
Vol.:(0123456789)

 Discover Artificial Intelligence            (2024) 4:12  | https://doi.org/10.1007/s44163-024-00107-6

Discover Artificial Intelligence

Research

Generative approaches for solving tangram puzzles

Fernanda Miyuki Yamada1 · Harlen Costa Batagelo2 · João Paulo Gois2 · Hiroki Takahashi1,3

Received: 9 November 2023 / Accepted: 23 January 2024

© The Author(s) 2024    OPEN

Abstract
The Tangram is a dissection puzzle composed of seven polygonal pieces that can form different patterns. Solving the 
Tangram is an irregular shape packing problem known to be NP-hard. This paper investigates the application of four 
deep-learning architectures—Convolutional Autoencoder, Variational Autoencoder, U-Net, and Generative Adversarial 
Network—specifically designed for solving Tangram puzzles. We explore the potential of these architectures in learning 
the complex spatial relationships inherent in Tangram configurations. Our experiments show that the Generative Adver-
sarial Network competes well with other architectures and converges considerably faster. We further prove that traditional 
evaluation metrics based on pixel accuracy often fail in assessing the visual quality of the generated Tangram solutions. 
We introduce a loss function based on a Weighted Mean Absolute Error that prioritizes pixels representing inter-piece 
sections over those covered by individual pieces. Extending this loss function, we propose a novel evaluation metric as 
a more fitting measure for assessing Tangram solutions compared to traditional metrics. This investigation advances our 
understanding of the capabilities of artificial intelligence in complex geometrical problem domains.

Keywords  Tangram · Puzzle · Deep-learning · Generative adversarial network

1  Introduction

The Tangram comprises seven polygonal pieces, forming a geometric puzzle. Achieving the objective involves rearranging 
these pieces through rigid body transformations to match a specific pattern. A solution is valid only if it contains all the 
pieces with no overlaps between them. Figure 1 exemplifies a Tangram puzzle, where one can find the pieces, a desired 
pattern, and a feasible solution. The desired pattern may also be referred to as simply Tangram pattern throughout the 
text of the present paper.

According to some historians, the Tangram originated from a furniture set during the Song Dynasty and later evolved 
into a collection of wooden blocks for recreational purposes [1]. Up to this day, even though several geometric puzzles 
were invented before and after Tangram, it remains the most popular geometric puzzle in the world [2]. Artists and 
designers have embraced its geometric elements to create artworks, while mathematicians have explored its proper-
ties and connections to other mathematical concepts [3, 4]. Tangram puzzles have found extensive use in stimulating 
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manipulative learning, serving as teaching aids to help young students develop geometric thinking and spatial reasoning 
skills [5, 6]. The problem-solving strategies employed in Tangram puzzles can also find application in a range of daily visual 
tasks linked to abstract diagrams, proving beneficial for design-related problems [7, 8]. These diverse instances showcase 
the historical and practical significance of Tangram as an impacting and versatile puzzle with enduring relevance.

The task of solving Tangram puzzles relates to a more general class of combinatorial problems, such as the nesting 
problem and the bin packing problem, which are known to be NP-hard problems [9]. Because of that, it is common for 
two-dimensional optimization problems to restrict transformations to translations and rotations, and employ a single rec-
tangular container. On the other hand, the Tangram assembly process is considerably more complex because it requires 
irregular containers, and often demands unconstrained rotations for the pieces. Players can also apply the reflection 
transformation on the pieces, which is a practice that is almost exclusive to the Tangram [10]. Another property that needs 
to be considered in the assembly process of the Tangram is that the solution is not necessarily unique, which implies that 
different arrangements can result in the same pattern [11]. This highlights the inherently combinatorial nature of the 
Tangram, amplifying the challenge of the solving process, given that diverse strategies can result in distinct solutions. 
Figure 2 shows a Tangram puzzle with different feasible solutions.

Although methods for generating jigsaw puzzle solutions have made significant progress, particularly with generative 
models, methods dedicated to Tangram are far more primitive [10, 12]. Deep neural network approaches that solve the 
jigsaw puzzle rely heavily on semantic information contained in the pieces and often consider square pieces with equal 
sizes. Both factors significantly alleviate the combinatorial challenges inherent in solving jigsaw puzzles, and inhibit their 
application on textureless problems, such as the Tangram [13].

This paper presents an investigation into the application of four deep-learning architectures in solving Tangram puz-
zles: Convolutional Autoencoder (CAE) [14], Variational Autoencoder (VAE) [15], U-Net [16], and Generative Adversarial 
Network (GAN) [17]. We justify our architectural choices based on their distinct attributes and relevance to the problem 
domain: CAE excels in feature extraction and reconstruction, VAE provides probabilistic representations, U-Net specializes 
in semantic segmentation and pixel-wise tasks, while GAN offers generative capabilities. The CAE and VAE are inspired 

Fig. 1   Tangram pieces, puzzle, 
and a feasible solution. Rigid 
body transformations are 
applied to the pieces to form 
the desired pattern, with the 
condition of no overlaps and 
no missing pieces

Fig. 2   Tangram puzzle with 
different feasible solutions. 
The same pattern can be 
obtained by varying the posi-
tion of the medium triangle 
and one of the big triangles
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by the implementation of Minhas and Zelek [18] for anomaly detection, while U-Net is inspired by the implementation 
of Zhou et al. [19] for image segmentation. We make our own adjustments to these architectures to fit our task.

Our experiments are divided into two stages. In the first, we evaluate the performance of CAE, VAE and U-Net archi-
tectures. Our results show that VAE outperforms the other architectures in the first stage of experiments. For the second, 
we implement a GAN using the architecture that performs best as the generator, thus forming our VAE-GAN, a GAN 
encompassing a VAE-based generator. Our experiments indicate that VAE-GAN, paired with our proposed loss function 
designed for Tangram, presents more refined solutions than the previous architectures. We further analyze whether 
conventional metrics that are based on pixel accuracy are appropriate to evaluate generated Tangram solutions and 
propose a novel metric designed to evaluate the visual quality of generated Tangram solutions.

To the best of our knowledge, this study is pioneer in addressing the applicability of different deep-learning architec-
tures in the automatic solution of Tangram puzzles. Therefore, this paper brings the following contributions: (1) compara-
tive analysis of the performance of different deep-learning architectures in solving Tangram puzzles; (2) implementation 
of a loss function designed for the task of automatizing the solution of Tangram puzzles; (3) assessment of traditional 
pixel accuracy metrics in evaluating generated Tangram solutions; (4) development of an evaluation metric for evaluating 
generated Tangram solutions; and (5) new dataset for training and testing neural networks to solve Tangram puzzles.

Section 2 synthesizes the literature on computational Tangram solvers. Section 3 outlines the dataset generation 
process. Section 4 covers the experimental setup, parameters, metrics and outcomes of our first stage of experiments, 
while Sect. 5 analogously details our second stage of experiments. Finally, Sect. 6 encompasses our final considerations 
and future works.

2 � Related work

The literature to solve different categories of puzzles that do not employ deep-learning techniques is vast. From these 
methods, we identified two approaches that include extensions to the Tangram [20, 21], and three that focus specifically 
on the Tangram [10, 22, 23]. Deutsch and Hayes [22] use heuristic programming to split the puzzle into polygons to form 
the pieces. Bartoněk [20] presents a method based on genetic algorithms for edge-matching puzzles that includes an 
extension to the Tangram. Kovalsky et al. [21] solve jigsaw puzzles in terms of algebraic concepts, extending its applica-
tion to Tangram puzzles. Oflazer [23] follows a connectionist approach by representing the placement and orientation 
of the pieces as a non-restricted Boltzmann machine. Yamada et al. [10] propose a heuristic-based method that uses 
geometrical techniques commonly applied in the solution of cutting and packing problems. They adopt a raster-based 
representation that enables the depiction of puzzles with multiple regions and holes. Further, the technique uses math-
ematical morphology operations to determine if a piece in a certain configuration would fit the puzzle silhouette. A more 
recent study [24] shows that this heuristic can benefit from different sorting techniques for the pieces.

From deep-learning models that solve other visual tasks, we identified two approaches that include extensions to 
the Tangram [8, 13]. Li et al. [8] present a GAN architecture that synthesizes layouts by modeling geometric relations of 
different types of graphical elements. They solve Tangram puzzles as a validation for their approach. Their model gener-
ates meaningful solutions like animals and people’s poses, although others may be hard to interpret. A drawback of this 
approach is the limited number of transformations that can be executed on each piece, consisting of only 8 combinations 
of rotation/reflection. They also limit their tests to only 12 Tangram puzzles. More recently, Lee et al. [13] split different 
two-dimensional target shapes into multiple fragments of arbitrary polygons by a stochastic partitioning process. They 
implement a GAN architecture aiming at assembling the target shape given the partitioned fragments while the original 
poses are hidden. The authors claim that the addressed problem is analogous to the Tangram, although they do not 
present experiments to sustain this claim. Their tests are limited to regular target shapes, such as squares, pentagons, 
and hexagons, which do not meet the requirements for modeling Tangram puzzles. We conclude that the application of 
deep-learning approaches in the solution of Tangram puzzles remains a relatively uncharted field, indicating the need 
for more comprehensive exploration in this promising area.

One may argue that we could take advantage of deep neural network architectures that solve different categories 
of puzzles. We have identified a growing interest in solving square jigsaw puzzles using different architectures. When 
square jigsaw puzzles are treated as an image-to-image translation problem, the model generates each pixel of the out-
put image and has no incentive to transfer a piece unchanged from the input to another location in the output [25]. As 
a result, the output image often does not accurately represent the rearranged input pieces. In an attempt to tackle this 
problem, different authors choose to treat the jigsaw puzzle as a piece-to-location mapping problem. The pioneering 
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work in this topic solves the task of predicting the relative position of adjacent fragments given a central fragment, which 
is managed by learning the high-level semantic information of the data [26]. In recent studies [25, 27–38] the output of 
the model becomes a placement vector interpreted as the positions of jigsaw pieces or pseudo-labels. The placement 
vector represents the mapping between each piece and its placement within a grid of possible locations. Different works 
use jigsaw puzzles as the pretext task for transfer learning and self-supervised learning aiming at solving more complex 
tasks involving image context [27–29, 33, 39–41]. They push the semantic nature of jigsaw puzzles even further by solving 
the task where some pieces of a puzzle are replaced with images from other puzzles as a pretext task for self-supervised 
learning [42]. Further studies add extra complexity to the task by discarding a certain number of pieces, distorting the 
geometry of some pieces, and changing the color scheme or adding noise to some pieces [28–31, 34, 37, 38, 43, 44]. 
Regarding limitations in the area, many works are limited to square puzzles, where the tests are often restricted to puz-
zles with only a few pieces [45]. These approaches are not adequate for the Tangram because they rely heavily on the 
semantic information contained in each piece to assemble the puzzle. Unlike square jigsaw puzzles, Tangram pieces have 
distinct geometries, and mapping every possible placement for each piece in the puzzle is impracticable in a reasonable 
time. Still in contrast to jigsaw puzzles, the Tangram does not suffer from the issue where the output image often does 
not accurately represent the rearranged input pieces, as the textureless nature presented by the Tangram eliminates the 
need for forming a coherent picture in the solution.

The literature shows that there are two distinct approaches to modeling and solving the Tangram. Some authors treat 
the puzzle as a sectioning problem [22, 23] where they attempt to section the pattern into the desired pieces. Other 
authors treat it as a placement problem [8, 10, 13, 20, 21] where the main idea is to find the exact position of the pieces 
that form the desired pattern. Both approaches are valid given the rules and goal for assembling Tangram puzzles. In this 
paper, we opt for using a visual representation of the Tangram, where the aim is for the deep-learning models to learn 
the right places to section the input pattern, thus outputting an image that depicts a Tangram solution.

3 � Dataset

Large training datasets and deep complex structures enhance the ability of deep-learning models to learn effective rep-
resentations for tasks of interest [46]. If the model is fed with poor or insufficient data, it might be unable to generalize 
accurately [47]. In this scenario, even though it can make accurate predictions for previously seen training data, when 
tested for new data there is a risk that it will infer inaccurate predictions. Therefore, when assembling a data-driven data-
set, it is important to ensure that it contains a diverse and representative set of samples that are accurately consistent 
with the task of interest. This is especially important for Tangram puzzles since each piece can assume an uncountable 
number of configurations, resulting in a wide variety of different patterns that can be formed with these pieces.

The challenge in assembling a Tangram dataset lies in determining the adequate number and variability of samples 
essential for achieving generalization. Consequently, our approach involves not only gathering samples from existing 
literature but also supplementing the dataset with additional randomly generated samples. Therefore, we collect these 
data for 182 puzzles from the literature, and 752 randomly generated puzzles, thus accounting for 934 samples. To gen-
erate random samples, we use a random Tangram generator implemented in Javascript by Köpp [48]. The inclusion of 
random samples serves to augment the variability in our data-driven dataset, aiding the model in learning the intricate 
geometry of Tangram pieces and understanding their interactions to form different arrangements.

Each sample is composed of a 256 × 256 grayscale image depicting the puzzle and a 256 × 256 grayscale image rep-
resenting a single feasible solution as its ground truth. We consider that this size is sufficient for clearly depicting the 
pixels that represent the sections between pieces, thus enabling the deep-learning models to learn how to determine 
where the puzzle should be cut to generate a solution. Figure 3 depicts the samples of our dataset.

We guarantee that our data puzzles have a similar area by making the pieces the same size. This aspect of our dataset 
benefits the model convergence since it reduces the necessity of the model to estimate the size of the pieces during the 
assembly process. We split our dataset into 888 samples for the training set and 46 samples for the testing set, which 
results in an approximate 95:5 split ratio.

Our dataset is available in our Github repository [49], serving as a useful resource for research and evaluation in dis-
section puzzles, as well as related optimization problems. To the best of our knowledge, our dataset is the most extensive 
in the literature regarding the automatic solution of Tangram puzzles.
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4 � Tangram solvers based on autoencoders

The input of the implemented architectures is 256 × 256 grayscale images. The output also follows the same pattern. 
Figure 4 presents a flowchart illustrating the workflow of our training approach. The deep-learning architecture block 
can be substituted by any of the architectures described in Sect. 4.1. It is worth mentioning that this process is done only 
for the training to increase the variability of our data.

For each iteration, an input batch is selected from our dataset. Then, Gaussian noise is applied on the input batch 
images as a form of regularization to prevent overfitting and to encourage the model to learn more robust features [50]. 
We also use online dataset augmentation on the input batch to further improve the accuracy and robustness of the 
model [51]. By definition, any pattern formed by the seven Tangram pieces is a Tangram puzzle, thus we take advantage 
of this concept to create variations of the samples we consider in our dataset. We apply a random rotation to the input 
batch images, ensuring the rotation angle stands at a multiple of 90o . We also randomly reflect the image in the vertical 
and horizontal axis.

4.1 � Network architectures

Figure 5 presents the deep-learning architectures we use in the present study. A detailed description over the imple-
mentation of these architectures is available in our Github repository [49].

4.1.1 � CAE architecture

The concept of autoencoders, including CAE, has a history dating back to the early days of artificial neural networks. 
Autoencoders, in their basic form, were proposed in the 1980 s as a neural network architecture for dimensionality 

Fig. 3   Samples included in 
our dataset. First row presents 
the Tangram patterns, and 
second row presents their 
respective ground truth solu-
tions

Fig. 4   Testbed workflow. 
Gaussian noise and data 
augmentation are applied on 
each batch before inputting 
it into the deep-learning 
architecture
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reduction and feature learning. They were initially used for visual tasks, including data compression and noise reduc-
tion [52].

In the CAE architecture presented in Fig. 5a, the primary objective is to section the Tangram pattern following 
the contour of each piece, therefore revealing the final solution as an image. The CAE model consists of an encoder 
network that extracts informative features from the Tangram pattern, followed by a decoder network that constructs 
the Tangram solution. The CAE architecture we implement counts with 8 convolutional layers in the encoder, and 8 
deconvolutional layers in the decoder, which permit the network to capture intricate details in both the encoding and 
decoding stages. In the encoder phase, the network gradually diminishes the feature map dimensions, initiating from 
(256, 256, 1) and concluding at (4, 4, 48). The encoder component of the CAE is composed of a sequence of convolu-
tional layers, each complemented by batch normalization and LeakyReLU activation functions. The encoder should 
extract intricate image structures and patterns while simultaneously reducing the dimensionality of the input data.

On the other side of the CAE, the decoder phase mirrors the structure of the encoder, incrementally expanding the 
encoded feature maps back to (256, 256, 1). Composed of transposed convolutional layers, the decoder constructs 
the Tangram solution from the latent representation generated by the encoder. Aiming for generalization, dropout, 
and batch normalization techniques are also integrated into the decoder. These techniques ensure the CAE learns 
to adapt to various scenarios while maintaining robustness. The CAE encompasses a total of 3,115,301 parameters, 
of which 3,113,859 are trainable, and 1,442 are non-trainable.

Fig. 5   Diagrams illustrating the deep-learning architectures we employed in our study. Each layer type is assigned a different color. a Dia-
gram of CAE architecture: it consists of an encoder and a decoder with a latent space connecting them. b Diagram of VAE architecture: it 
consists of an encoder and a decoder with a stochastic latent space connecting them. c Diagram of U-Net architecture: this architecture 
presents a U-shaped design, which consists of a contracting path and an expansive path
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4.1.2 � VAE architecture

The VAE architecture, introduced by Kingma and Welling [15], combines the principles of autoencoders and probabilistic 
graphical models to perform unsupervised learning and generate data that adheres to a specific probability distribu-
tion, typically a Gaussian distribution in the latent space. This approach allows for more structured and controllable data 
generation, making this architecture particularly well-suited for tasks such as image generation, data denoising, and 
generating novel samples from learned representations.

The VAE architecture presented in Fig. 5b is specifically designed to extract meaningful latent representations from 
the Tangram pattern images while enabling the generation of Tangram solution images from these learned representa-
tions. Similarly to the CAE, the model is composed of an encoder and a decoder. The VAE architecture we employ con-
sists of a total of 22 layers, including 11 convolutional and 11 deconvolutional layers. In the encoder phase, the network 
progressively reduces the feature map dimensions, starting from (256, 256, 1) and ending at (2, 2, 48). The encoder 
processes Tangram pattern images through a sequence of convolutional layers, each followed by batch normalization 
and LeakyReLU activation functions. This architecture allows the encoder to discern intricate patterns and features 
within the input images while simultaneously reducing the dimensionality. This ultimately results in a condensed latent 
representation. The VAE incorporates two additional dense layers, at the end of the encoder to facilitate the stochastic 
nature of VAEs, determining the statistical properties of our latent space [53]. Subsequently, a sampling operation is 
applied to generate latent vectors that follow a Gaussian distribution, using the mean and log-variance computed by 
the dense layers. We sample from a single Gaussian distribution for each input in the batch. The decoder phase mirrors 
the encoder, incrementally expanding the feature maps back to (256, 256, 1).

The decoder employs transposed convolutional layers to upsample the latent vectors back into image dimensions, 
forming the Tangram solution image from the latent space representations. Batch normalization and LeakyReLU activa-
tion functions complement the transposed convolutional layers. Ultimately, the output layer of the decoder produces 
Tangram solution images that are the same size and channel depth as the input Tangram pattern images. The VAE encom-
passes a total of 3,060,297 parameters, with 3,058,855 being trainable and 1,442 non-trainable parameters. Similarly to 
CAE, the VAE architecture also aims to minimize a loss function throughout the training process.

4.1.3 � U‑Net architecture

The U-Net architecture, introduced by Ronneberger et al. [16], is a U-shaped architecture, consisting of a contracting 
path for feature extraction and an expansive path for precise pixel-wise segmentation. U-Net is widely used for semantic 
segmentation tasks, particularly in the field of biomedical image analysis. It is also acclaimed for its ability to capture 
fine-grained details in images.

The U-Net architecture presented in Fig. 5c is characterized by its symmetric encoder-decoder structure, which ena-
bles it to capture intricate image features while preserving spatial information [54]. The U-Net comprises a total of 29 
layers, including 14 convolutional layers and 15 deconvolutional layers. It starts with an input shape of (256, 256, 1) and 
progressively reduces the feature map dimensions through the use of max-pooling layers, resulting in a feature map size 
of (32, 32, 512). Each block of the contracting path consists of two consecutive convolutional layers, followed by batch 
normalization and ReLU activation functions. The pooling layers, interspersed between these blocks, progressively reduce 
the spatial dimensions of the feature maps, facilitating the extraction of hierarchical features.

Subsequently, deconvolutional layers are employed to increase the feature map dimensions back to (256, 256, 1). 
The architecture strategically incorporates concatenation layers to merge feature maps from both the contracting and 
expanding paths, ensuring a detailed and accurate representation. In total, the U-Net architecture presents 7,788,929 
parameters, with 7,785,345 of them being trainable and 3584 non-trainable.

4.2 � Loss functions

We use the following loss functions in our experiments: (1) mean square error ( LossMSE ), and (2) structural similarity 
( LossSSIM ). The LossMSE encourages the model to minimize the magnitude of errors, making it suitable for tasks where 
precise numeric predictions are essential. In our case, it is desired to obtain a solution where the area covered by pieces is 
easily distinguishable from the background and sections between pieces. LossSSIM is a perceptual loss function designed 
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for image processing applications. It evaluates the structural similarity between the generated and reference images, 
considering luminance, contrast, and structure. LossSSIM encourages the model to produce visually similar outputs, mak-
ing it valuable in image generation and restoration tasks where perceptual quality is critical.

4.2.1 � Mean square error loss function

MSE, a commonly used loss function in image reconstruction tasks, measures the pixel-wise discrepancy between pre-
dicted and ground truth images. The literature suggests that MSE tends to prioritize pixel-level accuracy, which may 
produce visually unsatisfactory results, especially when dealing with complex image structures or textures [55]. The 
following formula presents MSE as a dissimilarity loss function:

where LossMSE(Ix , Iy) quantifies the dissimilarity between two images Ix and Iy . Since Ix and Iy have the same dimensions, 
MN represents the total number of pixels in these images, with M representing height and N representing width.

4.2.2 � Structural similarity loss function

SSIM is designed to capture not only pixel-level differences but also structural and perceptual similarities between images. 
It is expected that SSIM loss encourages the preservation of structural information and leads to visually more pleasing 
reconstructions [56]. The SSIM calculation is done as follows:

where SSIM(Ix , Iy) calculates the similarity between images Ix and Iy . Variables �x and �y represent the means of the pixel 
intensities in images Ix and Iy , respectively. Additionally, �2

x
 and �2

y
 correspond to the variances of pixel intensities in 

images Ix and Iy , while �xy denotes the covariance of pixel intensities between these two images. The constants C1 and 
C2 are small values introduced to prevent division by zero errors and enhance the stability of the loss calculation.

Since we are working with dissimilarity metrics, and SSIM calculates a ratio expressing the similarity of a pair of images, 
we need to adapt it to transform it into a loss function:

where LossSSIM(Ix , Iy) calculates the similarity between images Ix and Iy based on the SSIM metric.

4.3 � Evaluation metrics

For evaluating the performance of our architectures, we use the following evaluation metrics: (1) MSE and (2) SSIM met-
rics. Our objective is to analyze if conventional metrics based on pixel accuracy are effective in evaluating the performance 
of deep-learning models that aim to solve Tangram puzzles. For SSIM, we use the adapted calculation that transforms it 
into a metric of dissimilarity, so it can be compared to the other two evaluation metrics. Therefore, the formula for MSE 
and SSIM are analogous to the ones described by Eqs. (1) and (3), respectively. Our hypothesis is that conventional met-
rics fall short in capturing nuanced aspects when comparing the Tangram solution images with ground truth images. 
Since Tangram pattern images are visually similar to the ground truth images, the generated solution images also end 
up presenting a close visual resemblance to the ground truth image. This may happen even when the obtained solution 
is not correct, thus making it difficult to differentiate a correct solution from an incorrect one.

4.4 � Experimental results

The architectures are implemented in Python 3.9.12 using Tensorflow 2.11.0 library. We run all tests on a Ryzen 3700x 
3.6GHz 32GB of RAM with a Nvidia RTX 4090 24GB.

(1)LossMSE(Ix , Iy) =
1

MN

M∑
i=1

N∑
j=1

(Ix(i, j) − Iy(i, j))
2,

(2)SSIM(Ix , Iy) =
(2�x�y + C1)(2�xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

,

(3)LossSSIM(Ix , Iy) = 1 − SSIM(Ix , Iy),
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We start by analyzing the loss curves generated throughout the training stage. Figure 6 presents the loss curves for 
the CAE, VAE, and U-Net when they are submitted to LossMSE and LossSSIM . The three models converge after a few hundred 
epochs. The validation curves for U-Net present a significant oscillation in early training stages. This is due to the total 
number of parameters of this architecture being more than double when compared to CAE and VAE. In early stages of 
training, U-Net is still adjusting its parameters searching for a fair representation of the data. These random fluctuations 
lead to oscillations in the validation loss curve as the model searches for optimal parameters.

Additionally, we inspect the output solutions of our trained models when submitted to our testing set and analyze the 
visual quality of the generated solutions according to conventional metrics based on pixel accuracy. Table 1 shows the 
results we obtained for our experiments over the aforementioned evaluation metrics and Fig. 7 presents 15 inferences 
of the trained CAE, VAE, and U-Net on our testing set when combined with LossMSE and LossSSIM . The first two columns 
in Table 1 define the evaluation metric and the architecture for each experiment. The next two columns present the 
average values for LossMSE and LossSSIM . It is worth noticing that the models apply the same technique of segmenting 
the Tangram puzzle area following a triangular grid before deciding the sections that represent the contact between 
pieces as shown in Fig. 7. The employed strategy aligns with a geometrical property of Tangram pieces, which tells that 
they can all be decomposed as a combination of the small triangular piece [5, 57]. Therefore, the models can learn this 
property even though it is not directly informed to them, which indicates that they can extract valuable information 
regarding the geometry of the pieces.

Table 1 shows that for MSE evaluation metric, the architecture that presented the best performance is CAE. Although 
CAE is the architecture that paired up the best with LossMSE , this combination does not present a clear definition of the 
sections between pieces and contains several blurred section lines that compromise defining the correct position of the 

Fig. 6   Training and valida-
tion loss curves for the CAE, 
VAE, and U-Net when they 
are submitted to LossMSE and 
LossSSIM . Training loss graphs 
present smooth curves for 
all architectures. Validation 
curves for U-Net fluctuate in 
early training epochs due to 
parameter adjustment

Table 1   Experimental 
results according to 
evaluation metrics. The best 
combinations of architecture 
and loss function for each 
evaluation metric are 
highlighted

Evaluation Metric Architecture LossMSE LossSSIM

MSE CAE 0.0377 0.0559
VAE 0.0415 0.0578
U-Net 0.0579 0.0582

SSIM CAE 0.1568 0.0548
VAE 0.1622 0.0547
U-Net 0.0653 0.0569
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pieces. For LossMSE , it tends to produce overly smooth and blurred results in the context of generative models as shown 
in Fig. 7. This occurs because LossMSE is sensitive to both small and large errors, which places equal emphasis on all pixels.

SSIM evaluation metric considers that VAE presented the best performance, although CAE closely matches it. However, 
from Fig. 7, we notice that both CAE and VAE perform poorly when combined with LossSSIM . Additionally, it is possible to 
notice that LossSSIM performs poorly in identifying the correct sections between pieces, thus generating solution images 
closer to an initial pattern than to a proper solution. In our experiments, we use images with only black and white pixels. 
It is known that LossSSIM may not effectively capture the subtle structural differences in such images, since it relies on 
local patterns and variations in pixel values to assess their visual similarity [56]. In those experiments, the models miss a 
considerable amount of sections between pieces, generating an output solution that shares more visual similarities with 
a Tangram pattern than a Tangram solution. To further support our claim, Fig. 8 shows cases where the MSE and SSIM 
metrics fail to correctly indicate the visual quality of a solution. In the example presented in the first row, it is clear that 
even though SSIM suggests that the solution image (b) is more similar to the ground truth (a), it is easier to identify the 
position of the Tangram pieces by looking at the solution image (c). The same can be said about the example presented 
in the second row, where MSE fails to identify that the image solution (f ) presents more consistent sections than (e) 
when compared to ground truth (d).

Fig. 7   Solution images generated by CAE, VAE, and U-Net paired with LossMSE and LossSSIM

Fig. 8   Cases where SSIM and 
MSE fail in evaluating pairs of 
Tangram solutions. a ground 
truth; b Generated using 
U-Net with LossSSIM ; (c) Gener-
ated using CAE with LossMSE ; 
(d) ground truth; (e) Gener-
ated using U-Net with LossSSIM ; 
(f ) Generated using VAE with 
LossMSE
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When analyzing the generated Tangram solutions, an important consideration emerges when deciding between 
solutions that contain extra sections or those with missing ones. In this context, we prioritize solutions with additional 
sections over those with omissions. We believe that inferring the correct position of the pieces from an image with 
extra sections is considerably less challenging than discerning the precise location of missing cuts. This is especially 
true when the player has some familiarity with the Tangram pieces. We conclude that solution images with extra 
sections offer a greater degree of interpretability, therefore being closer to the correct solution, at least for the 
Tangram. Figure 9 presents a visualization of false positives and false negatives in solution images. False positive 
represents missing sections and false negative shows extra ones. A visual inspection on Fig. 7 shows that both CAE 
and VAE combined with LossMSE present extra sections rather than omissions, making it easier to infer the positions 
of the pieces. However, it is also possible to observe that the solutions generated by VAE are less blurry than the ones 
presented by CAE, making it easier to comprehend the inferences of the model towards the location of sections.

In summary, we observe that CAE, VAE, and U-Net architectures reveal the limitations of existing evaluation metrics 
in adequately preserving the perceivable geometrical properties of Tangram pieces. The conventional metrics fail to 
capture the nuanced intricacies of Tangram shapes, leading to suboptimal results. VAE, however, presents promising 
solutions by generating well-defined sections between pieces and presenting extra sections rather than omissions. 
Although LossMSE is sensitive to both small and large errors because it places equal emphasis on all pixels, LossMSE can 
generate an output solution that shares more visual similarities with a Tangram pattern than a Tangram solution com-
paring with LossSSIM which misses a considerable amount of sections between pieces. In response to this discussion, 
in the second part of our experiments, we propose a novel loss function and evaluation metric specifically designed 
for the perception of geometric characteristics of Tangram solutions. We aim to enhance the fidelity of our models 
in preserving the crucial geometrical properties of Tangram pieces in generated solutions. Since we cannot rely on 
conventional evaluation metrics to assess the generated solutions, through a visual inspection, we ultimately decide 
to employ a novel evaluation metric appropriate for the novel loss function and use VAE architecture as the generator 
of our GAN in the second stage of experiments. Our hypothesis is that, given the competitive relationship between 
the generator and discriminator, the discriminator indirectly guides the generator to make decisions towards which 
generated sections should be retained to represent the boundaries of Tangram pieces. Consequently, it is expected 
that VAE-GAN will produce solutions that visually closely resemble real Tangram solutions.

Fig. 9   Visualization of false 
positives and false negatives 
in solution images. Solution 
images were generated using 
CAE, VAE, and U-Net with 
LossMSE and LossSSIM . Values are 
normalized by the number 
of pixels in pieces sections 
presented in black in the 
ground truth
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5 � VAE‑GAN model for refinement of tangram geometry perception

The workflow of the second part of experiments is analogous to the flowchart presented in Fig. 4. The input is com-
posed of 256 × 256 grayscale images. The output also follows the same pattern. The deep-learning architecture is 
substituted by our VAE-GAN architecture. We employ Gaussian noise and online data augmentation to improve the 
robustness of our model.

5.1 � Network architecture

GAN is a class of generative models introduced in 2014 by Goodfellow et al. [17]. It started being used in 2017 with 
human faces to adopt image enhancement that produces better illustrations at high intensity [58, 59]. A basic GAN 
architecture is formed by a generator and a discriminator. These are typically implemented using neural networks 
but could be implemented using any form of differentiable system that maps data from one space to another [60]. 
As previously mentioned, we implement a VAE-GAN using the aforementioned VAE architecture combined with our 
discriminator, which is detailed in the following paragraphs. Figure 10 presents the generator and the discriminator 
we employ. A detailed description of the implementation of these architectures is available in our Github repository 
[49]. Our discriminator comprises multiple convolutional layers, progressively increasing the number of filters. This 
depth allows the network to capture intricate and hierarchical features within input images, making it highly effec-
tive for discerning ground truth from fake images [60].

The GAN discriminator architecture we implement is presented in Fig. 10b, consisting of a total of 8,276,801 param-
eters, with 8,273,217 parameters being trainable and 3584 non-trainable parameters. The network begins with two 
input layers for image pairs with shapes (256, 256, 1), which are concatenated into a single (256, 256, 2) input. The 
network aims at successively reducing the spatial dimensions of feature maps as it processes images, allowing it to 
focus on capturing abstract and high-level features for image discrimination. To accomplish that, a series of convo-
lutional layers progressively reduce the feature map dimensions from (256, 256, 2) to (4, 4, 512). Batch normalization 
and LeakyReLU activation functions are applied at each convolutional layer. Batch normalization technique accel-
erates convergence, mitigates gradient-related issues, and enhances the overall robustness. LeakyReLU facilitates 
faster convergence during training, and introduces non-linearity, enabling the network to learn complex decision 

Fig. 10   Diagrams illustrating components of our GAN architecture we employed in our study. Each layer type is assigned a different color. 
a Diagram of VAE-based generator: it consists of an encoder and a decoder with a stochastic latent space connecting them; b Diagram of 
discriminator: as the data progresses through the network, it reduces the spatial dimensions and abstracts the information, and it ends in a 
sigmoid activation function that determines if the input is fake or not
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boundaries and critical aspect of distinguishing real and fake images. The final convolutional layer reduces the feature 
maps to (4, 4, 1). A sigmoid activation function in the output layer squashes the output into a boolean value, which 
indicates if the input either is a generated solution or a ground truth.

5.2 � Weighted mean absolute error loss function

Weighted Mean Absolute Error (WMAE) is a variation of Mean Absolute Error (MAE), with different elements of the 
error being assigned distinct weights based on their sign and magnitude. It takes inspiration from other versions of 
weighted versions of MAE [61, 62]. It also mixes these inspirations with Weighted Mean Squared Error [63]. In WMAE, 
positive errors are scaled by a factor of c, while negative errors are treated with a weight of 1. Its concept is inspired 
by our observation that LossMSE demonstrates promising results in the task of segmenting Tangram patterns into 
distinct pieces. However, the sections produced by LossMSE tend to be blurry and poorly defined. This inspire us to 
implement LossWMAE , a loss function based on WMAE, designed to enhance the precision and clarity of sections by 
assigning variable weights to false positive and false negative errors.

First, both input images Ix and Iy of the same dimensions are normalized to a range between 0 and 1. Their normal-
ized counterparts are defined as Inorm

x
 and Inorm

y
 respectively. Thus, we have the conditions that 0 ≤ I

norm
x

(i, j) ≤ 1 and 
0 ≤ I

norm
y

(i, j) ≤ 1 for every coordinate (i, j) present in Inorm
x

 and Inorm
y

 . Then, the absolute difference between them, 
denoted as Δ , is calculated element-wise following the Euclidean norm:

The next stage is the conditional weighting step. Elements of Δ are analyzed, and weight term W given by:

With the conditional weight in place, the WMAE loss function computes the weighted absolute error, L, by element-wise 
multiplication of the absolute error Δ and the conditional weights W:

Finally, the following equation treats WMAE as a dissimilarity loss function:

In summary, LossWMAE attributes a bigger weight when a pixel that is black is assigned as white, than when the opposite 
occurs. Doing so, the loss prioritizes the pixels that represent the section between pieces over pixels that represent the 
area covered by pieces. It is designed to impose a higher penalty on false positives compared to false negatives, which 
are illustrated in Fig. 9.

5.3 � Weighted mean absolute error evaluation metric

We extend the utility of LossWMAE by re-purposing it as an evaluation metric. By employing the same loss function for 
assessment, we establish a unified and consistent approach to both training and evaluating our generated solutions. 
When the metric used for evaluation mirrors the criteria set during training, it ensures that the evaluation process 
accurately reflects the objectives and criteria that guided the model during training. Thus, our WMAE evaluation 
metric follows Eq. (7). Our hypothesis is that our WMAE metric is better aligned with the task of evaluating Tangram 
solutions than traditional metrics, such as MSE and SSIM.

(4)Δ = ‖Inorm
y

− Inorm
x

‖2.

(5)W =

⎧
⎪⎨⎪⎩

I
norm
y

⋅ c + 1, ifΔ > 0

1, ifΔ < 0

0, otherwise.

(6)L = |W ⋅ Δ|.

(7)LossWMAE(Ix , Iy) =
1

MN

M∑
i=1

N∑
j=1

L(i, j).
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5.4 � Experimental results

The VAE-GAN architecture is also implemented by the same environment described in Sect. 4.4. We perform experi-
ments using the VAE-GAN combined with LossWMAE to show the efficiency of our architecture. Figure 11 depicts the 
training process of VAE-GAN. It can be noticed an abrupt decrease in training and validation loss curves in early stages 
of training, while for the generator loss curve, the decrease is more gradual. Comparing Figs. 6 and 11, we observe 
that VAE-GAN converges faster than the previous architectures and that the VAE-based generator is in fact learning 
from the judgment of the discriminator. It is also possible to notice that, although the VAE-GAN is using LossWMAE , 
we do not observe the fluctuations in the validation curve that are shown in the first part of our experiments. This 
shows that the discriminator regularizes the training process and leads to smoother loss curves for the VAE-based 
generator. In other words, it clearly indicates that the incorporation of a discriminator is beneficial because the com-
petitive nature of the GAN stabilizes the training dynamics of the VAE-based generator, making it less susceptible to 
fluctuations compared to a standalone model.

To support our claim that LossWMAE is better suited for solving Tangram puzzles than LossMSE and LossSSIM , we 
extended our experiments to architectures CAE, VAE, and U-Net. This extension enables the validation towards the 
effectiveness of LossWMAE across a diverse range of architectures. Thus, Fig. 12 presents 15 inferences of the trained 
CAE, VAE, and U-Net on our testing set when combined with LossWMAE . We also compare these solutions with the 
ones generated by CAE with Loss MSE and VAE with LossSSIM . This pair of combinations are the ones that MSE and SSIM 
metrics judged presenting the best performance in Sect. 4. We notice that the solutions generated using LossWMAE 
present better defined sections when compared to the solutions generated by CAE with Loss MSE and VAE with 

Fig. 11   Training, validation, and generator loss curves for VAE-GAN. Smooth curves indicate effective learning and stable convergence

Fig. 12   Solution images generated by CAE, VAE, U-Net, and VAE-GAN paired with Loss
WMAE
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LossSSIM . Also, when compared to the standalone VAE, VAE-GAN generates solutions that are closer to the expected 
ground truth. This shows that the discriminator successfully fulfills its role of pushing the VAE-based generator to 
produce images that are closer to real Tangram solutions.

We notice that LossWMAE presents better qualitative results than the other loss functions. It tends to generate clear 
extra sections than omissions, making it easier to infer the positions of the pieces. Additionally, VAE-GAN presents solu-
tions similar to the ones by VAE, but with fewer extra sections, thus showing that it discerns better which sections are 
necessary to form a solution image for Tangram. Even when the sections between pieces are not perfectly depicted in the 
solution image, a human with familiarity with the Tangram pieces would be capable of inferring the correct position and 
configuration of the pieces. Furthermore, the tenth column of the figure shows a case where the generated solution by 
VAE-GAN is feasible, although different from the ground truth, indicating that VAE-GAN can learn geometric features of 
the Tangram pieces. Figure 13 presents a visualization of false positives and false negatives in solutions generated for the 
same Tangram pattern. The ratio of false negatives in (e) is noticeably lower than the same ratio in (c). This indicates that 
the incorporation of the discriminator into VAE, resulting in VAE-GAN, leads to a significant improvement in the model 
toward discerning which sections are necessary to form a solution image for Tangram. Moreover, a comparison with Fig. 9 
reveals that the ratio of false positives reduces expressively with LossWMAE . For the presented scenarios, the ratio of false 
positives for VAE with LossWMAE is close to 1/10 of the ratios obtained for LossMSE and LossSSIM . These observations align 
with our hypothesis regarding the effects of VAE-GAN and LossWMAE on the generated solutions.

Fig. 13   Visualization of false 
positives and false negatives 
in solution images. Solution 
images generated using CAE, 
VAE, U-Net, and VAE-GAN with 
Loss

WMAE
 . Values are normal-

ized by the number of pixels 
in pieces sections presented 
in black in the ground truth

Table 2   Experimental 
results according to WMAE 
evaluation metric

The best architecture according to the WMAE metric and shortest inference time are highlighted

Achitecture WMAE Metric Inference Time

CAE 0.0309 0.01377s
VAE 0.0304 0.01507s
U-Net 0.0333 0.01070s
VAE-GAN 0.0270 0.04193s
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Table 2 shows the results for our experiments over the proposed WMAE evaluation metric. We use LossWMAE for 
all performed experiments. The first column defines the architecture used in each experiment. The second column 
presents average values for the WMAE evaluation metric. Finally, the last column shows the average inference time 
each model took to generate the solutions. The results suggest that the WMAE metric is better aligned with the 
nuances present in Tangram solutions than traditional metrics, such as MSE and SSIM.

As we observe in Fig. 12, solutions generated by VAE-GAN are clear and insightful for determining the correct 
position and configuration of the Tangram pieces, while U-Net presents incomplete sections, resulting in poor visual 
performance. These qualitative results closely align with the values shown in the table, since the WMAE metric con-
siders VAE-GAN as the best architecture, and U-Net as the worst one in the visual quality of generated solutions. 
Moreover, the WMAE tells that the visual quality of the solutions generated by both CAE and VAE is similar, which 
can also be perceived by their generated solutions. Although the average inference time for VAE-GAN is consider-
ably higher than the other standalone architectures, we consider that this is not a prohibitive limitation, given the 
notable improvements in solution quality.

It is evident that LossWMAE consistently delivers superior qualitative results when compared to the alternative 
loss functions LossMSE and LossSSIM . Its preference for generating clear additional sections, rather than omissions, not 
only enhances the visual quality of the solutions but also significantly facilitates the inference of piece positions. 
Regarding the employed evaluation metrics, while MSE and SSIM serve as common benchmarks, they often fall short 
in capturing the nuanced characteristics of a Tangram solution. WMAE evaluation metric demonstrates a superior 
capacity in assessing the visual quality of Tangram solutions. By assigning priority to the pixel values representing 
the sections between Tangram pieces, our metric surpasses the limitations associated with conventional methods, 
thereby providing a more precise evaluation of Tangram solutions.

Finally, we conduct an experiment to address the influence of the coefficient c on the LossWMAE . We vary the value 
of this coefficient in a large range of values, doing so we can assess its impact on the VAE-GAN performance. Table 3 
shows the results of this experiment over the proposed WMAE metric. The first column presents the value used for 
c in LossWMAE . The second column presents the average values for WMAE evaluation metric. We do not consider the 
average inference time in this experiment because there are no expressive variations regarding this aspect.

The experiment shows that, although c = 50 presents a slightly better performance compared to the other consid-
ered values, the performance does not change expressively. The same behavior is expected for the WMAE evaluation 
metric eliminating the necessity of additional tests. Figure 14 presents examples of solutions generated by VAE-GAN 
for c = 50 and c = 5 in LossWMAE aiming at visual comparison.

It is possible to notice that, as the values in Table 3 suggest there is not considerable visual difference considering 
this range for c in LossWMAE.

Table 3   Experimental results 
varying coefficient c in 
Loss

WMAE
 according to WMAE 

evaluation metric

All experiments use VAE-GAN

The best value for c according to the WMAE metric is highlighted

Coefficient c WMAE Metric

1 0.0273
2 0.0278
5 0.0270
10 0.0277
50 0.0268
100 0.0273
500 0.0273
1000 0.0273
5000 0.0276
10000 0.0272
50000 0.0271
100000 0.0275
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6 � Conclusions

In this paper, we approach the use of deep-learning models for solving Tangram puzzles. At a first moment, we imple-
mented three deep-learning architectures for this task: CAE, VAE, and U-Net. In our experiments, we varied the loss 
function among LossMSE and LossSSIM to determine which architecture performs best in solving Tangram puzzles. To 
evaluate the generated solution images, we used MSE and SSIM, which are traditional metrics that are based on pixel 
accuracy. We showed that these metrics fail in properly evaluating the generated Tangram solutions. We observed 
that VAE outperforms CAE and U-Net regarding the visual quality of the generated Tangram solutions. After this first 
round of tests, we implemented a VAE-GAN architecture by combining the VAE architecture with a discriminator. 
Integrated with the VAE-GAN, we implemented a new loss function that was designed for our task. We further pro-
pose a novel evaluation metric that has proven more efficient in assessing the visual quality of generated Tangram 
solutions. We analyzed the results and presented a detailed comparative analysis of the capabilities of deep-learning 
architectures in automatizing the solution of the Tangram.

Experimental results indicate the models employed a similar approach to segment the Tangram pattern into 
pieces. This approach consists of segmenting the puzzle area following a triangular grid, and then eliminating seg-
ments that do not represent the contact between pieces. This strategy aligns well with a particularity of the Tangram 
pieces, that tells that they can all be decomposed into small triangles [57]. This shows that the models were able to 
learn the geometrical properties of Tangram pieces even when these properties were not directly informed to them. 
Although conventional evaluation metrics were proven not adequate for determining the visual quality of Tangram 
solutions, a visual examination revealed that VAE exhibited promising results as it produced well-defined sections 
between pieces, and favored generating additional sections rather than omissions. Our preference for solutions 
with extra sections aligns with the principle that they are more insightful in the context of interpretation of Tangram 
puzzles. In line with this perspective, we proposed LossWMAE , which is a loss function that gives higher importance 
to pixels representing sections between pieces rather than pixels covered by pieces. We expanded the usage of this 
loss function to propose the WMAE evaluation metric, aiming at presenting a metric that is better aligned with the 
task of evaluating Tangram solutions than the aforementioned conventional evaluation metrics. Solutions generated 
by VAE-GAN combined with LossWMAE were clear and insightful for determining the correct position and configura-
tion of the Tangram pieces. The discriminator supports regularization in the training process and leads to smoother 
loss curves for the generator. Our experiments indicate that VAE-GAN architecture is the most robust choice among 
the considered architectures, showing stable convergence and strong generalization skills. At the conclusion of 
our experiments, we applied the WMAE metric to evaluate the performance of our architectures, demonstrating 
its ability to overcome limitations associated with conventional metrics and, consequently, deliver a more accurate 
assessment of Tangram solutions. Therefore, we conclude that deep-learning techniques are applicable to the task 
of solving Tangram puzzles.

This study serves as a basis for future research on application of artificial intelligence in complex geometrical 
problem domains. As future works, our priority is to implement a more robust model capable of not only accurately 
segmenting Tangram pieces but also focusing on further extracting their geometric features. This is extremely impor-
tant for the model to be able to comprehend the different forms the Tangram pieces can interact. We also aim at 
constructing a larger data-driven dataset. The literature shows that different authors often consider only a limited 

Fig. 14   Solution images generated by VAE-GAN paired with Loss
WMAE

 considering coefficient c equal to 50 and 5



Vol:.(1234567890)

Research	 Discover Artificial Intelligence            (2024) 4:12  | https://doi.org/10.1007/s44163-024-00107-6

set of patterns in their experiments, which varies considerably from work to work. We believe that deep-learning 
models could benefit from having access to a larger variety of Tangram puzzles during the training stage. We also 
consider that a data-driven dataset would serve as a valuable resource for future research concerning the solution 
of dissection puzzles, as well as related optimization problems.
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