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Abstract
Developing AI systems for automatic train operation (ATO) requires developers to have a deep understanding of the 
human tasks they are trying to replace. This paper fills this gap and translates the regulatory requirements from the 
context of German railways for the AI developer community. As a result, tasks such as train’s path monitoring for colli-
sion prediction, signal detection, door operation, etc. are identified. Based on this analysis, a functionally justified sen-
sor setup with detailed configuration requirements is presented. This setup was also evaluated by a survey within the 
railway industry. The evaluated sensors include RGB/IR cameras, LIDARs, radars and ultrasonic sensors. Calculations and 
estimates for the evaluated sensors are presented graphically and included in this paper. However, the ultimate sensor 
setup is still a subject of research. The results of this paper also address the lack of training and test datasets for railway 
AI systems. It is proposed to acquire research datasets that will allow the training of domain adaptation algorithms to 
transform other datasets, thus increasing the number of available datasets. The sensor setup is also recommended for 
such research datasets.

Keywords Automatic train operation · ATO · GoA3 · GoA4 · Perception · AI

1 Introduction

ATO is already demonstrating its potential to improve punctuality, flexibility and capacity, for example in metro services 
on isolated tracks. The benefits and importance of driverless operation for the rail industry are well known [1]. In order 
for rail traffic to make the necessary contributions to meet climate change targets in the future, while at the same time 
becoming more efficient and flexible and able to carry more passengers and freight, the introduction of ATO is also 
necessary for mainline rail traffic on open tracks [1]. The core aspect of driverless ATO systems is that today’s tasks of 
the train driver, including the detection of obstacles during journeys as well as the detection of operational hazards, 
are transferred to a technical system. The development process of such perception systems requires appropriate data 
collection and (evaluation) algorithms, which in turn are obtained from real test and training data.

The classification of ATO systems is based on the Grade of Automation (GoA). This indicates which tasks are automated 
and which are not, i.e. are performed by a human. GoA4 requires neither a train driver nor attendant, so their tasks are 
performed by technical systems. At level GoA3, there is a train attendant, but no permanent train driver on duty. In GoA2, 
the driver is still responsible for the control and safety of the vehicle and monitors the route for obstacles and operational 
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hazards, while the driving itself is largely automated. This mode of operation is already being tested under ETCS in real 
operation as ATO-over-ETCS. Technical possibilities for the realization of higher GoA in future railway systems are cur-
rently being researched and implemented in various projects [2].

At higher levels of automation from GoA3 on (GoA3+), traction units for mainline railroad must be equipped with 
technical systems for the perception of their environment, i.e. perception systems. Such systems use cameras, LiDAR, radar 
sensors and their combinations whose (raw) data are algorithmically processed by appropriate methods. These methods 
also include machine learning (ML) or artificial intelligence (AI) approaches [3]. The development, evaluation, and safety 
verification of perception systems is carried out on the basis of real sensor data from rail operations. The requirements 
for such data, with regard to a subsequent safety approval, are high. This applies, among other things, to the coverage 
of operational areas as well as environmental and ambient conditions. In the automotive industry, extensive publicly 
available perception datasets from real traffic are accessible for research and development; for example, [4] cites about 
60 perception datasets in 2020 for road traffic [5–7, e.g.]. In 2020, there have been only 3 railroad perception datasets, i.e. 
RailSem19 [8], FRSign [9] and RAWPED [10]. The German Centre for Rail Traffic Research (DZSF) published the first open 
multi-sensory perception dataset OSDaR23 [11] for railroad in 2023, about a decade later than the first multi-sensory 
dataset was published for the automotive industry.

This paper is an extended version of the paper presented at the AI4Rails workshop [4] and is based on results of the 
DZSF-funded project “Sensor Technology as a Technical Prerequisite for ATO Functions” (German: “Sensorik als technis-
che Voraussetzung für ATO-Funktionen”) [12]. The additional material extending the paper from the AI4Rails workshop 
includes a short summary of related work in Sec. 2, more graphical content and tabular explanatory content as well as 
results of the survey. In particular, this paper provides an in-depth description of the locomotive and passenger car setups. 
Furthermore, the content of this article overlaps with a publication in a German magazine related to railroad technology, 
which is available only in German [13].

We start the main contribution in this paper with a brief overview of the key results of a requirement analysis of existing 
regulations for perception tasks of train drivers in Germany in Sec. 3. Subsequently, Sec. 4 presents how future AI applica-
tions introduce additional requirements for the diversity of an adequate sensor setup including research on domain gaps 
and their mitigation. Moreover, we summarize the results of an extensive railway industry survey on the expectations 
for perception systems in Sec. 5. These requirements and expectations culminate in a sensor setup that is proposed in 
Sec. 6 that is discussed with respect to various considered use cases for ATO, some of which are shown in Fig. 1. Finally, 
Sec. 7 draws the main conclusions from the results and provides an outlook on the necessary steps towards the provision 
of large scale and high quality open datasets for rail applications that meet the needs of modern AI and ML systems.

2  Related work

There are several projects related to the development of GoA3+ systems. The most relevant related projects are “Advanced 
integrated obstacle and track intrusion detection system for smart automation of rail transport” (SMART2) [16] and 
“Technologies for the AUtonomous Rail Operation” (TAURO) [17]. SMART2 focuses on research of on-board, trackside 
and airborne obstacle detection and track intrusion systems for railway trains. The aim of TAURO is to identify, analyze 
and finally propose suitable enabling technologies for the future European automated and autonomous rail transport 
beyond automated metros.

3  Requirements from existing regulations for perception tasks of train drivers in Germany

The analysis of the operational tasks of a train driver was based as much as possible on the operational rules of Deutsche 
Bahn AG, due to their easy availability. For the sake of simplicity, it was assumed that other railway companies operating 
in Germany on the network of the railway infrastructure company DB Netz AG use a similar set of operational rules and 
that the basic principles (in terms of protection objectives) should be the same. The following guidelines and manuals 
have been used: 

1. Driving Service Regulations [18]
2. Driver’s Manual of DB Fernverkehr AG [19]
3. Rule Book – basic part for employees in railway operations (incl. driving of traction units); DBREGIO-003 [20].
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4. Rule Book – basic part for employees in railway operation (incl. driving of traction units); DBCDE-003 [21].

The Driver’s Manual and the Rule Books contain the necessary supplements to the generally applicable train opera-
tion regulations for the respective railway companies, i.e. also the operational tasks for the driver. For the deriva-
tion of further requirements for the specification of the sensor system, in addition to the Railway Construction and 
Operation Regulations (German: “Eisenbahn-Bau- und Betriebsordnung”) [22] and the Railway Signaling Regula-
tions (German: “Eisenbahnsignalordnung”) [23], technical guidelines of the Deutsche Bahn AG as well as special 
standards were used.

The identified standard tasks or the smaller subtasks of a standard task, which require sensory perception by 
means of suitable ATO sensors, essentially determine the components of the measurement system and their spa-
tially distributed installation on the rail vehicle. The tasks are classified according to whether they can be fulfilled 
by conventional technical systems or whether ATO sensor technology (e.g. cameras, radar, GNSS) including cor-
responding perception algorithms are used. The focus is on enabling the most comprehensive data collection 
possible of real-world operational data via the sensor system to derive and provide test and training data for a 
perception system. The sensor setup has been evaluated on relevant use cases within these tasks and operational 
situations, as shown in Table 1.

Fig. 1  Examples of perception 
tasks considered. Localization 
of brake shoes at low speeds 
or during shunting (a). Detec-
tion of fouling point indicators 
(b). Comparison of flash LiDAR 
and rotating LiDAR for close 
to medium range perception 
during shunting (c). Object 
detection at high speed for 
different track geometries (b), 
where the indicated camera 
ranges refer to estimated limit 
of 32 pixels per object of size 
1 m for robust detection, as 
trainable on the CIFAR-10 [14] 
or ImageNet32 [15] datasets
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4  AI‑Specific requirements for training and testing data

After presenting requirements from existing regulations for train drivers as described in Sec. 3, AI-based applications, 
which will be highly relevant for the implementation of perception tasks, also introduce additional considerations. 
These applications are typically data-driven and hence require large amounts of data, which have to meet certain 
requirements. For example, the European AI Act states for high-risk AI systems:

Training, validation and testing data sets shall be relevant, representative, free of errors and complete. They 
shall have the appropriate statistical properties, [and] shall take into account, to the extent required by the 
intended purpose, the characteristics or elements that are particular to the specific geographical, behavioural 
or functional setting within which the high-risk AI system is intended to be used.— [24, p. 48]

These requirements for data-driven perception applications must be satisfied with respect to the observed scene 
and sensor characteristics. For example, different environmental conditions, such as lighting and weather, must be 
present in the datasets to allow a technical system to perform well in a diversity of situations. Similarly, different 
sensor characteristics influence the appearance of data, e.g. different camera spectral sensitivities or different LiDAR 
scan patterns as illustrated in Fig. 2 inhibit the direct transfer of ML models, that are trained on data with different 
sensor characteristics. This domain gap is addressed in several works to facilitate the portability of ML models by 
domain adaptation techniques [25, 26]. The same challenge occurs for camera sensors with different wavelengths, 

Table 1  Standard tasks and perception tasks [4, 12]

Checkmarks (✓) denote the applicability of a sensor to a task

RGB Color camera, IR infrared camera, LD LiDAR, RD radar, US ultrasonic sensor

Perception tasks Recommended sensors

RGB IR LD RD US

Standard task: shunting train
    Compliance with the permissible speed depending on the minimum visual range ✓ ✓ ✓
 Continuous determination of current location ✓ ✓
 Approaching a vehicle to be coupled ✓ ✓
 Detect end of own track (e.g. buffer stop) ✓ ✓ ✓ ✓

Standard task: observing track
 Identify path to be traveled on ✓ ✓ ✓ ✓
 Identify the minimum clearance outline of the own track within the path to be traveled on ✓ ✓ ✓ ✓
 Detecting objects on or next to the track ✓ ✓ ✓ ✓
 Detecting collision with objects classified as obstacles ✓ ✓ ✓ ✓
 Detecting collision with persons on the own track or the adjacent track for another vehicle ✓ ✓ ✓ ✓

Standard task: observing railway systems
 Observe signals—fixed signals in signal-guided train operation ✓ ✓
 Observe signals—observe signaling and react accordingly (to the rules and regulations) ✓ ✓
 Observe the track—detect damage and irregularities on the superstructure ✓ ✓
 Observe neighboring tracks—detect damage or irregularities in oncoming trains ✓ ✓ ✓
 Observe neighboring tracks—detect potential obstacles in the directly neighboring tracks ✓ ✓ ✓ ✓
 Observe catenary—detect damage and irregularities of the catenary ✓ ✓ ✓

Standard task: controlling passenger exchange
 Monitor conditions for the door opening and closing procedure ✓ ✓ ✓ ✓ ✓
 Prevent injuries to persons both between the individual vehicles in the train formation and 

between the vehicles and the platform edge
✓ ✓ ✓ ✓ ✓

 Detect persons and objects on the platform that are at an unacceptable distance to the pas-
senger outer doors when the doors are closed, as well as when the train is dispatched and 
departing

✓ ✓ ✓ ✓ ✓

Standard task: observing trains
 Detect displaced load ✓ ✓
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such as visible and infrared spectrum. In this case, captured images look different and domain adaptation methods 
try to bridge this gap between both modalities [27, 28]. These techniques for domain adaptation cannot only be 
employed for different sensor characteristics but also to reduce the gap under different environmental conditions. 
For example, deep learning-based generative adversarial networks (GANs) are used to transform images captured 
by a camera at night and during the day to adapt the images to the different environmental conditions [29, 30]. 
Moreover, domain adaptation methods are used when working with real and synthetic data to cope with the differ-
ent appearances [31, 32].

Although there is already work in the field of domain adaptation to deal with data from different sensor types, 
sensor poses, and environmental conditions, these approaches are currently insufficient for a safety-critical applica-
tion such as automatic train operation. This is mainly due to the fact that these methods have been developed for 
specific use cases and have not been evaluated on large datasets in the railway context. Moreover, state-of-the-art 
results as presented in the previous paragraph are often not optimal. Therefore, we propose to build a large dataset 
including annotation of data, which is collected by different sensor types and characteristics under different environ-
mental conditions. The annotation of data, which is necessary for supervised ML tasks (cf. also Sec. 5 and Fig. 3), poses 
another challenge due to the high time effort. For example, in the case of semantic segmentation, which requires 
annotation on pixel level, the time required can average up to 11∕2 h per frame for annotation and quality control [5].

5  Survey on expectations to perception systems

The design of sensor systems and the development and training of perception functions are subject to ongoing exten-
sive research. In various projects and prototypes, sensor systems are tested and the data is evaluated. A consensus 
on the type, amount, positions and specifications of the applied sensors is not yet established in the railway sector.

Hence the expectations of the sector and the experience have been gathered by means of a sector survey. A 
summary of this survey can also be found in [13] in German language. A total of 53 questions have been compiled 
concerning sensor types, applications, data management as well as safety and validation questions, and were kindly 
answered by members of 30 institutions, among them vehicle and sensor manufacturers, railway companies and R 
&D service providers. Also, a preliminary specification of the sensor system presented in this article was provided 
with a request for comments. The sensor system specification was then revised and enhanced based on the received 
remarks. A complete and detailed summary and evaluation of the survey can be found in [12].

The use of ATO GoA3+ is seen as having great potential due to the expected improvements in capacity, flexibility 
and safety. Applications in shunting and train composition were of particular interest. The perception tasks under 
different environmental conditions are generally considered to be the most challenging for sensors and algorithms.

LiDARs and radars are considered essential by the majority of the respondents, while further research is still 
necessary, as shown in Fig. 3. Solid state LiDARs are the preferred solution, while for LiDARs with rotating mirrors 
concerns were voiced about the reliability in the harsh railway environment. More generally, conformity issues to 

Fig. 2  Examples of domain 
variations [4, 12]: Differences 
in spectral sensitivity in RGB 
camera sensors (a) and beam 
steering patterns in LiDAR 
sensors (b)
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railway standards regarding shock, vibration, electromagnetic emissions or temperatures are considered a limiting 
factor for various sensors.

RGB cameras, infrared cameras, and even stereo cameras are also widely accepted. Camera data can help identify 
the detected objects if properly annotated training data is available. The right part of Fig. 3 shows that locating the 
objects is even more important to the community than identifying them. Most of the responding institutions do not 
have the capacity to collect and annotate the necessary data themselves. This underscores the need for a collabora-
tive database of ATO perception data.

6  Specification of a sensor system for ATO research and development

Based on the identified requirements from existing regulations for train drivers in Germany and from AI applications 
as well as the expectations from sector experts, we propose a sensor system for the development of perception 
systems for ATO functions. This sensor setup comprises a locomotive-hauled train and a passenger car. It primarily 
comprises ultrasonic sensors, cameras, LiDARs and radars to enable a perception of the train’s state and environment. 
In case of the locomotive, the sensors are positioned at the front, roof, sides, chassis and in the cabin, while one side 
of the passenger car is used for installation to observe the lateral space of the passenger car. A first version of the 
described sensor system was developed, and later discussed and refined based on the results of the sector survey 
discussed in Sec. 5. Figure 4 shows the resulting sensor system, along with the coordinate system used to specify the 
sensor setup in the following sections.

Ultrasonic sensors (US1–US5) are used to monitor the space immediately in front of the locomotive for obstacles or 
people when the train is moving slowly (e.g., shunting) and can be used to determine the distance during coupling.

The long range radar (RD2) and technological variants of long range LiDARs (LD2–LD4) monitor the track ahead. 
The sensors focus on obstacle detection of possible objects in front of the vehicle and distance determination (e.g. 
to a buffer stop). In addition, short range radars (RD1; RD3) and short range LiDARs (LD1; LD5) are used to monitor 
the frontal area, but the main task of these systems is the lateral areas of the track. Furthermore, the area ahead is 
monitored by four RGB color cameras (FK5–FK8) in the upper area of the locomotive with different fields of view. 
These can be used individually or combined to stereo pairs. In the latter case, depth information can be obtained. 
Furthermore, a supporting inspection of the catenaries is made possible, which is also the focus of the dedicated 
color camera (FK9) on the vehicle roof.

The detection of heat signatures (e.g. humans or animals) is enabled by two thermal / long-wave infrared (LWIR) 
cameras (IR1; IR2). They are used to detect other vehicles and obstacles during shunting, persons next to the tracks, 
as well as irregularities and imminent dangers on the neighboring track (humans) or at the edge of the track (e.g. 

Fig. 3  Summary of the sector 
survey as presented in [13]
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fallen trees). The RGB cameras (FK2; FK3) are intended to assist in these tasks and are mounted on the locomotive 
with lateral orientation. Furthermore, they can be used for the inspection for potential irregularities on passing trains.

The inertial measurement unit (IMU) (IM1) can be used to improve self-localization (GNSS, ETCS balises, wheel 
impulse generator) and detect damage to the infrastructure. Three GNSS antennas (GN1–GN3) are positioned on 
the vehicle roof at a large baselines in between and as far as possible clear of shadows; the three GNSS antennas are 
further used to detect rotational movements (roll, pitch, yaw) around the spatial vehicle axes. Additional localization 
support is provided by a RGB camera (FK9), enabling the detection of landmarks (e.g., church spires). In addition, the 
latter sensors result in an extended observation of the surroundings.

Further detection of damage to the track, the train itself and any acoustic signals is possible thanks to the installed 
microphones (MI1; MI2); the use of two microphones in the train even enables spatial localization of acoustic signals.

The rear of the train can be monitored by RGB cameras (FK1; FK4) and LiDARs (LD6; LD7). The focus is on passen-
ger exchange and any hazards on a train station’s platform; it is also possible to detect damage to passing trains. In 
addition, ultrasonic sensors (US6–US11) and color cameras (FK12; FK13) are used in the lateral area of the train. Just 
as the front ultrasonic sensors (US1–US5), the side sensors are used to monitor areas that are difficult to see during 
shunting. In addition, the color cameras provide detailed information about the situation on the platform. However, 
they also enable the detection of obstacles on the neighboring track and irregularities on other trains, e.g. open doors.

Finally, the locomotive is a equipped with a weather station (WS1), which collects information about the environ-
mental conditions (temperatures, pressures, humidity), to enrich the sensor data.

In case of the passenger car, we propose to install ultrasonic sensors (US12–US15), (stereo) RGB cameras (FK12–15), 
radars (RD4; RD5) and a LiDAR sensor (LD8) with the main purpose to observe the passenger exchange.

In the following subsections, we give details about the various sensor types and how they contribute to the dif-
ferent use cases.

Fig. 4  Front, side and roof 
views of the locomotive 
sensor system along with a 
side view of the passenger 
car setup (a) and coordinate 
system used to denote sensor 
orientations (b) based on ISO 
8855, denoted as r

x
 , r

y
 and r

z
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6.1  Ultrasonic sensors

Ultrasonic sensors are used in the setup at the locomotive for distance measurements during coupling, obstacle detection 
during shunting and the detection of persons in the space immediately in front of the locomotive, e.g. when approaching 
the platform. Additionally, ultrasonic sensors are installed at a passenger car to monitor and control the opening and 
closing of doors during passenger changes and to detect objects at a train station’s platform.

This type of sensor emits an ultrasonic pulse which is reflected by a measuring object and received by the sensor. 
By measuring the time of flight, the distance between sensor and object can be determined. Due to the use of sound 
waves, the measurement accuracy is influenced by environmental conditions, such as air temperature or air flow. For this 
reason, this type of sensor should only be used at low speeds (max. 10 km/h) and short distances (max. 5 m). Therefore, 
we propose a detection range of 15 cm to 500 cm for the described short-distance perception tasks. This is the range in 
which state-of-the-art ultrasonic sensors can perform accurate distance measurements [33]. Detection ranges smaller 
than 15 cm are difficult to realize due to the measurement principle based on the travel time of sound waves. However, 
detection ranges smaller than 15 cm are not mandatory for the considered used cases. Moreover, with respect to the 
availability of these sensors on the market and their specifications, we propose a horizontal and vertical field of view 
of 120◦ and 60◦ , respectively. Additionally, ultrasonic sensors can influence each other if they are installed incorrectly. 
Thus, minimum distances between the sensors must be respected during installation or a multiplex operation must be 
supported, in which individual sensors are controlled sequentially by a central processing unit.

6.1.1  Setup locomotive

The specific setup of the ultrasonic sensors at the locomotive is visualized in Fig. 5. It consists of eleven ultrasonic sensors 
which are installed at the front and side of the locomotive with the goal to measure distances and detect obstacles in the 
vicinity of the locomotive at slow speeds (similar to a parking assistant in the automotive area). Five sensors are mounted 
at the front (US1–US5), while the other six sensors are placed at both sides (right: US6–US8 and left: US9–US11). These 
should be installed as low as possible considering the available installation space, and their fields of view should not be 
occluded by vehicle parts. Their orientations are parallel to the ground and oriented in the direction of travel (US2–US4) 
and at right angles to the left (US9–US11) and right (US6–US8). An exception are the two ultrasonic sensors US1 and 
US5 as they are mounted at the buffer beam with an angle of 45◦ to the right and left to better cover the corner areas. 
In addition, the centrally placed sensor US3 is elevated 20 cm and 15◦ tilted downwards to better cover the front area.

The positions and orientations of the ultrasonic sensors are chosen so that their detection ranges can detect objects 
up to a distance of 5 m in front and laterally of the locomotive. This is visualized in Fig. 5c, d, which shows the detection 
area of a specific ultrasonic sensor type with horizontal and vertical fields of view of 120◦ and 60◦ , respectively, with a 
detection range of 6 m [34]. The figure also visualizes the specific use case in which a person is standing on the track 
in front of the locomotive at a distance of 5 m. It is clear that the detection ranges of the ultrasonic sensors, especially 
sensors US2–US4, can perceive the person at this distance.

6.1.2  Setup passenger car

The setup of the ultrasonic sensors at the passenger car is illustrated in Fig. 6. Its main task is to allow the detection of 
objects in front of the door area during passenger change and in the area leading between two vehicles in the forma-
tion, e.g. passenger car and locomotive. For this purpose, four ultrasonic sensors are proposed to be installed around the 
door area. All sensors are rotated by 60◦ around the z-axis. This allows the sensors US13 and US15 to observe the area in 
front of the passenger door to a maximum extent since their horizontal field of view is aligned with the passenger car’s 
side. Similarly, sensors US12 and US14 are installed with a focus to observe the area leading between two vehicles and 
detect intrusions into this area by persons.

The detection areas of the ultrasonic sensors are the same as the sensors at the locomotive, i.e. a detection range 
of 6 m and a horizontal and vertical field of view of 120◦ and 60◦ , respectively. These detection areas are visualized in 
Fig. 6c, d as an example on a train station’s platform with passengers. These visualizations demonstrate that the area in 
front of the passenger door and the area leading between the locomotive and the passenger car can be monitored by 
the sensor setup. It is noted that this setup is not intended to detect persons standing close to the train in the entire 
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detection range of the sensors. This is due to the measurement principle of ultrasonic sensors, which return a single 
distance value instead of higher-dimensional spatial values, such as cameras or LiDARs. For example, if a high distance 
value is returned by a sensors, a person can still be near the train, e.g. far right at the end of the detection range near the 
locomotive as shown in Fig. 6c, d. If it would be a use case to ensure that there are no people in the direct vicinity of the 
entire passenger car, a setup of ultrasonic sensors similar to that of the locomotive would be adequate.

6.2  Camera

High-quality camera systems are widely used in industry and science resulting in a large and diverse range of prod-
ucts. The core of a camera system is the actual image sensor. It is characterized by various properties, such as the 

Fig. 5  Installation positions 
and detection ranges of the 
ultrasonic sensors at the 
locomotive [12]. For reasons 
of readability, the sensors’ 
detection ranges in (a) and 
(b) are shortened to 0.5 m. A 
panel is shown in the figure 
that lists the angles, FOV and 
ranges of the sensors
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active sensor area, the pixel size and thus the resulting resolution, the dynamic range and the recording rate, as well 
as (to a slighter degree) the spectral sensitivity as shown in Fig. 2a. A camera’s horizontal and vertical field of view 
result from the combination of sensor size and focal length of the lens used.

For a specification of the used cameras, the project team decided to define the image sensors of the color cameras 
in advance. The focal length of the lens can be calculated on the basis of the chip size and the fields of view, which 
are derived from use cases and perception tasks of a train driver.

An exemplary image sensor for further, geometrical considerations:

Industrial color cameras with 1" CMOS sensors (Sony) are widely used and can be combined with numerous lenses on 
the market. Due to the large sensor area, 4k resolutions can be realized without having to significantly reduce the pixel 
size and thus the light sensitivity. Nevertheless, the cameras remain compact and are suitable for installation in existing 
vehicle structures. Manufacturers specify recording rates of up to approx. 90 frames per second for their cameras with 
this sensor resolution. The resulting data volumes of up to 5 Gbit/s per camera (uncompressed) can only be processed 
with a great deal of computing effort and represent a limit with regard to resolution and recording rate. These high 

Color camera: Sony IMX255 1ε − CMOS-Sensor with global shutter and Bayer filter

4112(H) × 2176(V) pixels(9 MP); pixel size: 3.45�m

Fig. 6  Installation positions 
and detection ranges of the 
ultrasonic sensors at the pas-
senger car [12]. For reasons of 
readability, the sensors’ detec-
tion ranges in (a) and (b) are 
shortened to 0.5 m. A panel 
is shown in the figure that lists 
the angles, FOV and ranges of 
the sensors
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resolutions and recording rates offer research facilities the opportunity to evaluate future technologies and algorithms. 
Reducing the resolution and compressing the video recording is always possible.

Figure 7 provides an overview of the proposed positioning and orientation of 17 cameras. The fields of view are short-
ened in the figure (here 1 m) for a better overview. The position and orientation of the cameras as well as the lenses’ fields 
of view were determined in such a way that a large number of the perception tasks can be performed by cameras. In 
addition, the fields of view of the different cameras partially overlap and complement each other. In this way, possible 
gaps in the observation space are avoided, information (e.g. light signals) can be detected redundantly and the detected 
areas can be compared with each other.

In the following sections, a selection of different camera positions are described in detail. The lengths of the field of 
view in the figures indicate the distance at which an object of size 1 m × 1 m is projected onto 32 px × 32 px of the image 
sensor, taking into account the recommended focal lengths. This size of 32 px × 32 px is based on ML methods in the 
state of the art, which already classify a large number of classes in various contexts at this image resolution, such as with 
the CIFAR-10 dataset [14] or the ImageNet-32 dataset [15]. This value is explicitly used only as a provable reference for an 
approximate magnitude in order to roughly forecast recognition potentials of future algorithm developments. With this 
information the remaining parameters of the field of view can be obtained. The general lens equation and the imaging 
scale A are used to calculate the distance (= object distance g):

where the focal length f of the lens, the object size G (= 1 m) and image size B (= 32 × pixel size) are used. A simple linear 
relationship is obtained. For an already selected camera sensor, the focal length is defined as a function of the required 
field of view, which is defined based on the requirements of the use cases.

6.2.1  Setup locomotive, front cameras (stereo setup)

It is proposed to install two stereo camera pairs with different focal lengths at the front of the locomotive in the area 
above the windshield. One camera from each of the two systems is located on the left and one on the right of the 
locomotive’s centerline (see Fig. 7b). For reasons of flexibility in terms of positioning, spacing and future research 
tasks, it is not recommended to install a system in one component, but rather two separate cameras. The stereo 
setup is used to determine the distance of objects and is a complement to the LiDAR and radar sensors. Figure 8a 
shows an example of the smallest approved radius of a curve in the German rail network (180 m) and the field of 
view of all four cameras. The cameras FK5 and FK6 of the first stereo system (red), which correspond to the estima-
tion of a train driver’s vision, are used with lenses of the focal length f = 12 mm . The horizontal fields of view in this 
case are 61.2◦ , which means that a wide area in front of the locomotive is covered. The effective range is approx. 
108 m. The focal length is selected so that the two immediately adjacent tracks (left/right) as well as the signals 

(1)g =
(

1

A
+ 1

)
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G

Fig. 7  Overview of the posi-
tion and viewing direction of 
the cameras [12]
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next to and above the tracks can be reliably perceived. In order to detect and classify objects ( < 1 m ) at a greater 
distance, a stereo system with the cameras FK7 and FK8 (orange) is recommended. With a 75 mm lens, this has an 
effective range of up to 679 m and thus clearly surpasses the first camera system in terms of range (see Fig. 8b). 
However, due to the resulting small field of view of 10.8◦ , this system can only be used as a supplement. The stereo 
system (FK7; FK8) can still detect the neighboring tracks and signal areas on a high-speed line (increased track 
spacing of 4.5 m) with a minimum radius of 5000 m. It is recommended to tilt both systems slightly downwards to 
the ground. This field of view corresponds more to that of a train driver.

6.2.2  Setup locomotive, shunting cameras

The shunting cameras FK2 and FK3 (yellow) close the observation area between the front cameras FK5 and FK6 (red) 
and the side cameras FK10 and FK11 (brown) of the locomotive (see Fig. 7). They are located on the left and right 
of the vehicle front and are rotated counterclockwise and clockwise by an angle of 45◦ (see Fig. 9). Using lenses 
with a focal length of 6 mm results in horizontal and vertical fields of view of almost 100◦ and 64◦ , respectively. 
Due to the large fields of view, the cameras are appropriate for shunting and driving on sight to observe the near 
surroundings. It is also possible to inspect other rail vehicles for damages or a slipping load. Both cameras can 
observe the area in front of the train and to the side. However, the effective range is limited due to the low focal 
length to 54 m. By tilting the sensors by 15◦ , the immediate area in front of the locomotive, that cannot be viewed, 
is significantly reduced.

Fig. 8  Field of view of the 
stereo cameras for lenses with 
focal lengths of 12 mm (red) 
and 75 mm (orange) in a curve 
with a radius of 180 m [12]. A 
panel is shown in the figure 
that lists the angles, FOV and 
ranges of the sensors
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6.2.3  Setup locomotive, rear cameras

The rear cameras FK1 and FK4 (blue) are mounted on the sides in the upper front area of the locomotive and look in 
the opposite direction of travel (see Fig. 10). 12 mm lenses are recommended for this setup. The fields of view corre-
spond to those of the stereo cameras at the front of the vehicle. In this setup, the image is taken in portrait format. In 
this way, the areas directly next to the locomotive and passing rail vehicles can be captured by the camera. The fields 
of view of the cameras are aligned with the vehicle side to monitor passenger movements on a train station’s platform.

6.2.4  Setup passenger car, door cameras (stereo setup)

In case of the camera sensors at the passenger car, special attention must be paid to the monitoring area in front of 
the door. Before departure, it must be ensured that no persons or objects (e.g. umbrellas) are trapped in the door area.

Fig. 9  Field of view of the rear 
cameras for lenses with a focal 
length of 12 mm [12]. A panel 
is shown in the figure that lists 
the angles, FOV and ranges of 
the sensors

Fig. 10  Field of view of the 
rear cameras for lenses with a 
focal length of 12 mm [12]. A 
panel is shown in the figure 
that lists the angles, FOV and 
ranges of the sensors
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The cameras FK12 and FK13 (cyan) are used in a stereo setup with 6 mm lenses to address this use case. The cameras 
are installed above the door area with a distance of 3.4 m (Fig. 11). The cameras are tilted downwards by 40◦ and oriented 
towards the door. Immediately in front of the door, there is a large overlap area of the two color cameras.

6.3  Radar

Radar systems are based on transmitting an electromagnetic wave in the radar frequency range and receiving the 
reflected signal. Typical frequency ranges are 77 GHz (primarily long-range) and 24 GHz (primarily short-range). Basically, 
a distinction is made between impulse and frequency-modulated continuous wave (FMCW) radar. An important feature 
of FMCW radar is the ability to measure relative velocity in addition to distance to an object. Besides this information, 
additional angular information to the object is needed, which can be obtained by means of antenna arrays (for transmit-
ting and/or receiving antennas). Reflected signals with different complex amplitudes (magnitude, phase) are received 
and the derivation of an angle estimate is made possible. This basic principle is mapped in today’s systems with a larger 
number of antennas and used for a horizontal angular resolution; a vertical resolution can be realized similarly. Such sen-
sors are referred to as 4D radar sensors because they can measure distance, relative velocity, and horizontal and vertical 
angles. In the proposed setup, radar systems are used frontally on the locomotive and laterally on the passenger car. 
Figure 12 shows the areas illustrated by the installed radar sensors (locomotive, passenger car).

6.3.1  Setup locomotive, front

In this setup, three radar sensors are installed at the front of the locomotive: Centrally, a system with the longest possible 
range (300 m) and a relatively small field of view (in the proposal, a maximum of 18◦ ) to detect objects at great distances 
(including oncoming traffic) as early as possible is installed. A combined short-range / long-range radar is installed at 
each side with a field of view of 80◦ for the short range (below 100 ms) and a field of view of 36◦ for the long range (up to 
180 ms). It is mounted on the right and left side of the locomotive with a small overlap of the long-range components. 
This ensures that curve illumination (up to 180-meter arcs) is possible to the extent that at least driving on sight requires. 
At the same time, the overlap in the central area allows investigations on fusion with the long-range radar.

Figure 12 shows the general conditions for driving in curves: on the one hand the two combined long-range/short-
range sensors (green, red) and on the other hand the long-range radar (blue). This variant is characterized by the fact that 
the necessary visibility range can be achieved for the curve shown. It should be noted that radar systems currently on 
the market do not fully cover the parameters actually required by the specification. Figure 12 contains the specification 

Fig. 11  Field of view of the 
door cameras on the passen-
ger car with lenses with a focal 
length of 6 mm [12]. A panel 
is shown in the figure that lists 
the angles, FOV and ranges of 
the sensors
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of these radars. It should be noted that for presentation reasons, the sensor is shown as separate devices for the short 
and far range respectively. In reality, only one physical device is required.

The setup mainly covers the detection of large animals and persons on the track as well as shunting and driving on 
sight. Assuming direct visibility of the obstacle and achieving a detection range of 300 ms, the requirements of stopping 
in front of an object are possible in curves and on the track at the maximum permissible speeds for automated driving 
on sight.

6.3.2  Setup passenger car, lateral

Two radar sensors on the sides of the passenger door of a passenger train car are recommended. This makes it possible 
to map the task of entry monitoring (detection of trapped objects, counting of entering and exiting passengers). For 
this purpose, a close-range sensor is proposed that has a horizontal field of view wider than 120◦ . With two sensors, this 
results in a complete overlap area in front of the entrance. With a vertical field of view of 30◦ , the sensors should be tilted 
downwards by approx. 25◦ at a mounting height of one meter above the upper edge of the platform, so that objects with 
a height of 40 cm can still be detected by one sensor from a distance of approx. 20 cm from the edge of the platform. 
Higher objects are then assumed to be detectable. Persons are assumed to be more than 80 cm high and more than 
30 cm in diameter. Figure 12 shows the specification of these radars.

The radar setup on the passenger car can be used to automate use cases around passenger boarding. The horizontal 
fields of view are aligned in such a way that they run in line with the passenger car and can cover the passenger door area 
and its surroundings through their detection range. With this, it should be possible to detect objects, e.g. persons, in the 
close door area. The extent to which smaller objects trapped in the passenger door can be detected by radar sensors is a 
question for future research and development tasks. In addition, the use case includes the control of the side of the train 
over its entire length. Radar sensors with a range of 100 ms can cover the entire side of the train car. Furthermore, the 
setup can detect intrusions into the gap between two vehicles in the train formation, e.g. locomotive and passenger car.

6.4  LiDAR

LiDAR sensors, or laser scanners, have been widely used in robotics and automated driving for road vehicles, where the 
latter application provided a particular thrust in technological developments in the past years. Through this, LiDAR has 
evolved considerably both in terms of quantitative performance, but also in the breadth of technological variations. 

Fig. 12  Radar setup using 
the example of a curve drive 
[12]. A panel is shown in the 
figure that lists the angles, 
FOV and ranges of the sensors
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Today, commercial systems exist that differ in nearly any aspect of the measurement principle except for the common-
ality of each emitting laser light towards the target / scene and measuring the response to obtain, at least, an object 
range per ray.

When considering LiDAR for ATO applications, it must be noted that the application differs considerably from robot-
ics and automated road vehicles. Typical ranges of up to a few hundred meters suffice for a wide range of applications 
even for highway driving on motorways / interstate highways. For ATO however, stopping distances at typical traveling 
speeds exceed these ranges by far, and (unlike for road traffic) unexpected obstacles will typically be stationary and can 
only be avoided through braking. Thus, a LiDAR sensor that can provide considerable benefit for adaptive cruise control 
(ACC) keeping the distance to a forward road vehicle, or allowing to navigate on urban roads and intersections, can still 
be unable to assure safety in ATO due to traveling speeds.

On the other hand, the capability of LiDAR to measure ranges robustly under a wide range of conditions (including 
at night) can provide considerable benefit for the detection of obstacles at low to medium speeds, for example during 
shunting, and the classification of objects based on their shape. In the following, we first discuss aspects of technological 
variations (Sec. 6.4.1) before presenting some configurations that enable a comparative evaluation of different LiDAR 
technologies (Sec. 6.5–6.7).

6.4.1  Technological variations and considerations

6.4.1.1 Beam steering and resolution Beam steering refers to technologies determining the direction of emitted laser 
beams, leading to different scan patterns and a different ordering of point acquisition time (Fig. 2b), which may lead to 
considerable distortions if not accounted for in processing. In classical rotating and rotating mirror scanners (for example 
Velodyne, Ouster or Valeo Scala), beams follow circular patterns with a regular angle spacing. For MEMS scanners, the 
beam is steered by displacements of micro-scanning mirrors and can be set to follow variable vibration patterns.

Scanners by the Livox company steer the beams through a pair of rotating prisms leading to a highly complex pattern, 
with Livox stating that the scanners can be operated such that, over a long exposure period, any angular volume within 
the FOV is sampled at high precision.

Flash scanners such as the Continental High Resolution 3D Flash LiDAR illuminate the FOV simultaneously and measure 
the echos in a regular pixel pattern, very similar to a global-shutter camera.

Depending on the processing application, these differences may have a significant impact beyond performace val-
ues such as field of view, resolution or scan rate. For example, clustering algorithms such as DBSCAN [35] depend on 
accelerated queries for nearby points in large clouds. For irregular patterns, efficient queries are more difficult to define 
and potentially still more costly to compute. Similarly, a highly inhomogeneous spatial resolution may adversely affect 
approaches based on local neighborhood features, such as CNNs. To provide a basis for research in these effects, a com-
bination of different beam steering methods is recommended for the proposed sensor setup. Resolutions considered in 
the evaluation ranged from 0.94◦ horizontally and 1.88◦ vertically down to 0.03◦ in either direction. Fields of view ranged 
from 18◦ to 360◦ horizontally, and from 5.6◦ to 90◦ vertically. Some scan patterns of proposed sensors are given in Fig. 2b.

6.4.1.2 Measurement principle The established measurement principle in LiDAR sensors is time of flight (ToF) measure-
ment, where the time difference between a pulse emission and the return echo is used to determine the distance of the 
target. This method is highly precise under typical conditions, with speeds of light varying only slightly with air density, 
and main challenges lying primarily in the distinction between actual echos and environment light noise, limiting the 
effective range. Recently, Aeva Technologies, Inc. has presented a sensor that is based on the frequency-modulated con-
tinuous wave (FMCW) principle [36]. This principle is common in radar sensors; a modulated signal is emitted, and any 
Doppler shift on the echo indicates a relative motion of the target. This allows to detect the motion of the sensor relative 
to its environment, and speeds of other objects relative to either the sensor or the environment, and can facilitate detec-
tion and tracking of moving obstacles. It can also support the discrimination between the modulated echos and random 
environment noise, increasing the effective range. The specification proposes the use of both multiple ToF scanners, due 
to their widespread use and type variation, as well as an FMCW scanner to explore the potentials of this new principle in 
comparison, as discussed in Sec. 6.5.

6.4.1.3 Wavelength LiDAR sensors typically operate at wavelengths between 800 nm and 1600 nm in the near infrared 
domain. A particular consideration for the choice of wavelengths is eye safety. Near infrared light is invisible to the 
human eye but can still damage it, if it penetrates to the retina—or even especially so, since humans will not perceive 
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and avoid the glare. The eye, for example the vitreous body, is highly transparent still at near infrared wavelengths 
(e.g. 800 nm), while transmission drops considerably around 1500 nm [37] between near and short-wave infrared. Thus, 
longer wavelengths can increase the allowable power at the same level of eye safety, and thus increase the range. The 
difference in LiDAR wavelengths is wider than the width of the visible spectrum, hence differences in reflectance and 
transmission in objects are comparable to visible color differences. This can affect detection methods that utilize the 
echo intensity, which is provided by most state-of-the-art LiDAR sensors. More importantly, to install LiDAR sensors 
with overlapping fields of view, it is necessary to consider interference. Different scanners with a wide margin between 
operating wavelengths are less likely to interfere with each other. Wavelengths between 850 nm and 1550 nm were 
considered in variants of the specification.

6.4.1.4 Scan rate The scan rate, i.e. the time between two complete scans, affects recorded data in several ways. As with 
cameras, effects of lower scan rates can be simulated by dropping frames from higher frame rates (downsampling). 
However, since most of the currently available scanners record the points sequentially (with the exception of flash scan-
ners), the different recording time of points within the same scan can lead to relevant effects similar to the rolling shutter 
effect for cameras for highly dynamic scenes. Unlike for cameras, however, scan rate and delay are usually directly linked 
by the beam steering principle, in the sense that that the timing of the recorded points is distributed evenly over one 
scan period; while rolling shutter delays are technologically distinct from the frame rate limit and typically can be much 
shorter than the frame rate (if not avoided entirely by global shutter cameras).

Thus, scanners with a low scan rate will typically introduce stronger temporal artifacts to be compensated than scan-
ners with a high scan rate, and downsampling from faster scanners may understate the effect, unlike for cameras. This 
motivates the inclusion of scanners with notably different scan rates, to enable a direct comparison of the effects. Scan 
rates between 10 Hz and 30 Hz were considered in the evaluation.

Based on these considerations, we denote sensor variants in the pattern of LDX_Y, where X is the mounting position 
as in Fig. 4 and as in other sections, while Y indicates the sensor variant: “R” for rotating or rotating mirror LiDARs, “M” for 
MEMS LiDARS, “F” for flash LiDARs (each time of flight-based) and “D” for FMCW.

6.5  Setup locomotive, forward perception, long range

As previously indicated, forward perception using LiDAR sensors must be considered with stopping distances at 
traveling speeds in mind; hence, a front LiDAR will not serve the same purpose for ATO as for automated road driv-
ing, and hence the designation as “long range” (this section, several 100 ms) must be considered in contrast to “short 
range” (Sec. 6.6, several dozen meters), and not as “long” by the standards of ATO requirements.

Considered use cases include the detection of brake shoes (or rail skids) as shown in Fig. 1a or of fouling point 
indicators near railroad switches (Fig. 1b). In these cases, the train is operating at relatively low speeds where a 
detection and stopping within 100 m can be achieved. The detection and localization of large obstacles, and the 
differentiation between humans and animals, can be achieved with the current technology – typically not in time to 
avoid a collision at traveling speeds, but potentially to estimate and mitigate the consequences. In this domain, no 
existing flash LiDAR solutions are known to date; however various existing solutions for MEMS, rotating (and rotating 
mirror) as well as rotating prism LiDARs exist.

Two proposed variants are shown in Fig. 13. The first variant (Fig. 13a–c) is a combination of a ToF LiDAR with rotat-
ing mirror (specifications of LD4_R according to the Valeo Scala Gen. 2) with a ToF MEMS LiDAR [specifications of 
LD2_M according to the Ibeo NEXT (var. 1) or the, at this time yet unavailable, Continental HRL131 (var. 2)]. This variant 
addresses the property of several considered sensors (e.g. the Valeo Scala Gen. 2) to provide a narrower field of view 
with high-resolution, along with a wide field of view at reduced resolution. In this case, the setup proposes to assure 
an overlap of 2◦ of the high-resolution FOVs, shown yellow in the figures, while still preserving a wide combined FOV.

An alternative variant (Fig. 13d) uses two identically oriented LiDARs, one MEMS LiDAR (specifications of LD2_M 
(var. 3) according to the Blickfeld Vision SR) and one FMCW LiDAR (specifications of LD4_D according to Aeva FMCW), 
maximizing the overlap for comparability, at the expense of achieving a smaller combined FOV. Neither sensor is 
known to be equipped with a technically prescribed high-resolution narrow FOV; yet at the time of the analysis, final 
product specifications were not yet available.
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6.6  Setup locomotive, forward perception, short range

The setup shown in Fig. 14 is particularly designed to detect objects during low-speed applications, especially during 
shunting, as also illustrated in Fig. 1c. It compares two technological variations: A rotating LiDAR LD1_R (specifications 
according to the SICK MRS1000) and a flash LiDAR LD1_F (specifications according to Continental HR Flash). Both feature 
a relatively short range but wide field of view.

In this application, it must be considered that viewing range should be maximized while avoiding that obstacles very 
close to the front of the train vanish below the FOV and minimizing debris effects as far as possible. This motivates a 

Fig. 13  Overview of several 
variants considered for the 
forward perception at long 
range, including rotating and 
MEMS LiDARs (a–c), as well as 
an alternative integrating an 
FMCW LiDAR (d) [12]. Panels 
are shown in the figure that 
lists the angles, FOV and 
ranges of the sensors
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low mounting position directly above the buffers, about 1.5 m above the top of the rails and, particularly for the SICK 
MRS1000, an inverted mounting to maximize its asymmetric vertical FOV towards the ground.

Based on their specifications, the SICK MRS1000 achieves a horizontal and vertical resolution of 0.25◦ and 1.88◦ , respec-
tively, at 850 nm, while the Continental HR Flash provides a symmetric resolution of 0.94◦ in each axis, operating at 
1064 nm; and while the SICK MRS1000 operates at rotations of 12.5 Hz, the Continental HR Flash exposes the entire 
frame simultaneously at 25 Hz. Thus, both sensors provide a considerably different set of features to be applied to the 
given task. Again both sensors have an overlapping region that allows to compare their perception on the same objects 
while keeping regions that are only observed by one sensor alone. An alternative setup (not shown) mounts the LD1_F 
at 120◦ yaw, such that both sensors cover a combined FOV of almost 360◦ , but the overlapping area is not in front of the 
train but extends to its left.

6.7  Setup locomotive, rear perception

Rear perception can enable the coverage of additional use cases by allowing to monitor the boarding of passengers close 
to the locomotive, to inspect passing trains on neighboring rails and neighboring catenaries, and to monitor dynamic 
objects approaching the front of the train in low speed situations, for example humans running towards the front of the 
train from behind during shunting operations, to possibly overtake it.

A particular requirement for this use case is to assure that the sensors are small enough to fit the allowable minimum 
clearance outline of the train. Two specific sensors considered that may provide sufficiently small dimensions and suf-
ficiently similar specifications with relevant technological differences are the Velodyne Velabit (rotating LiDAR, specifica-
tions taken for the LD6_R) and the Blickfeld Vision Mini (MEMS LiDAR, specifications taken for the LD7_M), mounted on 
opposite sides of the locomotive, as shown in Figs. 15, 16.

Fig. 14  LiDAR setup for short-
range forward perception 
[12]. A panel is shown in the 
figure that lists the angles, 
FOV and ranges of the sensors
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The sensors are located such that a continuous observed field of view is established with the front short-range LiDARS 
outlined in Sec. 6.6.

6.8  Setup passenger car

To monitor the boarding of passengers at passenger car doors further away from the locomotive, the use of LiDARs also pro-
vides a technological possibility; their use in a research sensor setup can furthermore contribute to automatically annotating 
data from cameras and radar sensors as specified in Secs. 6.2.4 and 6.3.2. In this case, ranges of several meters are sufficient, 
but a high resolution is desirable to recognize individual persons, while a wide field of view assures that persons close to the 

Fig. 15  LiDAR setup for rear 
perception tasks [12]. A panel 
is shown in the figure that lists 
the angles, FOV and ranges of 
the sensors

Fig. 16  LiDAR setup on pas-
senger car doors [12]. A panel 
is shown in the figure that lists 
the angles, FOV and ranges of 
the sensors
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side of the car can be detected robustly. Hence, a wide range of sensors can be considered, with considered specifications 
including the Continental HR Flash or the Luminar Hydra. The proposed mounting position considers that the presence of 
persons outside the near field of view of the sensor can be detected using, for example, the ultrasonic sensors described in 
Sec. 6.1.2.

6.9  GNSS/IMU

For self-localization, GNSS is used in addition to ETCS balises and odometer pulse generators. The antennas are positioned 
on the vehicle roof at a large distance and as free of shadows as possible. The use of three GNSS antennas (see Fig. 4) allows 
the position and orientation of the vehicle to be determined. GNSS—Global Navigation Satellite System—is the collective 
term for a satellite navigation system, such as GPS (USA), GLONASS (Russia), BeiDou (China) or Galileo (Europe). GNSS receiv-
ers or antennas usually offer the possibility to access several of these systems. The main challenges of these systems are the 
accuracy, availability, and reliability of the position determination, which depends much on the number and geometric 
distribution of available satellites. In addition, the accuracy of a GNSS-based localization can be improved by an inertial 
measurement unit (IMU). The IMU records the acceleration and angular velocity of an object (e.g. locomotive), which allows 
the relative movement to be determined. Overlaying this with the localization provided by the GNSS increases the accuracy 
and long-term stability of the positioning. In order to take advantage of the additional IMU used for localization, the use of 
three GNSS antennas is recommended:

• One GNSS antenna: positioning without orientation information
• Two GNSS antennas: positioning with additional information for orientation or for determining the direction of travel 

(yaw/pitch or yaw/roll).
• Three GNSS antennas: positioning with 3D orientation information.

6.10  Microphones

Microphones can be used to acquire internal and external acoustic input. External sounds can indicate damages or upcom-
ing damages on the railway or train itself, while internal microphones can be used to recognize damages from the inner 
side of the locomotive. Due to unique issues of the railroad operation, we have to choose different types of microphones for 
different tasks and their appropriate mounting positions in special.

Condenser and moving coil microphones are suitable for railroad applications. Condenser microphones reproduce the 
recorded sound in good quality, but are sensitive to excess moisture and high sound pressure levels. They are therefore only 
suitable to a limited extent in the loud railroad area with its high dynamic range.

Plunger coil microphones appear to be suitable, as they are very robust. They are also insensitive to high sound pres-
sures, but do not have good sensitivity to high frequencies. The geometry to be used depends on the application. All-round 
observation of sound can be achieved by means of an omnidirectional characteristic. Pressure microphones can be used 
up to the infrasound range. For a direction-independent observation and less relevant low frequencies, pressure gradient 
microphones should be selected, which can be adapted for different directional characteristics. In this way, interference noise 
can already be geometrically prevented or reduced. Alternatively, array microphones offer the possibility of also determining 
the direction of the sound source by means of several built-in microphone capsules. The use of microphones in the railroad 
sector serves, for example, to detect anomalies on the vehicle or the tracks.

When positioning microphones, it is important that they may or may not be decoupled from the sound source. This 
depends on the type of microphone. Structure-borne sound sensors, which can detect anomalies in the driving position, 
for example, must not be decoupled. However, if noises in the passenger compartment are to be monitored, for example 
by (stereo) microphones, they must be decoupled from the sound source. An installation in the driver’s cab (Fig. 17) can be 
considered for this purpose [38]. The acoustic noises or signals possibly occurring in the cabin are between 20 Hz and 16 kHz 
and can be perceived by average hearing.

Noise from the undercarriage can also occur and be perceived (Fig. 17). When selecting the microphones, it should be 
noted that the short-term g-forces occurring at the railway bogie can be comparatively high.
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7  Conclusions and outlook

The sensor setup outlined in the paper from the AI4Rails workshop [4] is defined in more detail in this paper. It covers 
all standard tasks in connection with their perception tasks as elaborated in Sec. 3 and listed in Table 1. Each percep-
tion task requires at least two different sensor types, and where reasonable, different sensor variants are specified with 
pairwise partially overlapping fields of coverage are specified to allow studies on the impact of sensor characteristics 
on AI methods and to facilitate annotations that benefit multiple sensors at the same time.

A common data ecosystem is needed for training and testing of ATO functions, where sensor data and correspond-
ing annotations will be the first step. The sensor system specified in Sec. 6 is designed to collect research sensor data 
for all perception tasks which were identified in Sec. 3. The setup has been refined according to the expectations 
and needs identified across the railway sector as a system which offers different sensor options for each task. The 
complete specification is found in [12].

The next step must be to physically implement the sensor system on a locomotive and passenger car and run 
extensive data collection campaigns. This must be complemented by annotation and dissemination initiatives.

As a perspective, a method must be found to define which domains, locations, objects and conditions must be 
represented in the data in order to cover the whole domain of ATO perception data and ensure safe operation under 
all conditions. Such an evaluation will most likely result in the need to incorporate augmented or synthetically gener-
ated data in the training and test data and check for relevance, representativeness and correctness.

The authors are convinced that these steps will foster and accelerate research and development of ATO functions, 
with a particular focus on complex AI methods in safety-critical real-time tasks.
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