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Abstract
This paper provides an overview of the applications of Convolutional Neural Networks (CNN) in the railway maintenance 
industry. Our research covers specifically the subdomain of railway track maintenance. In this study, we have analyzed the 
state-of-the-art of CNNs applied to railway track maintenance by conducting an extensive literature review, summarizing 
different tasks and problems related to the topic and presenting solutions based on CNNs with a special emphasis on 
the data used to create these models. The results of our research show different applications of CNNs within the scope, 
including the detection of defects in the surface of railway rails and railway track components, such as fasteners, joints, 
sleepers, switches and crossings, as well as the recognition of track components, and the continuous monitoring of 
railway tracks. The architecture of CNNs is fitting to learning spatial hierarchies of features directly from the input data, 
making them of great use for Computer Vision and other applications related to the topic at hand. The implementation 
of IoT devices and smart sensors aid the collection of real-time data which can be used to feed powerful CNN models to 
recognize patterns and identify complex events related to the maintenance of railway tracks. This and more insights are 
discussed in detail within the contents of this paper.
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1 Introduction

Since the beginning of the decade, there has been a noticeably surge of interest in the research on the application of 
Artificial Intelligence (AI) technology for the maintenance of railways. The railway industry is a wide domain, and there are 
many tasks related to its maintenance that can greatly benefit from different AI applications [1]. In our previous research, 
we have investigated the application of these models in in different railway maintenance-related application, including 
railway tracks maintenance, rolling stock maintenance, infrastructure maintenance, monitoring, and maintenance plan-
ning [1]. We have also noticed that different types of data are implemented to feed AI models and an observable shift 
from—more traditional—symbolic AI models to Machine Learning (ML) and numerical models, in which different types 
of Artificial Neural Networks (ANN) have been implemented. This literature review aims for an overview of the applica-
tions of Convolutional Neural Networks (CNN) for railway track maintenance.
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1.1  Similar studies

We have consulted several literature reviews on specific AI applications in the railway industry. Some reviews contem-
plate different railway subdomains, including maintenance, safety and security, traffic planning, scheduling, logistics, 
optimization and more [2–4]. Other studies focus on very specific maintenance applications and AI methodologies. For 
instance, different authors have surveyed the literature on ML applications for track maintenance [5] and detection of 
wheel defects [6]; the study [7] presents an overview on fault detection in railway switch and crossing systems; other 
authors [8] investigated image processing approaches for track inspection; another study [9] presents a survey on the 
utilization of Deep Learning (DL) and audio and video sensors for railway maintenance. Our scope is specific to the 
implementation of CNNs techniques for different maintenance tasks in railway tracks, including not only those solutions 
related to Computer Vision (CV) and image and video data, but any applications of CNN with any type of data related to 
the preservation, inspection, maintenance and monitoring of railway tracks and their components.

1.2  Railway tracks

The traditional railway tracks or railroads consist of a set of parallel steel bars laid on a formation (earthwork) that provide 
a stable and continuous surface for the train trajectory. These are the most commonly implemented railroads world-
wide (Fig. 1).

The railway consists of different components, including the rails (horizontal beams that provide a smooth surface 
for the wheels to roll upon); the sleepers (a fixed rectangular support to hold the rails in place perpendicularly while 
keeping a gauge distance, and bearing the train load to the track ballast); ballast (a layer of crushed stones or gravel 
implemented to bear the load from the railroad); fasteners (used to link rails with the sleepers and other railway parts); 
rail joints (implemented to hold adjoining rail beams) and Switches and Crossings (S&C) (movable sections that guide 
trains from one track to another allowing them to cross paths) [2] (Fig. 2).

In modern railways there exists different types and configurations of railroads. For instance, ballastless tracks or 
slab tracks replace the sleepers and ballast with a surface of concrete or asphalt. These types of railway tracks are 
mostly implemented in High-Speed Railways (HSR), metro lines and light rail; and concrete is the most implemented 
material in their construction [10] (Figs. 3, 4).

Fig. 1  A cross-section of a 
typical railway track

Fig. 2  A traditional ballasted 
railroad
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1.3  Convolutional neural networks

A Convolutional Neural Network (CNN) is a type of Artificial Neural Network that is specifically designed for Deep 
Learning and Computer Vision. CNNs imitate the human brain visual cortex by differentiating between parts and 
layers of an image through the application of relevant filters (kernels) and then adding each of the elements through 
the process of convolution to pass input to the next layer in the network. CNNs are widely used for image and video 
recognition as they are capable of recognizing different aspects and objects present in an image frame, they are 
also implemented in other fields such as Natural Language Processing (NLP) and time-series sequence analysis [2, 
11] (Fig. 5).

The key components of a CNN are the convolutional layers (which apply convolution operations to the input 
data), pooling layers (used to down sample the spatial dimensions of the input data), activation function (applied 
after convolutional and pooling layers to add non-linearity), fully connected layers (connecting every neuron among 
layers), flattening (used to flatten feature maps into a one-dimensional vector) [11].

There are different types of CNN that present a wide variety of combinations, components, and architectures. Some 
of the most common CNN architectures today include: Region-based CNNs (R-CNN), Mask R-CNNs, Very Deep CNNs 
(VGGNet), Residual CNNs (ResNet), You Only Look Once (YOLO), GoogleNet, Encoder CNNs and more.

With the significant advance of CNNs in the last couple of years [1, 2] and an architecture that allows to learn spatial 
hierarchies of features automatically and adaptively from raw input data; CNNs become an ideal candidate for complex 
tasks, such as the one related to our topic of research.

Fig. 3  A cross-section of a 
modern ballastless rail track

Fig. 4  A high-speed railway 
slab track

Fig. 5  Diagram of an example 
of a Convolutional Neural 
Network. (source: towardsda-
tasciente.com [11])
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2  Methodology

For this study, a wide variety of papers on the subject of CNNs applied to the maintenance of railway tracks were con-
sulted. The portals used for the search include: IEEE Xplore Digital Library, SpringerLink, ACM Digital Library, ScienceDirect 
and Elsevier Scopus. These sources are briefly described in Table 1.

The search terms used to find the papers are a combination of the following key words: AI, artificial intelligence, rail-
way, railway tracks, railroads, convolutional neural networks, CNN, maintenance, predictive maintenance, condition-based 
maintenance, corrective maintenance, fault detection, fault diagnosis, and fault prognosis. These keywords were combined 
alternately in different order. The searches were performed from June to August 2023.

For the selection of papers, the study’s main content needed to be centered on the application of DL methods to solve 
any task related to the preservation, inspection, maintenance and monitoring of railway tracks. For the scope of this 
review, the range of the years of publication was set from 1990 to 2022. Papers that presented better quality (relevant 
content, clear methodology, critical analysis, reproducibility, sound interpretation and documentation, innovative ideas, 
etc.) were prioritized over papers of inferior characteristics. So is the case for papers that were more referenced from 
reputable sources or were published in creditable journals.

After applying this inclusion/exclusion criteria we collected a total of 71 papers from approximately ~ 120 preselected 
papers. Many papers were excluded because they did not present an AI solution based in CNN, they were not centered 
in railway track maintenance or simply did not pass our aforementioned criteria in any other way.

3  Literature review

This section includes the complete literature review. The full list of papers that have been examined can be found in the 
References section.

3.1  Papers overview

The maintenance and monitoring of railroads are a crucial aspect of railway infrastructure maintenance. We have iden-
tified a total of 71 papers on the application of CNNs within this domain. The following tasks or track maintenance 
subdomains were elicited based on the content of the papers: surface defect detection, fasteners, joints, sleepers, switches 
and crossings, detection of objects and components and monitoring. Notice that the scope of some papers can cover more 
than one of the subdomains enumerated resulting in some overlap. Table 2 displays the list of maintenance tasks and 
the papers identified; Table 3 displays the types of data found in the literature; and Figs. 6, 7 and 8 the distribution of 
papers according to year, maintenance task and data implemented.

3.2  Papers review

A review of the selected papers is presented below. The papers are divided into subsections according to the clas-
sification presented in Sect. 3.1.

Table 1  Search portals consulted for the collection of literature

Search Portal Short Description URL

ACM Digital Library An academic research platform from the Association for Com-
puting Machinery (ACM)

https:// dl. acm. org/

Elsevier Scopus Elsevier’s abstract and citation database curated by experts in 
different fields

https:// www. scopus. com/

IEEE Xplore Digital Library IEEE’s research database for academic publications https:// ieeex plore. ieee. org/
ScienceDirect Elsevier’s database of scientific publications https:// www. scien cedir ect. com/
SpringerLink Search platform for Springer academic publications https:// link. sprin ger. com/

https://dl.acm.org/
https://www.scopus.com/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://link.springer.com/
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3.2.1  Surface defect detection

The maintenance of rails is crucial for enabling efficient transportation in railroads. One of the most prominent tasks 
in the literature is the inspection, early detection of faults and degradation analysis of railway tracks. CNNs have been 

Table 2  Papers divided by 
railway track maintenance 
tasks

Maintenance Task/Area Citations

Surface defect
detection

[12–16, 18–39, 41–56]

Fasteners [57–65]
Joints [48, 66]
Sleepers [59, 67–69]
Switches and crossings [48, 70, 71, 73–78]
Detection of
objects and components

[16, 28, 62, 64, 65, 79–86]

Monitoring [22, 26, 30, 42, 45, 66, 73, 80]

Table 3  Papers from the 
literature review divided by 
type of data implemented

Type of data Citations

Acoustic and sound data [54, 55]
Image and video [12–16, 18–22, 24, 25, 27–39, 41–45, 52, 

57–60, 63–67, 69, 70, 73, 74, 79, 80, 
82–86]

Speed and acceleration data [46–50, 68, 77, 78]
Track geometry [23]
Temperature [50]
Vibration measurements [43, 49, 51–53, 78, 81]
Electrical signals [56, 75, 76]

Fig. 6  Number of papers in 
the literature review divided 
by year of publication
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Fig. 7  Percentage of papers 
according to maintenance 
task
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successfully implemented in different CV and image classification studies related to Fault Detection (FD) contributing 
to the ongoing efforts to automate and improve railway track inspection processes.

3.2.1.1 Image‑based fault detection using CNNs The authors in [12] address the challenge of detecting cracks on railway 
rail surfaces. They present a solution that involves the amalgamation of CNNs with image augmentation and transfer 
learning with VGG16 networks. This combined approach is applied to classify rail surfaces as defective (with cracks) or non-
defective. In reference [13], the authors propose a CV-based system for efficient detection of cracks in rails using images 
captured by a rolling camera beneath a self-moving railway vehicle. The approach involves pre-processing, Gabor trans-
form application, and extraction of first-order statistical features. These features serve as input for a DL ANN to differenti-
ate between cracked and non-cracked track images. Another research presented in [14] employs a Faster Region-based 
Convolutional Neural Network (Faster R-CNN) for the detection of rail surface defects. The process includes establishing 
a dataset of rail surface defect images, creating a training set with random segmentation, and validating the model. In 
reference [15], the authors present a DL-powered rail surface multi-flaw identification framework. The framework con-
sists of two main components: a rail extractor for isolating rails from the background and a cascading rail surface flaw. 
The latter includes a rail detector for recognizing the health status of rail surfaces and a flaw classifier for various flaw 
types. The framework incorporates feature joint learning from various feature extractors to enhance its accuracy. Current 
automated rail surface defect detection methods mainly use CNNs, but they often overlook early issues like rail surface 
cracks. To fill this gap, the authors in reference [16] propose a multitask learning model. It has a segmentation decoder for 
identifying crack defects and a decoder for detecting rail objects. During training, the object detection task improves the 
accuracy of the segmentation model. In testing, the object detection task doesn’t slow down the process, ensuring swift 
inference. The model is evaluated on the Rail-5 k dataset [17], showing a good balance between accuracy and efficiency.

The study [18] introduces an image classification-based approach for flaw detection in railway tracks. They propose 
two models, a fully convolutional encoder-decoder type segmentation network, called U-Net, and dilated convolutions, 
known for their effectiveness in addressing pixel-based problems rather than class-based problems. These models aim 
to separate pixels containing flaws from background images to enhance the detection of railway track flaws. In refer-
ence [19], the authors utilize GoogleNet’s CNN architecture to automatically detect rail defects, aiming to speed up the 
inspection process and reduce the risk of railway accidents. They trained the model using 2000 images categorized into 
two classes: broken and intact. The authors in [20] present the use of EfficientNet CNN architecture on railway track fault 
detection and classification as a novel technique in the field. The paper compares B0 to B7 network families and studies 
the effect of input image resolution on a small dataset. In reference [21], the authors introduce a high-performance fine-
tuning CNN model for the detection of time or impact-dependent defects on railway surfaces used for train transporta-
tion. Their approach involves two stages: first, they focus on cropped images of the train tracks rather than large-area rail 
images. In the second stage, various CNNs models are applied to the cropped images for classification. Another study 
[22] introduces a system aimed to identify and detect faulty railway tracks. The system is built upon DL algorithms and 
conducts a comprehensive analysis of images depicting railway tracks to determine their condition. This innovative 
approach ensures high accuracy in fault detection while minimizing the utilization of features, addressing the limita-
tions of previous surveillance systems. Squat defects are produced by wheel-rail dynamic impact, leaving a depression 
mark on the rail surface. In reference [23], the DL VGG16 network is used to classify thousands of kilometers of railway 
track into two binary classes: squat(p) and no-squat(n). In order to mitigate large class imbalance, they considered several 

Fig. 8  Percentage of papers 
according to data imple-
mented
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natural sampling and data augmentation methods; which yielded a considerable improvement to traditional re-sampling 
approaches. In reference [24], the authors introduce a pixel-level defects segmentation method to enhance the detection 
and categorization of surface defects on railway tracks. Their network tessellates features at the channel level for denser 
information propagation across high-resolution layers. Dropout is used to address weak correlations during convolution, 
reducing computational redundancy and complexity. The study categorizes track datasets, preprocesses samples to 
grayscale, and trains the proposed network. Another study [25] introduces an onboard image detection system for high-
speed magnetic levitation (Maglev) tracks, focusing on long stator tracks. The system captures accurate images under 
challenging conditions, addressing issues like limited space, low illumination, and fast vehicle movement. To overcome 
the scarcity of maglev track images, especially those with defects, they present a data enhancement method involving 
sample generation and image fusion. The research employs DL-based target detection algorithms for automatic detec-
tion, classification, and location of defects, specifically on the stator surface and cables.

3.2.1.2 You only  look once  (YOLO) The YOLO Deep Neural Network (DNN) provides real-time object detection with a 
notorious velocity and accuracy in comparison to many other CNN-based object detection algorithms. Authors in [26] 
propose a modified version of the YOLO algorithm, referred to as YOLOv3-M. This model is employed for the detec-
tion of railway track defects, and it is utilized for the monitoring of rail health. In reference [27], the authors introduce 
a YOLOv4-based DL algorithm, using a modified CSPDarknet-53 backbone for improved and quicker defect detection 
on complex rail surfaces. The study assesses the performance of the algorithm across six diverse datasets, comparing it 
with an alternative network to evaluate efficiency against existing techniques. In another study [28], the authors intro-
duce YOLOv5s-VF, a rail surface defect detection network. It features a Sharpening Functional Attention Mechanism 
(V-CBAM) for efficient attention and a Microscale Adaptive Spatial Feature Fusion (M-ASFF) for capturing fine details. 
Notably, they manually collected real rail images to create an open-source object detection network, addressing the lack 
of publicly available labeled datasets for rail surface defects. While in [29], the authors introduce a lightweight method 
for detecting defects on bimodal rail surfaces, which they name Parallel-YOLOv4-Tiny. This method incorporates a paral-
lel feature processing strategy designed specifically for extracting features from bimodal images. Experiments show that 
Parallel-YOLOv4-Tiny with CIOU loss function can achieve a much better performance than original YOLOv4-Tiny algo-
rithm methods. Lastly, the study presented in [30] introduces intelligent methods for multi-target defect identification 
in railway tracks using image processing and DL techniques. Their contributions include a track and fastener position-
ing method, a Bag of Visual Words (BoVW) model for defect detection, an improved YOLOv3 network named Track Line 
Multi-target Defect Detection Network (TLMDDNet), and a lightweight design strategy named Dense Connection-Based 
TLMDDNet (DC-TLMDDNet), which employs DenseNet to optimize feature extraction layers. These methods demon-
strate potential in enhancing railway track defect detection.

3.2.1.3 Integration of CNNs with other types of AI Other authors implement different types of CNNs combined with other 
ANN and DL architectures. The authors in [31] propose a novel approach that integrates CNNs with Transformers, known 
for its self-attention mechanisms and global information processing capabilities. This combined approach is employed 
to detect Type-I and Type-II rail surface defects. In another study [32], the authors focus on classifying railway shelling 
defects using DL techniques, specifically the Residual Convolutional Neural Network (ResNet). Their ResNet model, with 
41 convolutional layers and a residual learning block, outperforms other classifiers such as Very Deep Convolutional 
Networks (VGGNet) and Support Vector Machines (SVM) using various feature extraction methods. The ResNet achieves 
better accuracy on the testing dataset, surpassing VGGNet. Another study [33] presents a feature extraction module and 
a track surface defect identification framework based on an enhanced ResNet. The model comprises three modules: 
feature extraction, ROI extraction, and defect identification. It presents an improved ResNet-based feature extraction 
method. In reference [34], the authors present an efficient damage detection method for HSR rails, referred to as SCueU-
Net. This method combines the U-Net graph segmentation network with the saliency cues approach for damage locali-
zation. Experimental results demonstrate that SCueU-Net achieves a high detection accuracy rate, outperforming recent 
methods in damage identification accuracy. The authors in [35] present the Collaborative Learning Attention Network 
(CLANet), for inspecting non-service rail surface defects. CLANet focuses on accurate defect identification and segmen-
tation through three stages: feature extraction, cross-modal information fusion, and defect location and segmentation. 
It introduces a multimodal attention block and a dual-stream decoder to enhance feature representation and prevent 
information dilution during decoding. To address data scarcity, they created the NEU RSDDS-AUG dataset [35] and 
conducted a comparative analysis against nine existing methods, demonstrating the effectiveness of CLANet. CLANet 
also performs competitively across four public benchmark datasets. In reference [36], the authors introduce the Depth 
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Repeated-Enhancement RGB (DRER-Net) for rail surface defect inspection. This network optimally utilizes depth and RGB 
information in an encoder-decoder architecture to enhance defect inspection. The encoder incorporates a novel cross-
modality enhancement fusion module, merging details from RGB maps and location information from depth maps. In 
the decoder, a multimodality complementation module repeatedly refines the DRER-Net prediction using details and 
location information. Extensive experiments compare DRER-Net with 10 state-of-the-art methods on the industrial NEU 
RSDDS-AUG RGB-depth dataset. In reference [37], the authors detected rail surface defects by fusing the features of two 
DL models, SqueezeNet and MobileNetV2. These models were chosen because they are smaller and faster compared to 
other DL models, albeit slightly less accurate. To address this accuracy issue, the authors propose a fusion model that 
combines the high-weighted features from both models. The process begins with a contrast adjustment applied to the 
original rail image, followed by determining the rail track’s location. The most weighted features from each network are 
selected, and these reduced features are then used to identify defects with SVMs. Experimental results indicate that this 
method outperforms using a single DL model, particularly for detecting multiple rail surface defects under low-contrast 
conditions. The study [38] proposes a Sequential Updatable framework for Anomaly Detection (SUAD) on tracks. The 
model continues learning through a sequential knowledge update module without revisiting old data. This update is 
done using new information from false alarms, employing the Robbin-Monro algorithm and a swift Mahalanobis dis-
tance variant. The fast Mahalanobis distance calculation is based on principal component analysis, resulting in a quicker 
inference and a more compact model. SUAD’s performance is evaluated with the Metro Anomaly Detection (MAD) data-
set (build for the study) and three public datasets. In [39], a novel inspection scheme for Rail Surface Defects (RSDs) is 
introduced, utilizing limited samples with a line-level label. The approach treats defect images as sequence data, simpli-
fying the labeling task by classifying pixel lines. The scheme comprises two methods: OC-IAN for express rail defects and 
OC-TD for common/heavy rail defects. Both methods leverage One-dimensional Convolutional Neural Networks (1-D 
CNN) for feature extraction and Long Short-Term Memory (LSTM) networks for context information based on Interac-
tive Attention Network (IAN) and Target Dependent (TD) LSTMs respectively. OC-IAN adopts a single-branch structure 
with an attention module, while OC-TD employs a double-branch structure without the attention module. Experimental 
results on the Rail Surface Defects Dataset (RSDDs) [40] demonstrate the effectiveness of these methods, surpassing 
state-of-the-art techniques on defect-level metrics.

3.2.1.4 Integration of CNNs with the internet of things Some studies combine the power of CNN’s CV capabilities with 
innovative Internet of Things (IoT) systems such as robots and autonomous drones. In reference [41], the authors 
introduce a system that combines robotics and visual inspection for defect detection in railway tracks. This sys-
tem conducts on-the-spot image processing, stores images of defective tracks in the cloud, and localizes the robot 
within a 3 to 6-inch range. It utilizes a ML system to classify track images as normal or suspicious, enabling efficient, 
targeted inspection by a dedicated operator; reducing the need to inspect the entire track. In another study [42], 
authors introduce a rail-track monitoring system using robots and optical checks for surface fault detection. The sys-
tem employs Two-dimensional Convolutional Neural Network (2-D CNN) for real-time local detection during inspec-
tion. Images are sent to the ANN for assessment during robot investigation. In reference [43], the authors introduce 
a multi-robot fault detection system for railway tracks, replacing manual inspection. The hardware prototype fea-
tures a master–slave robot mechanism detecting rail surface defects using ultrasonic sensors, image processing 
techniques and DL. The proposed CNN outperforms other methods like ANN, Random Forest (RF) and SVM, based 
on metrics like accuracy, R-squared value, F1 score, and mean-squared error. To eliminate manual inspection, the 
system communicates fault location and status to a central location via Global System for Mobile Communications 
(GSM), Global Positioning System (GPS), and cloud storage. In a different study [44], the authors inpropose a method 
for the control of the rail track with an autonomous Unmanned Aerial Vehicles (UAV). The approach employs the 
deep Hough transform method for rail navigation without requiring preprocessing or parameter adjustments. After 
removing the rails from the obtained rail images, the rail defects are detected by semantic segmentation. Another 
study [45] investigates the use of U-Net for the task of segmenting rail track regions from UAV-based images in the 
railway sector. This task is crucial for ensuring safety and security by monitoring potential hazards on railway tracks. 
The rapid development of DL and CV techniques has enabled automated railway hazard detection systems based 
on UAV-based imagery. The paper demonstrates the effectiveness of U-Net in terms of mean Intersection over Union 
(IoU) through experimental evaluations using a real-world dataset. This research has practical applications in auto-
mated UAV navigation along rail tracks.
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3.2.1.5 Applications of CNNs with acceleration data Other data sources can also be utilized to feed CNN. Other types of 
data found in the literature include acceleration and speed data. For instance, the authors in [46] propose a model that 
integrates Building Information Modeling (BIM) and ANNs for the localization of defects in railway infrastructure. The 
study presents a case study for wheel burns in railway tracks, and implements DNN, CNN and RNN to make predictions 
based on axle acceleration data generated by simulations which is also synced to the 3D BIM model. Another study [47], 
introduces a CNN framework for real-time prediction of railway track dynamic stiffness using accelerometer data from 
sensors on train axle boxes. To ensure computational efficiency, the framework incorporates dilated convolutional lay-
ers, suitable for implementation on compact devices. They utilize a calibrated nonlinear finite element model to create 
an unbiased dataset of axle box acceleration under various conditions. The fine-tuned CNN model achieves optimal 
R-squared values, offering a continuous, cost-effective, and fast method for track stiffness measurement. In reference 
[48], the authors introduce a classification-based method to detect various rail defects, including localized surface col-
lapse, rail end batter, and different rail components such as joints, turning points, and crossings. They leverage accelera-
tion data for this purpose. To enhance the practicality and performance of these classification-based models, the authors 
put forward a DL approach that employs CNN. These models aim to identify joints or defects on either the left or right 
rail. The authors investigate and evaluate two convolutional networks, ResNet and Fully Convolutional Networks (FCN), 
using acceleration data. Another study [49] implements DL for processing data harvested from smart sensors and IoT 
devices for FD in railway tracks. The solution combines traditional signal processing methods with Deep Convolutional 
Autoencoders (CAEs) and clustering algorithms to find anomalies and their patterns on railway tracks. The methods are 
applied to real world Axle Box Acceleration (ABA) data gathered with a multi-sensor measurement system on a shunter 
locomotive. In reference [50], the authors introduce a novel DL approach using daily monitoring data from in-service 
trains to predict rail breaks. The proposed model tackles data imbalance and preserves temporal dynamics. It employs 
Time-Series Generative Adversarial Network (TimeGAN) for handling imbalance and generating synthetic rail break data 
while maintaining temporal characteristics. The Feature-Level Attention-Based Bidirectional Recurrent Neural Network 
(AM-BRNN) enhances feature extraction and captures bidirectional dependencies for accurate prediction. The approach 
is validated with a three-year dataset from Australian railroads, covering up to 350 km that includes data on the charac-
teristics of tracks: including rail age, annual tonnage, and train speed; as well as temperature data. Results show success-
ful prediction of nine out of eleven rail breaks with 3 months in advance.

3.2.1.6 Applications of CNNs with other types of data A number of studies implement ultrasound and data from vibration 
waves. For instance, authors of reference [51] address the automation of ultrasound diagnostics for railway tracks using 
a CNN. They present a system architecture for real-time decoding of railway track defectograms, encompassing ultra-
sound data processing, CNN classifiers, and a decision block. Data preprocessing involves transforming measurements 
into a format suitable for ANNs and combining information based on the defect type. While in [52], the authors aim to 
enhance efficiency, accuracy, and cost-effectiveness in ultrasonic flaw detection, focusing on B-scan image classification. 
Inspired by successful transformer models in NLP, they propose using the Vision Transformer (ViT) model for training on 
rail defect B-scan images. This approach explores the practicality and effectiveness of employing ViT, a breakthrough in 
computer image processing, for the classification of rail defects. In another study [53], the authors propose a DL model 
that integrates CNNs and LSTM models for track quality evaluation in HSR networks. The proposed solution relies on 
the prediction of vehicle-body vibrations and takes advantage of the powerful feature extraction capacities of CNN and 
LSTM models.

There are two studies that implement audio and sound data for the detection of railway defects. The authors in [54] 
present a smart railway cart for detecting cracks on rail through acoustic analysis. For this work, acoustic signals were col-
lected from real railway operations and several well-known ML algorithms were applied such as SVMs, Logistic Regression 
(LR), RF and Decision Tree (DT) classifier, in addition to DL models like multilayer perceptron and CNNs. Results suggest 
that acoustic data can successfully determine the presence of faults in tracks. And the authors in [55] introduce WSCNN-
GRU, a novel method for HSR fatigue crack signal classification using Acoustic Emission (AE) technology. It combines 
DL principles, leveraging Self-Normalizing CNNs with Wide First-Layer Kernels (WSCNN) to extract local features, Gated 
Recurrent Unit (GRU) for capturing temporal relevance, SeLU activation for stability, and Adaptive Batch Normalization 
(AdaBN) for versatile domain adaptation.

Lastly, there is one study that implements electrical signals from monitoring events. The authors in [56] present 
an innovative track circuit fault detection framework using 1-D CNN with multiscale feature fusion. The framework 
addresses locality dependencies among monitoring variables and introduces three multiscale feature fusion meth-
ods (parallel, serial, and dense) to enhance feature learning and diagnosis. Experimental results, compared against 
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traditional classifiers, affirm the effectiveness of the proposed approach. The dense feature fusion method stands 
out as the most robust, significantly improving fault diagnosis performance.

3.2.2  Fasteners

Railway fasteners are integral components that serve multifaceted purposes essential for the correct functioning 
of railways. The maintenance of these fasteners is pivotal, as they must withstand the heavy loads and vibrations 
associated with train traffic, ensuring the safety, stability, and efficiency of railroads.

3.2.2.1 Integration of CNNs with other types of AI There are many studies that implement CNNs combined with other 
DL models for this purpose. For instance, the study in [57] addresses imbalanced data in diagnosing faults in rail 
fastener by employing a combination of Generative Adversarial Networks (GAN) and ResNets. The GAN is utilized 
to generate additional fault data, balancing the dataset, which is then used to train the ResNet. The study evalu-
ates the fault diagnosis method by calculating the average accuracy from multiple experiments, demonstrating 
enhanced accuracy in fault detection, notably given the significant shortage of fault data. While in reference [58], 
the authors aim to improve the performance of DL-based defective fastener inspection methods. They introduce a 
novel image generation method called Four-Discriminator Cycle-consistent Adversarial Network (FD-Cycle-GAN) to 
generate defect fastener images using a substantial number of defect-free ones. Through extensive experiments on 
both real and generated images, results demonstrate that the defect-fastener images produced by the proposed 
method exhibit higher quality and greater diversity compared to other state-of-the-art methods. Moreover, train-
ing the fastener inspection model on the expanded dataset (which includes defect fastener images generated by 
FD-Cycle-GAN) significantly improves performance compared to the CNN-only baseline. Another approach [59] pro-
poses a DL solution for railroads inspection that implements collaborative CNN-based detection models. This solu-
tion combines multiple detectors within a multi-task learning framework to find defects on railway sleepers and 
fasteners based on image data. The authors in reference [60] investigate the combined use of image processing and 
DL algorithms for detecting missing clamps within a rail fastening system. They use image processing techniques 
to improve the fastener’s location and remove redundant information from the images. Then a CNN and ResNet-50 
networks are used for classification purposes. The images used for this study were acquired during field inspections 
and enhanced with data augmentation techniques.

3.2.2.2 CNNs for the detection of fasteners Other studies implement different types of CNN such as YOLO or different 
varieties of Region-based Convolutional Neural Networks (R-CNN) for the detection and classification of railway fasten-
ers. For instance, authors in [61] propose the implementation of DL along with image processing for FD in railway track 
fasteners. The implementation relies on image detection, feature extraction and a classifier algorithm, and it implements 
a VGG-16 CNN and a Faster R-CNN for the positioning and recognition of fasteners. The authors in [62] present a method 
to detect targets in fastening systems in different railway sections. They improved the Faster R-CNN model, using multi-
scale feature map fusion for small targets; modified predefined anchors to generate region proposals; and an additional 
attention module for focusing on meaningful features. They used railway inspection images as the dataset and car-
ried out labeled work. In reference [63], a Mask R-CNN architecture and a DL framework for image segmentation, were 
employed to differentiate between intact and missing rail fasteners. Railway images captured by an autonomous drone 
were annotated to identify the healthy and absent fasteners. A model was then trained using this labeled dataset, and 
its performance was assessed using a separate test dataset. The experimental results demonstrated that this approach 
could detect both healthy and missing fasteners, achieving high levels of accuracy. A different study [64] presents a track 
fasteners classification system based on a YOLOv4-Tiny DNN model, that can perform real-time identification with two 
cameras. The datasets used to train the model were provided by the Taiwan Railway Administration. Finally, the authors 
in [65] propose to use a one-stage RetinaNet DCN to detect rail fasteners in aerial imagery of rail tracks. The proposed 
model was tested on a one-kilometer railway stretch: It was determined that the learned deep features promise a robust 
method that can help to identify rail anomalies, though more extensive training data is needed.
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3.2.3  Joints

Railway joints allow for the connection of individual rail segments, creating a continuous track network. These com-
ponents are fundamental, as they provide flexibility, accommodate thermal expansion, ensure proper alignment, and 
facilitate the maintenance of railway tracks. Only two papers in the literature present CNN-based solutions for their 
maintenance. The first study [48] presents a model based on a ResNet and a FCN that can classify and detect various 
rail defects—including joints—based on acceleration data. Another study [66], implements a DL-based approach for 
the conditional monitoring of thermite-welded joints in rails CNNs. This solution proposes the implementation of an 
onboard camera or sensor to collect the images necessary for the visual inspection of joints in real-time. With YOLOv3 as 
the detector, the proposed model can accurately classify and determine the location boundary box for each thermite-
welded joint image.

3.2.4  Sleepers

Railway sleepers, also known as railroad ties or crossties, are essential components in the physicality of railway tracks. 
Sleepers provide structural support, distribute loads, maintain track alignment, absorb vibrations, facilitate mainte-
nance, anchor ballast, and withstand environmental conditions. Their maintenance is important for the functioning 
of railroads. Nonetheless, few papers in the literature refer to the applications of CNNs for the maintenance of railway 
sleepers. The authors in [67] introduce a two-stage algorithm to detect railway sleeper cracks. The initial stage applies a 
3 × 3 edge detection in a neighborhood range, identifying potential crack areas. The subsequent stage employs a CNNs 
for accurate classification of detected edges. The model implements 500 images of cracked sleepers and 500 images of 
healthy sleepers and data augmentation techniques. In reference [68], the authors develop multiple CNN-based models 
for predicting and diagnosing defect severities in unsupported sleepers, aligned with track inspection guidelines. Using 
data from a validated finite element model and real field measurements, the study covers various scenarios, considering 
sleeper locations, quantities, and operational parameters. Key indicators rely on axle box accelerations, and multiple DL 
techniques (including CNNs, RNNs, ResNet, and fully CNNs) are explored. Notably, the CNN model exhibits the highest 
accuracy in predicting unsupported sleeper conditions and identifying defect severities. Another solution [59], imple-
ments collaborative CNN-based detection models within a multi-task learning framework to find defects on railway 
sleepers (and fasteners) based on image data. Finally, the authors in [69] propose an improved YOLOv3 algorithm for 
detecting sleeper defects, aiming to enhance track maintenance efficiency and reduce manual risks. They optimize loss 
function weights based on sleeper image characteristics, utilize the K-means algorithm for sleeper data clustering, and 
employ multi-scale training for robustness. Experimental results demonstrate significant improvements in recall, preci-
sion, and Mean Average Precision (MAP), highlighting the effectiveness of the enhanced YOLOv3 algorithm.

3.2.5  Switches and crossings

The railway Switches and Crossings (S&C), commonly known as turnouts or points, are vital components in railroad 
infrastructure as they contribute to the overall efficiency and reliability of railway systems by providing the necessary 
infrastructure for routing, directional control, traffic management, yard operations, maintenance access, and safety.

3.2.5.1 CNNs and computer vision techniques There are different CNN-based approaches that implement different types 
of data for the maintenance of S&C in railroads. Most approaches as based on image and video data. For instance, in ref-
erence [70], the authors introduce a CV method for detecting wear on railway automatic switch Stationary Contacts (SC) 
under few-shot occasions. They propose a two-stage approach for achieving state-of-the-art performance in Railway 
Automatic Switch Stationary Contacts (RASSC) wear detection. The first stage involves a Few Shot SC Detection (FSDet) 
module that employs a Particle Swarm Optimization (PSO) based Weighted Non-Maximum Suppression (PWNMS) algo-
rithm for decision-making in multi-template detectors based on deep features matching. The second stage, Contour-
based Size Measurement (CSMea), utilizes unique area features for wear detection and measurement. The authors in 
[71] investigate a DNN based environment perception using vehicle-borne camera images from the rail domain. They 
utilized two datasets, RailSem19 [72] and a smaller self-labeled dataset. The DNN is applied to railway switch detection 
and classification, using Transfer Learning (TL), anchor box optimization and appropriate architecture to address the lack 
of suitable training data and class imbalance. Another study [73] presents a new method based on YOLOv4 for simulta-
neous condition monitoring and fault detection in the railway switch and level crossing sections. A YOLOv4 DNN (with a 
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Darknet53 backbone) was trained using four class label datasets consisting of real railway visual data collected with an 
autonomous drone. In reference [74] the authors present an automatic isolating switch segmentation and state recogni-
tion framework called ISSSR-Net using multitask learning to address the issue of isolating switch accurate localization 
and state recognition simultaneously. ISSSR-Net comprises two stages: Firstly, ISS-Net, an isolating switch segmentation 
network. It features a novel structure including strip pooling, channel attention, and three pyramid pooling modules, 
enhancing performance under challenging conditions like rain, snow, and fog; Secondly, ISS-Net’s segmentation map 
and the shared backbone’s feature map are input into ISR-Net, the isolating switch recognition network. An additional 
global context block further enhances state recognition accuracy. The dataset implemented for training the model is 
composed of self-collected isolating switch images under five different conditions and states.

3.2.5.2 Implementing electrical signal data with CNNs Other models in the literature implement data from electrical sig-
nals. For instance, the authors of reference [75] propose a novel hybrid DL framework combining Deep Convolutional 
Autoencoder (DCAE) and LR for turnout fault diagnosis. The current signal is converted into a 2-D grayscale image, the 
DCAE is used for automatic feature extraction, and LR is used for fault diagnosis. They use a historical field dataset com-
posed of turnout curves (current vs. time), that were converted into grayscale images to feed the model. In reference 
[76], the authors present an improved technique for extracting effective features from faulty signals using Energy-Based 
Thresholding Wavelets (EBTW) and ANNs. EBTW applies a wavelet transform coefficient threshold, leveraging local-
ized and redistributed signal energy analysis. This method is versatile across sensors with varying fault sensitivities. The 
threshold effectively eliminates measurement noise, calculated based on the conserved signal energy ratio with physi-
cal meanings. Comparative analysis with different feature extraction methods and ANNs classifiers, using real-world 
railway switch data, reveals EBTW outperforming conventional methods like Discrete Wavelet Transform (C-DWT) and 
Soft-Thresholding DWT (ST-DWT) in dimension reduction ratio and diagnosis accuracy.

3.2.5.3 Implementing acceleration data with CNNs Acceleration data can be an important indicator of S&C health status. 
For instance, in the study with reference [77], the authors explore train type identification in railway S&C using acceler-
ometer data and contemporary ML methods including ANNs. They use data from accelerometers placed around four 
S&C structures at different locations, and test various ANNs architectures. Their findings show that models trained in one 
location can typically be applied to another, even when there are variations in geometry, substructure, and the direction 
of passing trains. Another study [78] implements DL methods based on the LSTM and ResNet to predict the amount of 
wear in the entire S&C infrastructure, using medium-range accelerometer sensors. Vibration data were collected, pro-
cessed, and used for developing accurate data-driven models. The first task in this study was to confirm the assumption 
that it was possible to measure vibrations that would reflect the amount of wear in the entire S&C. The second task was 
to investigate how the measurement accuracy would be affected by the distance between the sensor and the wear loca-
tion. Lastly, the study [48] introduces a classification-based method to detect various rail defects based on ResNet and 
FCNs, including—among other tasks—the detection of crossings defects based on acceleration data.

3.2.5.4 Object and component detection The detection and classification of specific components and external objects is 
essential for automating intelligence maintenance in railways. This contributes not only to the maintenance (and main-
tenance planning) of railroads but to the overall safety and efficiency of train operations. The models discussed in this 
section are integrated in some of the solutions we have presented in the previous subtasks. For instance: the study 
presented in [65] can detect rail fasteners in aerial imagery of rail tracks by implementing a RetinaNet DCN; The solu-
tion presented in [64] implements YOLOv4-Tiny of real-time identification and classification of track fasteners; In [62] a 
Faster R-CNN and multi-scale feature map fusion technique is implemented to detect targets in the fastening systems. 
The detection of anomalies and foreign objects can also be leverage to CNNs. As we have seen in studies previously 
presented: In [16], for the detection of rail surface cracks, implements a multitask learning model and an object detec-
tion decoder for detecting rail objects; And the authors of [28] introduce a YOLOv5s-VF for rail surface defect and object 
detection.

3.2.5.5 CNNs for the detection of railroad parts We have also reviewed new studies that are specifically targeted at the 
detection of different railroad components. For instance, in reference [79], the authors introduce an attention-powered 
deep CNN, AttnConv-net, for detecting multiple rail components, like rails, clips, and bolts. This method integrates Cas-
cading Attention Blocks (CAB), two Feed-Forward Networks (FFN), and positional embeddings into a deep CNN core. The 
CAB module focuses on learning local context, while the FFN generates final categories and bounding boxes. The model 
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is trained with various data augmentation techniques to improve the detection of small components. The AttnConv-net 
simplifies the detection pipeline, eliminating the need for pre and post-processing, offering a faster and more accurate 
detection system. The solution proposed in [80] uses drone images and YOLOv3 for the detection of various track assets 
with the purpose of monitoring the health of railroads. In a different study [81], the authors proposed a CNN-based 
detection method for damaged steel-spring vibration isolators (SVIs) in a floating-slab. A 1-D Deep ResNet has been 
designed for feature extraction and data classification. Using vibration responses generated via vehicle floating-slab 
track (FST) coupled dynamic simulations, the network extracts damage-sensitive features from raw data to identify the 
damaged SVIs. For network training and testing, multiple data sets are constructed under various scenarios. The key 
contribution of this work is to investigate the sensor deployment for CNN with a good performance and adaptability to 
different scenarios.

3.2.5.6 CNNs for the detection of anomalies Other studies are centered in the detection of anomalies in railway tracks 
for maintenance purposes. For instance, the authors in [83] develop a multi-stage framework to automatically inspect 
the railway during the night, in order to detect, localize and classify objects or anomalies that could affect the safety 
of the train transport. The framework is able to predict the presence, the image coordinates and the class of obsta-
cles. The framework is based on thermal images and consists of three different modules that address the problem of 
detecting anomalies, predicting their image coordinates and classifying them. The authors introduce a new multi-modal 
dataset, acquired from a rail drone, used to evaluate the proposed framework. In reference [84], the authors propose a 
novel DL application for detecting anomalies on railway tracks using camera data. Their two-stage approach involves 
binary semantic segmentation to extract rails and a self-supervised learning-based Autoencoder to identify anomalies. 
The Autoencoder is trained on patches from the segmented rails, aiming to reconstruct non-anomalous data. During 
inference, larger reconstruction errors indicate anomalies, detected by applying a predefined threshold. The first stage 
achieves a high mean Intersection over Union (IoU), and the Autoencoder network performs well on real scenario test 
images, successfully detecting anomalies without false positives or false negatives. Another study [85] proposes a semi 
supervised algorithm for detecting foreign objects in ballastless beds based on the improved deep SVDD (Support Vec-
tor Data Description) algorithm. First, they use the improved Mask R-CNN algorithm to extract the rail and fastener areas 
in images, assuming that no foreign object exists in the rail and fastener areas. Second, they deepen the backbone net-
work of the deep SVDD to enhance its ability to extract deep semantics from complex images. They perform pure color 
coverage processing with different colors and mean blur processing with different blur kernels on the rails and fastener 
regions extracted by the improved Mask R-CNN. The study in [82] presents an automated real-time system developed 
for the maintenance of vegetation on and near railway tracks. This system enables precise spraying of herbicides in spe-
cific locations where needed, in contrast to older systems that apply herbicides uniformly along the tracks. The system 
comprises a locomotive-mounted camera that records the area in front of the train. The video stream from the camera is 
transmitted to a standard computer, where it undergoes processing using CNNs. This software facilitates the detection 
of weeds and bushes along the railway tracks and communicates with the Programmable Logic Controller (PLC) to acti-
vate herbicide sprayers at the appropriate moments. Finally, the authors in [86] propose a new semi-supervised anomaly 
detection method based on GANs to detect foreign objects in a railway environment. This approach tackles the problem 
that datasets of railways with foreign objects are scarce, using normal railway images for training.

3.2.6  Monitoring

The continuous monitoring in railroads is important for the prevention, early detection and prognosis of faults; to ensure 
infrastructure integrity; for maintenance planning purposes; and support of the overall efficient railway maintenance 
tasks and operations. There are many CNN-based solutions presented in the literature for the monitoring of railroads. 
Some of the models discussed in this section have been presented in previous subtasks.

3.2.6.1 Computer vision monitoring Most monitoring approaches leverage on the CV capabilities of CNNs: The YOLO 
single-shot CNN-based detection method has been implemented in many studies for continuous monitoring in railway 
tracks. For instance, in [80], the authors focus on detecting various track assets in drone images for the monitoring of the 
health status of railroads. For this purpose, they have utilized a pre-trained model. The image classes for categorization 
include construction, power junction/brick, cement slabs, transformer wires, garbage, and person. To enhance detection 
accuracy, they compute color spaces for images based on selected separability index values. The YOLOv3 framework is 
implemented for track asset detection. In the study presented in [30], the authors highlight the importance of monitor-
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ing railway track conditions by leveraging on an improved YOLOv3 model named TLMDDNet and a lightweight design 
strategy named DC-TLMDDNet which optimize feature extraction layers using a DenseNet. While the study [26] intro-
duces YOLOv3-M for rail health monitoring and detection of railway defects. The results demonstrate that the YOLOv3-
M-based method can effectively monitor the state of railway tracks, enabling early detection of defects before they lead 
to failures. In reference [66], the authors develop an application prototype for the detection and monitoring of thermite-
welded rail joints using the YOLOv3 DL algorithm. With YOLOv3 as the detector, it can accurately classify and pinpoint 
the location boundary box for each thermite-welded joint image. The experimental training and validation of this algo-
rithm have yielded promising results, affirming the capability of this application prototype. When integrated with the 
proposed camera monitoring system, it becomes a valuable tool for detecting and monitoring critical components of 
the rail track system. Finally, the authors in [73] present a new method based on YOLOv4 (and data collected with an 
autonomous drone) for the condition monitoring and FD in the railway S&C system.

3.2.6.2 Monitoring through  other CNNs Other types of CNNs are also used in similar monitoring applications. For 
instance, the authors of [42] proposed a monitoring system based on 2-D CNNs and robots for real-time FD during 
inspection of railway tracks. Detected flaws are promptly reported to the cloud, including the corresponding region, for 
additional analysis. Similarly, the study [22] presents a continuous and efficient monitoring of railway tracks with the aim 
of reducing the occurrence of accidents caused by poor condition of railway tracks. In a different study [45], the authors 
implemented (UAV-obtained) aerial images and a U-Net to automate the detection of hazards in railway tracks.

4  Discussion

Our study has reviewed several implementations of Convolutional Neural Networks (CNN) models for different tasks 
related to the preservation, inspection, maintenance and monitoring of railway tracks and their components. Results 
show a sustained increase in research literature produced from 2019 onwards. Most papers revised were published in 
2022, constituting 46% of the total, this is followed by 2021 with 30% of papers, and 2020 with 20% of papers. In earlier 
years, there were fewer publications, with two papers (3%) in 2019, no papers (0%) in 2018, and only one paper (1%) in 
2017. There were no publications from 1990 to 2016 (0%). When it comes to the classification of papers according to the 
maintenance task, there is a noticeable unbalance in their distribution: surface defect detection constitutes the majority 
with 49% of the papers, followed by detection of objects and components (15% of papers), fasteners (10%), monitoring (9%), 
switches and crossings (10%), sleepers (5%), and joints (2%). The distribution of papers according to the data implemented 
is as follows: The vast majority of papers focus on image and video analysis, comprising 70% of the total, followed by 
speed and acceleration analysis (which represents 11% of papers), vibration measurements (10% of papers), electrical 
signals analysis (4%), acoustic and sound (3%), track geometry (1%), and temperature (1%). In the rest of this section, we 
briefly delve into our discoveries, highlighting certain trends and insights we have identified.

Most of the papers we have revised present solutions for the detection of defects in the surface of railway rails. Within 
this category many studies implement solutions based on Computer Vision (CV) to discern between images of healthy 
tracks and defected tracks that present cracks and other anomalies. Apart from the regular CNN implementations [13, 
15, 16, 22, 25] different architectures are proposed, including VGG16 [12, 23], Faster Region-based Convolutional Neural 
Network (R-CNN) [14], Residual Network (ResNet) [32, 33], U-Net [18, 34, 45], GoogleNet’s CNN [19], 1-D [39] and 2-D 
[42] CNNs, along with other novel applications based on CNNs [20, 21, 34–36]. A recurrent implementation in image 
and video-based solutions is the You Only Look Once (YOLO) network. This Deep Neural Network (DNN) is implemented 
any many real-time approaches, in most cases presenting their own modified version of the network [26–30], which 
is improved for the detection of railway defects. Some novel approaches to image and video data acquisition include 
the use of onboard cameras [13, 25] and—most notably—robots [42–44] and aerial railway track images captured with 
autonomous Unmanned Aerial Vehicles (UAVs) [44, 45]. For the purpose of identifying defects in the railways, CNN have 
also notable results with raw data collected from railway operations including acceleration [46–48], vibration [50, 52–54], 
and audio signals [54, 55].

We have analyzed a good number of papers related to the maintenance of railway components such as fasten-
ers, sleepers, and joints. Among these components, railway fasteners are addressed the most; there are solutions that 
implement different CNNs: for instance ResNets for the detection of missing clamps [60]; the use of Region-based CNN 
(R-CNN) such as Faster R-CNN [61, 62] for detection of faults and targets, Mask R-CNN [63] for discerning between intact 
and missing fasteners; YOLO [64] and RetinaNet with aerial images [65] for fasteners detection and classification; and 
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the implementation of collaborative multiple-CNN models for the inspection of railway fasteners [59, 61].There are 
approaches that implement CNNs in combination with other Deep Learning (DL) models. One example is the use of 
Generative Adversarial Networks (GANs) for the generation of additional data [57, 58]. Only a few papers address the 
maintenance of railway sleepers. These studies implement for example, CNNs for the detection of cracks in sleepers 
[67], multiple collaborative CNN models [59, 68], and YOLO [69] for detection of sleeper defects. Finally, only two papers 
implement CNN-based solutions for the early fault detection in railway joints: one study implements ResNet and Fully 
Convolutional Networks (FCN) to detect defects in joints based on acceleration data [48]; and another CNNs for the 
monitoring of welded railway joints using images collected with onboard cameras [66].

Another subtask identified is the maintenance of railway switches and crossings (S&C). Among this classification we 
found studies that implement Deep Neural Networks (DNN) [73], YOLO [73] and other CNN-based solutions [70, 74] for 
the detection and classification of S&C [74], as well as detection of wear and other possible faults based on S&C images. 
Other solutions implement electrical signals [75, 76] or acceleration data [48, 77, 78] for the same purpose.

The detection and classification of specific railways components is an essential part of intelligent maintenance and 
crucial for early Fault Detection (FD). Some of the components include fasteners, joints and sleepers among others, 
overlapping with the identified subtasks present in this study. There are approaches found in the literature that imple-
ment R-CNNs [62], YOLO [64, 80], DCN [65, 79], ResNet [81] and other traditional models for this purpose. Other studies 
are centered in the identification of anomalies, such as external objects in the rails [16, 28, 83–86] or plants growing in 
the tracks [82].

The last task is the real-time monitoring of railway tracks for maintenance purposes. The YOLO single-shot CNN-based 
detection is a recurring method for continuous monitoring of railroads [26, 30, 66, 73, 80]. Other applications include 2-D 
CNNs [42] and U-Net [45]. The use of robots and Unmanned Aerial Vehicles (UAVs) is also a frequently discussed alterna-
tive for the monitoring of railway tracks [42, 73, 80].

There are some recurring methodologies that are common to all areas of railway track maintenance. For instance, the 
YOLO network has been implemented in many approaches, that leverage on the CV capabilities of CNNs for the detec-
tion and tracking of objects in real-time [26–30, 64, 66, 69, 73, 80]. Other popular models that are seen among different 
subtasks are R-CNNs (and they different variations) [14, 61–63], U-Nets [18, 34, 45] and ResNets [32, 33, 48, 60, 81]. The 
most common type of data used for CNN-based approaches is image and video data as observed in surface defect detec-
tion [12–16, 18–22, 24, 25, 27–39, 41–45, 52]; maintenance of fasteners [57–60, 63–65], joints [66], sleepers [59, 67, 69], 
switches and crossings [70, 73, 74]; detection of objects and components [16, 28, 64, 65, 79, 80, 82–86]; and monitoring 
[30, 42, 45, 66, 73, 80]. This is not surprising given the inherited qualities of CNN for CV. The implementation of IoT devices 
and smart sensors aid the collection of real-time data which can be used to feed CNN models. For this purpose, various 
IoT devices, robots [41–43] and autonomous drones [44, 45, 63, 65, 73, 80, 83] are implemented to obtain different types 
of data. To overcome lack of training data CNNs are used in combination with GANs to generate new data [50, 57, 58, 
86] that can be used later for training purposes. Other types of data include speed and acceleration [46–50, 68, 77, 78], 
vibration [43, 49, 51–53, 78, 81], audio [54, 55] and electrical signals [56, 75, 76].

5  Conclusion

In previous studies, we have discussed the implementation of powerful Artificial Intelligence (AI) models for different 
maintenance tasks within the railway industry. The advance of Artificial Neural Networks (ANN) and other numerical mod-
els have the potential to greatly contribute to smart-maintenance activities in the railway sector. In this study, we have 
addressed the potential of Convolutional Neural Networks (CNN) for different tasks related to the preservation, inspec-
tion, maintenance and monitoring of railway tracks and their components. Our research showed a steady increase in the 
number of research papers on the topic in the last years. We have analyzed the state-of-the-art by summarizing different 
tasks and problems belonging to the maintenance of railway tracks and common CNN-based models implemented for 
their solution. Within the scope of our research, we have identified the following tasks: surface defect detection; mainte-
nance of fasteners, joints, sleepers, switches and crossings; detection of objects and components; and railway monitoring.

Most of the papers we have revised present solutions for the detection of defects in the surface of railway rails including 
cracks, shelling defects, and the detection of other damages and anomalies. Many studies leverage the Computer Vision 
(CV) capabilities of CNN for this task. So is the case of the maintenance of railway track components, such as fasteners, joints, 
sleepers, switches and crossings and the recognition of track components, in which CV techniques are widely implemented 
for the detection of defects and anomalies. These models are also able to recognize patterns and identification of complex 
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events aiding in the continuous monitoring of railway tracks. Monitoring ensures the integrity of the railway infrastructure 
by helping identify potential issues such as track deformations, misalignments, or defects; as well as wear and tear, fatigue, 
or damage in track components, among other problems that could compromise the stability and durability of railroads. Not 
only limited to CV approaches, CNNs have been used with different types of data including image and video, vibration, audio, 
and electrical signals. Moreover CNN-based models have the advantage of working directly with raw data, reducing the need 
for extensive feature engineering preprocessing. The implementation of IoT devices and smart sensors aid the collection of 
real-time data which can be used to feed powerful CNN-based models to recognize patterns and identification of complex 
events related to the maintenance of railway tracks. These approaches have the potential to significantly transform railway 
track engineering by promptly identifying problematic tracks within extensive railway networks and (promptly) accommo-
dating pertinent maintenance tasks.

There are great advantages to using CNN for the maintenance of railway tracks. The architecture of CNNs allows these mod-
els to learn spatial hierarchies of features automatically and adaptively from the input data making them an ideal candidate 
for different maintenance tasks related to railway tracks. On the other hand, CNN models lack explainability and transparency 
in contrast to traditional AI approaches which may be more intrinsically comprehensible. The explainability, comprehension 
and interpretability of CNN models become more obscure as complexity increases. This issue can be overcome with exhaust-
ing testing and various techniques to make these models more transparent and easier to understand. It is important that 
models are tested thoroughly before they can be deployed, especially in applications such as the maintenance of railway 
tracks, where errors can be translated into fatalities.
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