHP that one person 
may inhale or ingest per year does not exceed the TDI value. 
Similarly, the mass of BPA or TCIPP that one person may 
inhale or ingest per year does not exceed the TDI value. 
According to our estimation (Table 5), the maximum expo-
sure amounts of additives through inhalation and ingestion 
of MFs released from clothing are 4.48–6440.5 µg/person/
year and 0.14–203.5 µg/person/year, respectively. Such situ-
ation still cannot be ignored and deserves further attention.

Conclusions and Outlook

MFs are ubiquitous in our daily lives, since actions such as 
the washing, drying, and abrasion of clothes, human contact 
friction, and the use and discard of face masks all cause 
MFs release into the environment. However, there is insuf-
ficient understanding about additives on MFs. When MFs 
are abrased and released, the additives can also be released 
into the environment accordingly, posing potential ecologi-
cal and health risks to organisms.

In this review, we first summarized analytical methods 
of additives in synthetic textiles, and recommended sam-
ple extraction and compounds quantification methods for 
typical additives. Second, we comprehensively analyzed the 
types and concentrations of additives in textile fibers and 
MFs. Typical additives in traditional fiber products (clothes) 
and emerging fiber product (face masks) include plasticiz-
ers (DEHP, DBP), flame retardants (TCEP, TPhP, TEHP), 
antioxidants (bisphenols, AO168, AO1010, DBP), and sur-
factants (PFAS, NPEs), at concentrations of  100–106 ng/g. 

Finally, we discussed the main release pathways of additives 
in MFs to the environment, i.e., release to water through 
washing and release to the air through abrasion or drying. 
Additives in fiber products pose health risks through inha-
lation (0.7–1820 μg/person/year), ingestion (546–2912 μg/
person/year), and dermal exposure to MFs (4.4–24,272.5 μg/
person/year).

Collectively, we reviewed the occurrence and abundance 
of additives in synthetic textiles, which can release MFs via 
various daily life processes, including laundry, drying, abra-
sion, etc. The wide occurrence and exposure amounts of 
additives from MFs/fibers were confirmed, indicating that 
MFs pollution in daily life and the potential health risks 
should not be underestimated.

Finally, several perspectives on the research of chemical 
additives in MFs were proposed: (1) There exists a vacancy 
in extraction or analysis methods targeting additives on MFs. 
Since the mass of environmental MFs collected is too low 
to meet the detection limits of instruments, future research 
could focus more on the development of equipment with 
high sensitivity, automation, and approaches without extrac-
tion pretreatment. (2) Current studies mainly focus on the 
release of additives from large plastic fibers, whereas little 
attention has been paid to the carrier role of MFs. Much 
more future work needs to be performed to understand the 
potential leaching of additives from MFs. (3) The chemi-
cal additives exposure risk is mainly obtained by estimating 
EDI values from large plastic fibers. However, humans are 
more easily to be exposed to additives released from MFs, 
which only received little attention yet and warrant further 
in-depth research.
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