Skip to main content

Advertisement

Log in

Leveraging mesoporous silica nanomaterial for optimal immunotherapeutics against cancer

  • Reviews
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract

Cancer represents a significant cause of morbidity and mortality. Definitive chemotherapy, surgery and radiotherapy treatment have not improved the “5-year survival period” and have shown recurrence. Currently, cancer immunotherapy is reported to be a promising therapeutic modality that aims to potentiate immune response against cancer by employing immune checkpoint inhibitors, cancer vaccines and immunomodulators. Inhibition of immune checkpoints such as PD-1/PDL1, CTLA and TIM molecules using monoclonal antibodies, ligands or both are proven to be the most successful anticancer immunotherapy. But the application of immunotherapy involves critical challenges such as non-responsiveness and systemic toxicity due to the administration of high dose. To mitigate the above challenges, nanomaterial-based delivery and therapy have been adopted to inhibit the immune checkpoints and induce an anticancer immune response. Specifically, mesoporous silica-based materials for cancer therapy are shown to be versatile materials for the above purpose. Mesoporous silica nanoparticle (MSN) based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. MSN has a high surface area, porosity and biocompatibility; it also has natural immune-adjuvant properties, which have been reported to be the best candidate material for immunotherapeutic delivery. This review will focus on the use of MSN as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3-23. https://doi.org/10.1016/j.jaci.2009.12.980.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guermonprez P, Valladeau J, Zitvogel L, et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20(1):621–67. https://doi.org/10.1146/annurev.immunol.20.100301.064828.

    Article  CAS  PubMed  Google Scholar 

  3. Burger D, Dayer JM. Cytokines, acute‐phase proteins, and hormones: IL‐1 and TNF‐α production in contact‐mediated activation of monocytes by T lymphocytes. Annals of the New York Academy of Sciences. 2002;966(1):464–73. https://doi.org/10.1111/j.1749-6632.2002.tb04248.x.

  4. Tian T, Olson S, Whitacre JM, et al. The origins of cancer robustness and evolvability. Integr Biol (Camb). 2011;3(1):17–30. https://doi.org/10.1039/c0ib00046a.

    Article  CAS  PubMed  Google Scholar 

  5. Boon T, Cerottini JC, Van den Eynde B, et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65. https://doi.org/10.1146/annurev.iy.12.040194.002005.

    Article  CAS  PubMed  Google Scholar 

  6. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  7. Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy–inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18(24):6580–7. https://doi.org/10.1158/1078-0432.CCR-12-1362.

    Article  CAS  PubMed  Google Scholar 

  8. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  9. Xu Z, Zhen B, Park Y, et al. Designing therapeutic cancer vaccine trials with delayed treatment effect. Stat Med. 2017;36(4):592–605. https://doi.org/10.1002/sim.7157.

    Article  PubMed  Google Scholar 

  10. Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol. 2021;18(4):805–28. https://doi.org/10.1038/s41423-020-00530-6.

    Article  CAS  PubMed  Google Scholar 

  11. Chabalgoity JA, Dougan G, Mastroeni P, et al. Live bacteria as the basis for immunotherapies against cancer. Expert Rev Vaccines. 2002;1(4):495–505. https://doi.org/10.1586/14760584.1.4.495.

    Article  CAS  PubMed  Google Scholar 

  12. Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology. 2019;8(6):e1581528. https://doi.org/10.1080/2162402X.2019.1596006.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fu C, Ma T, Zhou L, et al. Dendritic cell-based vaccines against cancer: challenges, advances and future opportunities. Immunol Invest. 2022;51(8):2133–58. https://doi.org/10.1080/08820139.2022.2109486.

    Article  CAS  PubMed  Google Scholar 

  14. Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. The Lancet. 2009;373(9668):1033–40. https://doi.org/10.1007/s11033-018-4427-x.

    Article  CAS  Google Scholar 

  15. Zhang WG, Liu SH, Cao XM, et al. A phase-I clinical trial of active immunotherapy for acute leukemia using inactivated autologous leukemia cells mixed with IL-2, GM-CSF, and IL-6. Leuk Res. 2005;29(1):3–9. https://doi.org/10.1016/j.leukres.2004.04.015.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka F, Hashimoto W, Okamura H, et al. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin 18 using dendritic cells and natural killer cells. Can Res. 2000;60(17):4838–44.

    CAS  Google Scholar 

  17. Hosseinkhani N, Derakhshani A, Kooshkaki O, et al. Immune checkpoints and CAR-T cells: the pioneers in future cancer therapies? Int J Mol Sci. 2020;21(21):8305. https://doi.org/10.3390/ijms21218305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Webster RM. The immune checkpoint inhibitors: where are we now? Nat Rev Drug Discov. 2014;13(12):883–4. https://doi.org/10.1038/nrd4476.

    Article  CAS  PubMed  Google Scholar 

  19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992;356(6370):607–9. https://doi.org/10.1038/356607a0.

    Article  CAS  PubMed  Google Scholar 

  21. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature. 2001;409(6816):97–101. https://doi.org/10.1038/35051100.

    Article  CAS  PubMed  Google Scholar 

  22. Kaleeba JA, Offner H, Vandenbark AA, et al. The OX-40 receptor provides a potent co-stimulatory signal capable of inducing encephalitogenicity in myelin-specific CD4+ T cells. Int Immunol. 1998;10(4):453–61. https://doi.org/10.1093/intimm/10.4.453.

    Article  CAS  PubMed  Google Scholar 

  23. Bertram EM, Dawicki W, Watts TH. Role of T cell costimulation in anti-viral immunity. Semin Immunol. 2004;16(3):185–96. https://doi.org/10.1016/j.smim.2004.02.006.

    Article  CAS  PubMed  Google Scholar 

  24. Villanueva MT. Cancer immunotherapy: searching in the immune checkpoint black box. Nat Rev Drug Discov. 2017;16(9):599. https://doi.org/10.1038/nrd.2017.163.

    Article  CAS  PubMed  Google Scholar 

  25. Barbee MS, Ogunniyi A, Horvat TZ, et al. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother. 2015;49(8):907–37. https://doi.org/10.1177/1060028015586218.

    Article  CAS  PubMed  Google Scholar 

  26. Muenst S, Soysal SD, Gao F, et al. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013;139:667–76. https://doi.org/10.1007/s10549-013-2581-3.

    Article  CAS  PubMed  Google Scholar 

  27. Hassounah NB, Malladi VS, Huang Y, et al. Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol Immunother. 2019;68(3):407–20. https://doi.org/10.1007/s00262-018-2284-z.

    Article  CAS  PubMed  Google Scholar 

  28. Thumar JR, Kluger HM. Ipilimumab: a promising immunotherapy for melanoma. Oncology. 2010;24(14):1280.

    PubMed  Google Scholar 

  29. Helmy KY, Patel SA, Nahas GR, et al. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 2013;4(10):1307–20. https://doi.org/10.4155/tde.13.88.

    Article  CAS  PubMed  Google Scholar 

  30. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. https://doi.org/10.1056/NEJMoa1412082.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson AC. Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol. 2012;24(2):213–6. https://doi.org/10.1016/j.coi.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  32. Dougall WC, Kurtulus S, Smyth MJ, et al. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017;276(1):112–20. https://doi.org/10.1111/imr.12518.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenholm JM, Mamaeva V, Sahlgren C, et al. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine. 2012;7(1):111–20. https://doi.org/10.2217/nnm.11.166.

    Article  CAS  PubMed  Google Scholar 

  34. Ordered porous materials for emerging applications. Nature. 2002;417(6891):813–21. https://doi.org/10.1038/nature00785.

    Article  CAS  Google Scholar 

  35. Wan Y, Zhang D, Hao N, et al. Organic groups functionalised mesoporous silicates. Int J Nanotechnol. 2007;4(1–2):66–99.

    Article  CAS  Google Scholar 

  36. Kuthati Y, Sung PJ, Weng CF, et al. Functionalization of mesoporous silica nanoparticles for targeting, biocompatibility, combined cancer therapies and theragnosis. J Nanosci Nanotechnol. 2013;13(4):2399–430. https://doi.org/10.1166/jnn.2013.7363.

    Article  CAS  PubMed  Google Scholar 

  37. An M, Li M, Xi J, et al. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Interfaces. 2017;9(28):23466–75. https://doi.org/10.1021/acsami.7b06024.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnol Biol Med. 2015;11(2):313–27. https://doi.org/10.1016/j.nano.2014.09.014.

    Article  CAS  Google Scholar 

  39. Singh LP, Bhattacharyya SK, Kumar R, et al. Sol-Gel processing of silica nanoparticles and their applications. Adv Coll Interface Sci. 2014;214:17–37. https://doi.org/10.1016/j.cis.2014.10.007.

    Article  CAS  Google Scholar 

  40. Bolla PA, Huggias S, Serradell MA, et al. Synthesis and catalytic application of silver nanoparticles supported on Lactobacillus kefiri S-layer proteins. Nanomaterials. 2020;10(11):2322. https://doi.org/10.3390/nano10112322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deodhar GV, Adams ML, Trewyn BG. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnol J. 2017;12(1):1600408. https://doi.org/10.1002/biot.201600408.

    Article  CAS  Google Scholar 

  42. Yang YW. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. MedChemComm. 2011;2(11):1033–49.

    Article  CAS  Google Scholar 

  43. Trewyn BG, Slowing II, Giri S, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53. https://doi.org/10.1021/ar600032u.

    Article  CAS  PubMed  Google Scholar 

  44. Gu J, Su S, Zhu M, et al. Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Microporous Mesoporous Mater. 2012;161:160–7. https://doi.org/10.1016/j.micromeso.2012.05.035.

    Article  CAS  Google Scholar 

  45. Qi X, Yu D, Jia B, et al. Targeting CD133+ laryngeal carcinoma cells with chemotherapeutic drugs and siRNA against ABCG2 mediated by thermo/pH-sensitive mesoporous silica nanoparticles. Tumor biology. 2016;37:2209–17. https://doi.org/10.1007/s13277-015-4007-9.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H, Zhang W, Zhou Y, et al. Dual functional mesoporous silicon nanoparticles enhance the radiosensitivity of VPA in glioblastoma. Transl Oncol. 2017;10(2):229–40. https://doi.org/10.1016/j.tranon.2016.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen X, Sun H, Hu J, et al. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf, B. 2017;152:77–84. https://doi.org/10.1016/j.colsurfb.2017.01.010.

    Article  CAS  Google Scholar 

  48. Sweeney SK, Luo Y, O’Donnell MA, et al. Peptide-mediated targeting mesoporous silica nanoparticles: a novel tool for fighting bladder cancer. J Biomed Nanotechnol. 2017;13(2):232–42. https://doi.org/10.1166/jbn.2017.2339.

    Article  CAS  PubMed  Google Scholar 

  49. Hirano Y, Kando Y, Hayashi T, et al. Synthesis and cell attachment activity of bioactive oligopeptides: RGD, RGDS, RGDV, and RGDT. J Biomed Mater Res. 1991;25(12):1523–34. https://doi.org/10.1002/jbm.820251209.

    Article  CAS  PubMed  Google Scholar 

  50. Babaei M, Abnous K, Taghdisi SM, et al. Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine. 2017;12(11):1261–79. https://doi.org/10.1002/jbm.820251209.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou S, Wu D, Yin X, et al. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J Exp Clin Cancer Res. 2017;36:1–4. https://doi.org/10.1186/s13046-017-0492-6.

    Article  CAS  Google Scholar 

  52. Heinemann S, Coradin T, Desimone MF. Bio-inspired silica–collagen materials: applications and perspectives in the medical field. Biomater Sci. 2013;1(7):688–702. https://doi.org/10.1039/c3bm00014a.

    Article  CAS  PubMed  Google Scholar 

  53. He Q, Zhang Z, Gao F, et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7(2):271–80. https://doi.org/10.1002/smll.201001459.

    Article  CAS  PubMed  Google Scholar 

  54. Kuang Y, Zhai J, Xiao Q, et al. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: a review. Int J Biol Macromol. 2021;193:457–73. https://doi.org/10.1016/j.ijbiomac.2021.10.142.

    Article  CAS  PubMed  Google Scholar 

  55. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Del Rev. 2013;65(5):689–702. https://doi.org/10.1016/j.addr.2012.07.018

  56. Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16(3):219–37. https://doi.org/10.1080/17425247.2019.1575806.

    Article  CAS  PubMed  Google Scholar 

  57. Fu C, Liu T, Li L, et al. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–75. https://doi.org/10.1016/j.biomaterials.2012.12.043.

    Article  CAS  PubMed  Google Scholar 

  58. He Q, Zhang Z, Gao F, et al. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small. 2011;7(2):271–80. https://doi.org/10.1002/smll.201001459.

    Article  CAS  PubMed  Google Scholar 

  59. Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–805. https://doi.org/10.1002/smll.201000538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu T, Greish K, McGill LD, et al. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano. 2012;6(3):2289–301. https://doi.org/10.1021/nn2043803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nguyen TL, Choi Y, Kim J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv Mater. 2019;31(34):1803953. https://doi.org/10.1002/adma.201803953.

    Article  CAS  Google Scholar 

  62. Chen Y, Chen H, Zeng D, et al. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano. 2010;4(10):6001–13. https://doi.org/10.1021/nn1015117.

    Article  CAS  PubMed  Google Scholar 

  63. Liu Q, Zhang J, Xia W, et al. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale. 2012;4(11):3415–21. https://doi.org/10.1039/c2nr30352c.

    Article  CAS  PubMed  Google Scholar 

  64. Hao N, Li L, Tang F. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci. 2016;4(4):575–91. https://doi.org/10.1039/c5bm00589b.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang W, Kim BY, Rutka JT, et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145–50. https://doi.org/10.1038/nnano.2008.30.

    Article  CAS  PubMed  Google Scholar 

  66. Vivero-Escoto JL, Slowing II, Trewyn BG, et al. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6(18):1952–67. https://doi.org/10.1002/smll.200901789.

    Article  CAS  PubMed  Google Scholar 

  67. Douroumis D, Onyesom I, Maniruzzaman M, et al. Mesoporous silica nanoparticles in nanotechnology. Crit Rev Biotechnol. 2013;33(3):229–45. https://doi.org/10.3109/07388551.2012.685860.

    Article  CAS  PubMed  Google Scholar 

  68. Song Y, Li Y, Xu Q, et al. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomed. 2017;12:87. https://doi.org/10.2147/IJN.S117495.

    Article  CAS  Google Scholar 

  69. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine-recent advances. Adv Drug Deliv Rev. 2013;65(5):689–702. https://doi.org/10.1016/j.addr.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  70. He Q, Shi J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv Mater. 2014;26(3):391–411. https://doi.org/10.1002/adma.201303123.

    Article  CAS  PubMed  Google Scholar 

  71. Wen J, Yang K, Liu F, et al. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev. 2017;46(19):6024–45. https://doi.org/10.1039/c7cs00219j.

    Article  CAS  PubMed  Google Scholar 

  72. Zheng DW, Chen JL, Zhu JY, et al. Highly integrated nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 2016;16(7):4341–7. https://doi.org/10.1021/acs.nanolett.6b01432.

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Li X, Yoshiyuki K, et al. Erratum to supporting information of comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy. Adv Healthc Mater. 2019;8(23): e1901432. https://doi.org/10.1002/adhm.201901432.

    Article  CAS  PubMed  Google Scholar 

  74. Heidegger S, Gößl D, Schmidt A, et al. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2016;8(2):938–48. https://doi.org/10.1039/c5nr06122a.

    Article  CAS  PubMed  Google Scholar 

  75. Hao N, Liu H, Li L, Chen D, Li L, Tang F. In vitro degradation behavior of silica nanoparticles under physiological conditions. J Nanosci Nanotechnol. 2012;12(8):6346–54. https://doi.org/10.1166/jnn.2012.6199.

    Article  CAS  PubMed  Google Scholar 

  76. Fukushima H, Turkbey B, Pinto PA, et al. Near-infrared photoimmunotherapy (NIR-PIT) in urologic cancers. Cancers (Basel). 2022;14(12):2996. https://doi.org/10.3390/cancers14122996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li B, Zhang X, Wu Z, et al. Reducing postoperative recurrence of early-stage hepatocellular carcinoma by a wound-targeted nanodrug. Adv Sci (Weinh). 2022;9(20):e2200477. https://doi.org/10.1002/advs.202200477.

    Article  CAS  PubMed  Google Scholar 

  78. Peng H, Shen J, Long X, et al. Local Release of TGF-β Inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci. 2022;9(10):2105240. https://doi.org/10.1002/advs.202105240.

    Article  CAS  Google Scholar 

  79. Allen SD, Liu X, Jiang J, et al. Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials. 2021;269:120635. https://doi.org/10.1016/j.biomaterials.2020.120635.

    Article  CAS  PubMed  Google Scholar 

  80. He Z, Zhang H, Li H, et al. Preparation, biosafety, and cytotoxicity studies of a newly tumor-microenvironment-responsive biodegradable mesoporous silica nanosystem based on multimodal and synergistic treatment. Oxid Med Cell Longev. 2020;2020. https://doi.org/10.1155/2020/7152173.

  81. Shao D, Zhang F, Chen F, et al. Biomimetic diselenide-bridged mesoporous organosilica nanoparticles as an x-ray-responsive biodegradable carrier for chemo-immunotherapy. Adv Mater. 2020;32(50). https://doi.org/10.1002/adma.202004385

  82. Eleftheriadis T, Pissas G, Zarogiannis S, et al. Crystalline silica activates the T-cell and the B-cell antigen receptor complexes and induces T-cell and B-cell proliferation. Autoimmunity. 2019;52(3):136–43. https://doi.org/10.1080/08916934.2019.1614171.

    Article  CAS  PubMed  Google Scholar 

  83. Sun Z, Wang Z, Wang T, et al. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: simultaneous fenton-like ion delivery and immune activation. ACS Nano. 2022. https://doi.org/10.1021/acsnano.2c00969.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Peng H, Shen J, Long X, et al. Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci (Weinh). 2022;9(10):e2105240. https://doi.org/10.1002/advs.202105240.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao P, Xu Y, Ji W, et al. Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int J Nanomedicine [Internet]. 2022;17:73–89. https://doi.org/10.2147/IJN.S346044.

    Article  CAS  PubMed  Google Scholar 

  86. Huang C, Mendez N, Echeagaray OH, et al. Immunostimulatory TLR7 agonist-nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Adv Ther (Weinh). 2020;3(6):1900200. https://doi.org/10.1002/adtp.201900200.

    Article  CAS  PubMed  Google Scholar 

  87. Choi B, Jung H, Yu B, et al. Sequential MR image-guided local immune checkpoint blockade cancer immunotherapy using ferumoxytol capped ultralarge pore mesoporous silica carriers after standard chemotherapy. Small. 2019;15(52). https://doi.org/10.1002/smll.201904378.

  88. Haber T, Cornejo YR, Aramburo S, et al. Specific targeting of ovarian tumor-associated macrophages by large, anionic nanoparticles. Proc Natl Acad Sci. 2020;117(33):19737–45. https://doi.org/10.1073/pnas.1917424117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shahidi M, Abazari O, Dayati P, et al. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy. Frontiers in bioengineering and biotechnology. 2022;10. https://doi.org/10.3389/fbioe.2022.949704.

  90. Ma H, Ma Z, Chen Q, et al. Bifunctional, copper-doped, mesoporous silica nanosphere-modified, bioceramic scaffolds for bone tumor therapy. Front Chem. 2020;8:610232. https://doi.org/10.3389/fchem.2020.610232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang Z, Chen L, Ma Y, et al. Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal. J Nanobiotechnol. 2021;19(1). https://doi.org/10.1186/s12951-021-00975-5.

  92. Sun M, Gu P, Yang Y, et al. Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis. J Immunother Cancer. 2021;9(6). https://doi.org/10.1136/jitc-2021-002508.

  93. Yu X, Wang X, Yamazaki A, et al. Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. J Mater Chem B. 2022;10(19). https://doi.org/10.1039/d2tb00337f.

  94. Wang X, Li X, Ito A, et al. Synergistic anti-tumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site. Acta Biomater. 2022;145:235–45. https://doi.org/10.1016/j.actbio.2022.04.001.

    Article  CAS  PubMed  Google Scholar 

  95. Li X, Wang X, Ito A, et al. A nanoscale metal organic frameworks-based vaccine synergises with PD-1 blockade to potentiate anti-tumour immunity. Nat Commun. 2020;11(1). https://doi.org/10.1038/s41467-020-17637-z.

  96. Nguyen TL, Cha BG, Choi Y, et al. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials. 2020;239. https://doi.org/10.1016/j.biomaterials.2020.119859.

  97. Kim H, Yuk SA, Dieterly AM, et al. Nanosac, a noncationic and soft polyphenol nanocapsule, enables systemic delivery of siRNA to solid tumors. ACS Nano. 2021;15(3):4576–93. https://doi.org/10.1021/acsnano.0c08694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Im S, Lee J, Park D, et al. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano. 2018;13(1):476–88. https://doi.org/10.1021/acsnano.8b07045.

    Article  CAS  PubMed  Google Scholar 

  99. Ding B, Shao S, Yu C, et al. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv Mater. 2018;30(52):1802479. https://doi.org/10.1002/adma.201802479.

    Article  CAS  Google Scholar 

  100. Xu C, Nam J, Hong H, et al. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano. 2019;13(10):12148–61. https://doi.org/10.1021/acsnano.9b06691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang G, Xu L, Xu J, et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 2018;18(4):2475–84. https://doi.org/10.1021/acs.nanolett.8b00040.

    Article  CAS  PubMed  Google Scholar 

  102. Terracciano M, Fontana F, Falanga AP, et al. Development of surface chemical strategies for synthesizing redox-responsive diatomite nanoparticles as a green platform for on-demand intracellular release of an antisense peptide nucleic acid anticancer agent. Small. 2022;18(41):e2204732. https://doi.org/10.1002/smll.202204732.

    Article  CAS  PubMed  Google Scholar 

  103. Yang Y, Chen F, Xu N, et al. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials. 2022;281. https://doi.org/10.1016/j.biomaterials.2022.121368.

  104. Feng Y, Xie X, Zhang H, et al. Multistage-responsive nanovehicle to improve tumor penetration for dual-modality imaging-guided photodynamic-immunotherapy. Biomaterials. 2021;275:120990. https://doi.org/10.1016/j.biomaterials.2021.120990.

    Article  CAS  PubMed  Google Scholar 

  105. Chen Y, Ma H, Wang W, et al. A size-tunable nanoplatform: enhanced MMP2-activated chemo-photodynamic immunotherapy based on biodegradable mesoporous silica nanoparticles. Biomater Sci. 2021;9(3):917–29. https://doi.org/10.1039/d0bm01452d.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashree P.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashitha, K.C., M, G., N.R, S. et al. Leveraging mesoporous silica nanomaterial for optimal immunotherapeutics against cancer. In vitro models 2, 153–169 (2023). https://doi.org/10.1007/s44164-023-00061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-023-00061-0

Keywords

Navigation