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Abstract 

Purpose Fabry disease (FD) is a rare, X-linked, lysosomal storage disease characterized by great variability in clinical 
presentation and progressive multisystemic organ damage. Lack of awareness of FD and frequent misdiagnoses cause 
long diagnostic delays. To address the urgent need for earlier diagnosis, we created an online, risk-assessment scoring 
tool, the FDrisk, for predicting an individual’s risk for FD and prompting diagnostic testing and clinical evaluation.

Methods Utilizing electronic health records, data were collected retrospectively from randomly selected, dei-
dentified patients with FD treated at the Emory Lysosomal Storage Disease Center. Deidentified, negative controls 
were randomly selected from the Fabry Disease Diagnostic Testing and Education project database, a program 
within the American Association of Kidney Patients Center for Patient Education and Research. Diagnosis of FD 
was documented by evidence of a pathogenic variant in GLA and/or an abnormal level of leukocyte α-Gal A. Thirty 
characteristic clinical features of FD were initially identified and subsequently curated into 16 clinical covariates 
used as predictors for the risk of FD. An overall prediction model and two sex-specific prediction models were built. 
Two-hundred and sixty samples (130 cases, 130 controls) were used to train the risk prediction models. One-hundred 
and ninety-seven independent samples (30 cases, 167 controls) were used for testing model performance. Prediction 
accuracy was evaluated using a threshold of 0.5 to determine a predicted case vs. control.

Results The overall risk prediction model demonstrated 80% sensitivity, 83.8% specificity, and positive predictive 
value of 47.1%. The male model demonstrated 75% sensitivity, 95.8% specificity, and positive predictive value of 75%. 
The female model demonstrated 83.3% sensitivity, 81.3% specificity, and positive predictive value of 45.5%. Patients 
with risk scores at or above 50% are categorized as “at risk” for FD and should be sent for diagnostic testing.

Conclusion We have developed a statistical risk prediction model, the FDrisk, a validated, clinician-friendly, online, 
risk-assessment scoring tool for predicting an individual’s risk for FD and prompting diagnostic testing and clinical 
evaluation. As an easily accessible, user-friendly scoring tool, we believe implementing the FDrisk will significantly 
decrease the time to diagnosis and allow earlier initiation of FD-specific therapy.
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Introduction
Fabry disease (FD) (OMIM no. 301500) is a rare, 
X-linked, lysosomal storage disease caused by patho-
genic variants in the GLA gene which result in an 
absence or severe reduction of the lysosomal enzyme 
α-galactosidase (α-Gal A, EC 3.2.1.22). This leads to an 
excess of glycosphingolipids, mainly globotriaosylcera-
mide (Gb3/GL3) and its deacylated form globotriaosyl-
sphingosine (lysoGb3/lysoGL3) [1, 2] which, along with 
the associated downstream inflammatory mechanisms 
[3], cause progressive multisystemic organ damage. 
Of note, despite being an X-linked condition, females 
are often significantly affected due to a combination of 
skewed X-chromosome inactivation, clonal expansion, 
and somatic mosaicism. As such, females experience 
severity of disease ranging from asymptomatic to severe, 
resembling that which can be observed in males [4–7].

FD is categorized into two phenotypes: classic and 
non-classic (later-onset), each exhibiting a wide pheno-
typic spectrum. The more severe classic form generally 
begins in childhood and exhibits a more consistent and 
insidious pattern of disease progression [5]. Presenting 
signs and symptoms often include neuropathic pain, heat 
intolerance, and gastrointestinal issues [8, 9]. Additional 
signs and symptoms include the following: hypohidro-
sis progressing to anhidrosis, dermal angiokeratoma 
(a skin finding commonly found in FD) [5], proteinu-
ria, bradycardia, and cornea verticillata (a characteristic 
corneal opacity highly suggestive of FD). Without ini-
tiation of FD-specific therapy, the disease may progress 
to chronic renal disease, left ventricular hypertrophy 
(LVH), arrhythmias, hearing loss, transient ischemic 
attacks (TIA), stroke, and ultimately premature death 
[5]. Individuals with the more prevalent nonclassic phe-
notypes have varying levels of residual α-Gal A activity 
and therefore experience a more variable disease course 
with symptoms that typically emerge after childhood and 
include LVH, arrhythmias, and/or markedly decreased 
glomerular filtration rate [5, 10]. FD occurs in people 
of all ages in diverse ethnic, racial, and demographic 
groups. Estimates of incidence vary depending on the 
screening methods and populations studied [11]. Ini-
tially, it was estimated that classic FD affected 1:117,000 
live male births globally [12]; however, the first newborn 
screening studies conducted in the USA and internation-
ally demonstrated a much higher prevalence of 1:1250 to 
1:11,854 with a much higher representation by patients 
with nonclassic FD [9]. Numerous screening studies of 
high-risk populations have identified FD in patients with 
end-stage renal disease [13–16], cardiac hypertrophy 
[16–19], unexplained left ventricular hypertrophy [20, 
21], and stroke [22–25]. It is significant that many screen-
ing projects utilized only α-Gal A to identify at-risk 

patients which reportedly can miss detection of 30–40% 
of females with FD [5]. In addition to high-risk popula-
tion screening studies and newborn screening, artificial 
intelligence (AI) methods are currently being developed 
to screen for FD [26, 27].

Compared to the general population, without treat-
ment, life expectancy for people with FD decreases by 20 
and 10 years in males and females respectively [10]. The 
current therapeutic options for FD vary in availability by 
country but include the following: intravenous enzyme 
replacement therapy (ERT) with recombinant α-Gal A 
[agalsidase alpha (Replagal®, Takeda), agalsidase beta 
(Fabrazyme®, Sanofi), pegunigalsidase alfa-iwx (Elfab-
rio®, Protalix Biotherapeutics)], and the oral small mol-
ecule pharmacologic chaperone migalastat (Galafold®, 
Amicus Therapeutics) for those with amenable GLA vari-
ants. Several other treatments are in development includ-
ing the following: second-generation ERT, moss-aGal 
(Greenovation Biotech/Eleva); substrate reduction thera-
pies, venglustat (Sanofi) and lucerastat (Idorsia Pharma-
ceuticals); and mRNA and gene therapies, isaralgagene 
civaparvovec (ST-920, Sangamo) and 4D-310 (4D Molec-
ular Therapeutics).

Like most rare diseases, there is a lack of awareness 
of FD. Additionally, there is great variability in clinical 
presentation, with many patients presenting with non-
FD-specific renal and cardiovascular diseases. Without 
properly directed further investigation, patients often are 
misdiagnosed and endure long diagnostic delays [28].

To address the critical need for earlier diagnosis, we 
have developed a statistical risk prediction model, the 
FDrisk, which is a validated, easily accessible, clinician-
friendly, online, risk-assessment scoring tool for predict-
ing an individual’s risk for FD and prompting diagnostic 
testing and clinical evaluation.

Methods
This study received approval from the Emory University 
Institutional Review Board (IRB no. 00003599). Utilizing 
electronic health records, data were collected retrospec-
tively from randomly selected, deidentified patients with 
confirmed FD treated at the Emory Lysosomal Storage 
Disease Center from 2001 through 2020. As a referral 
center of excellence for FD, the patients are from beyond 
the southeast region of the USA. The patients’ original 
clinical evaluations were undertaken by genetic counse-
lors and medical geneticists with an expertise in FD. The 
diagnosis of FD was documented by evidence of a path-
ogenic variant in GLA and/or an abnormal level of leu-
kocyte α-Gal A. Additional evidence of FD included the 
presence of symptoms consistent with FD and/or a family 
history of FD. For patients treated with ERT, information 
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was only gathered for the time period previous to receiv-
ing treatment.

Based on the opinion of clinical experts in FD, i.e., 
healthcare providers with clinical and research experi-
ence working with more than 100 patients with FD over 
a decade of time, 30 characteristic clinical features of 
FD, including relevant demographic information, were 
initially identified. Subsequently, these features were 
curated into 16 clinical covariates used as predictors for 
the risk of FD (Table 1).

Retrospective chart review was conducted to iden-
tify FD cases and controls for this study. A total of 130 
diagnosed FD cases were used as the FD case cohort for 
training FD risk prediction models. The FD case cohort 
ranges in age from 0 to 76 years old (a few patients were 
diagnosed prenatally or at birth) and is composed of 46 
males and 84 females. Another 30 diagnosed FD cases 
(12 males and 18 females; ages ranging from 0 to 65 years 
old) were reserved for testing the FD risk prediction 
models.

Deidentified, FD-negative controls were randomly 
selected from the Fabry Disease Diagnostic Testing and 
Education project database, a program within the Ameri-
can Association of Kidney Patients (AAKP) Center for 
Patient Education and Research. Through this program, 
no-cost testing is available for individuals who have 
health issues seen most often in FD and/or have a known 
family history. Individuals complete a self-response ques-
tionnaire indicating the presence or absence of 16 pos-
sible FD-related signs/symptoms. In addition, family 
members with a confirmed diagnosis of FD are identified.

Clinical data for participants in the AAKP program, 
who are listed in the database for the time period from 
2007 to 2015, were retrospectively reviewed. The available 
database only listed people with a positive family history 
of FD. A total of 297 controls with complete observations 
of these 16 clinical features were selected. These include 
130 controls (46 males and 84 females matched with the 
same gender ratio and sample size of the case group, ages 
ranging from 1 to 81 years old) for model training, and 
167 controls (71 males and 96 females, ages ranging from 
1 to 96 years old) for model testing.

In order to harmonize clinical features of the FD case 
and control groups, the more specifically described 
clinical features collected for the FD case cohort were 
grouped into the16 broader pre-established AAKP clini-
cal categories. For example, for the AAKP clinical cat-
egory “cardiac disease,” it was necessary to combine the 
following individual cardiac features found in the FD case 
group: “arrhythmia,” “bradycardia,” “conduction abnor-
mality,” “left ventricular hypertrophy,” and “cardiac val-
vulopathy” (Table  1). When identical clinical variables 
were not available, data was collected as specifically as 
possible. Note that several variables were identical, e.g., 
“tinnitus.”

Statistical methods
Training and testing samples were randomly selected 
from the whole cohort. In the training cohort, we first 
randomly selected 130 cases from all cases in our cohort 
and randomly selected the same number of controls (130) 
as the cases. The training cohort with 260 samples (168 

Table 1 Selected characteristic clinical features of Fabry disease with corresponding curated clinical covariates

Curated clinical covariates Selected characteristic clinical features of Fabry disease

Sex Sex

Age at testing Age at testing

Cornea verticillata Cornea verticillata

Hypohidrosis Hypohidrosis

Heat/cold intolerance Heat/cold intolerance

Angiokeratoma Angiokeratoma

Pain unspecified Acute burning extremity pain, chronic burning extremity pain, joint pain

Fatigue Fatigue

Numbness/tingling Numbness; tingling

Tinnitus Tinnitus

Proteinuria Proteinuria

Renal failure Renal failure

Cardiac disease Arrhythmia, bradycardia, conduction abnormality, left ventricular hyper-
trophy, cardiac valvulopathy

Transient ischemic attack/stroke Transient ischemic attack, stroke

Depression/anxiety Depression, anxiety

Gastrointestinal disease Nausea, vomiting, constipation, abdominal pain, diarrhea
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females, 92 males, equal case/control ratios for females 
and males) was used to train the risk prediction mod-
els for FD [29]. A total of 15 clinical covariates (except 
the sex variable) were considered to fit the sex-specific 
risk prediction models, and a total of 16 clinical covari-
ates were considered to fit the risk prediction model 
for all samples. A small percentage of missing values 
were observed in the FD cases and were imputed to the 
median values of FD cases of the corresponding covari-
ate. The missing rates for FD cases were < 4% for clinical 
variables except proteinuria (17%) and cornea (36%).

Because all members of the control cohort had a posi-
tive family history of FD while not all members of the FD 
case cohort had a positive family history, including the 
family history as a predictive variable in model training 
would have led to a negative effect size, which would have 
suggested that a sample with a positive family history 
of FD has less risk than one without. To avoid such bias 
caused by training data curation, the covariate of fam-
ily history of FD was excluded from our model training 
with plans to annotate the final tool with a note that all 
patients with a family history of FD should be considered 
“at risk.”

Logistic regression models with elastic-net penalty [30] 
were trained for FD cases vs. controls, respectively, for all 
samples, female samples, and male samples in the train-
ing cohort (n = 260). The elastic-net penalty is a weighted 
combination of L1 (lasso) [31] and L2 (ridge) [32] pen-
alty with one parameter alpha denoting the proportion of 
L1 (lasso) penalty and another parameter lambda denot-
ing the shared penalty magnitude. The L1 (lasso) penalty 
helped select predictive covariates, while the L2 (ridge) 
penalty helped handle correlated covariates. Both param-
eters were tuned by 10-fold cross validation [33] where 
the values leading to the highest classification accuracy 
by 10-fold cross-validations were used to train the risk 
prediction models.

A test cohort with 197 independent samples (30 cases 
and 167 controls, 114 females, 83 males) was used to test 
the model performance. Probabilities of having FD were 
predicted per sample by these fitted logistic models for 
test samples. Predicted probabilities were obtained for 
all test samples by using the risk prediction model fitted 
using all samples. Additionally, another set of predicted 
probabilities of female test samples was obtained by 
using the risk prediction model fitted using only female 
training samples, while another set of predicted prob-
abilities of male test samples was obtained by using only 
male training samples.

The prediction performance was first evaluated by 
using the prediction area under curve (AUC) values of 
the receiver operating characteristic (ROC) curves [34]. 
The AUC value indicates the probability that a randomly 

selected true case will have higher risk probability than 
a randomly selected true control. A threshold of 0.5 was 
selected to determine a predictive “case” for those with 
predicted probability ≥ 0.5 and a predictive “control” for 
those with predicted probability < 0.5. By applying this 
threshold, the prediction accuracy of the overall risk pre-
diction model and two sex-specific risk prediction mod-
els was evaluated in independent test samples using the 
overall prediction accuracy, sensitivity, and specificity. 
Test results were further stratified by age.

Results
All models performed very well, with ROC curves and 
AUC values calculated to determine the performance of 
each model: full analysis set (FAS) 0.919 (Fig.  1), male 
model 0.968, and female model 0.91 (Fig. 2).

Here, although high AUC values were partly due to a 
large proportion of controls in the test cohort, the pre-
diction model with test AUC > 0.9 is still considered to 
be very accurate. Higher AUC values, generally ranging 
between 0.5 and 1, indicate higher prediction accuracy by 
the corresponding risk prediction model.

A risk prediction threshold of ≥ 0.50, which was cho-
sen to determine if a patient is at risk for FD, was shown 
to provide the best balance between sensitivity, specific-
ity, and positive predictive value in the test results (Fig. 3 
and Fig. 4).

That is, a risk score of 50% or greater is categorized as 
“at risk” for FD. In the test cohort, the overall risk pre-
diction model demonstrated 80% sensitivity, 83.8% 
specificity, and a positive predictive value of 47.1%; the 
male-specific risk prediction model demonstrated 75% 
sensitivity, 95.8% specificity, and a positive predictive 
value of 75%; and the female-specific risk predication 
model demonstrated 83.3% sensitivity, 81.3% specificity, 
and positive predictive value of 45.5%. Stratification of 
the test cohort by age ≥ 18 years old (n = 136) or < 18 
years old (n = 61) with the FAS model showed a greater 
AUC of 0.964, a greater specificity of 94.1%, and a greater 
accuracy of 91.8% in the < 18-year-old age group com-
pared with an AUC of 0.912, specificity of 79.3%, and 
accuracy of 79.4% in the ≥ 18-year-old age group. Com-
parable sensitivity of 80% was shown for both age groups. 
The finding of greater AUC, specificity, and accuracy in 
the < 18-year-old age group is consistent with higher like-
lihood that pediatric patients with the characteristic fea-
tures of FD have the disease.

The estimated coefficients of predictive clinical vari-
ables were determined for the overall FAS model, as well 
as for the male- and female-specific models (Fig. 5).

The magnitude of the coefficients reflects the mag-
nitude of influence of the predicted risk probability by 
the corresponding clinical variables, i.e., a variable’s 
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effect size. Positive coefficients mean that the present or 
larger values of the corresponding clinical variables will 
increase the risk probability, while negative coefficients 
indicate that the present or larger values of the corre-
sponding clinical variables will decrease the risk prob-
ability. All clinical variables with non-zero coefficient 
values would contribute to the predicted risk probability. 
A clinical variable with a high positive coefficient, such 
as cornea verticillata, reflects the disease-specific mani-
festations of FD. The clinical variables with coefficients of 
smaller magnitudes are not necessarily significantly asso-
ciated with FD but would be more concerning when seen 
at an earlier age or in combination with features that sug-
gest a diagnosis.

Discussion
Clinicians in both general practice and many nongenetic 
focused sub-specialties are likely to be caring for people 
with undiagnosed FD. However, lack of awareness of FD, 
difficulty recognizing the clustering of pathologies, vague 
subjective complaints, and the lack of a detailed fam-
ily history can cause long diagnostic delays for patients 
with FD and their affected family members. Cascade test-
ing after diagnosing a patient with FD is critical since, 
on average, each patient with FD has at least five family 
members who also have FD [35]. Additionally, it needs 
to be recognized that females can be severely affected 

by FD, and that the number of females with FD has been 
profoundly underestimated partly due to limited testing 
of only α-Gal A without follow-up molecular testing of 
the GLA gene [5].

With availability of effective treatment and support 
options, increasing understanding of FD and the signif-
icant impact on quality of life [36], it has become even 
more imperative that people with FD are identified ear-
lier. To address this need, we developed a statistical risk-
prediction model, the FDrisk, which is a validated, easily 
accessible, and clinician-friendly, online, risk-assessment 
scoring tool for predicting an individual’s risk for FD 
and prompting diagnostic testing and clinical evaluation 
(Fig. 6).

As a result of a collaborative effort, the FDrisk tool 
can be accessed at FDrisk. org which is hosted and main-
tained by the ThinkGenetic Foundation, Inc. (think genet 
ic. org), a nonprofit organization dedicated to creating 
practical, informational content on genetic diseases, and 
useful resources. On the web page, the FDrisk appears as 
a real-time graphic display of the risk score which is gen-
erated by answering 16 clinical questions requiring a yes/
no response. The risk score is clearly expressed as a per-
centage of predicted risk probability and is marked on the 
graph with a vertical red  line. Anyone generating a risk 
score of 50% or greater should be sent for clinical evalu-
ation and diagnostic testing, which is available through 

Fig. 1 Fabry disease risk prediction model, ROC plot: risk prediction results of test samples for the full analysis set

http://fdrisk.org
http://thinkgenetic.org
http://thinkgenetic.org
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sponsored testing programs and standard laboratories. 
Although the most important risk factor of family his-
tory was unable to be included in the analysis, a notation 
on the tool reminds clinicians that anyone with a family 
history of FD is considered to be at high risk for FD, no 
matter the risk score, and should be sent for diagnostic 
testing.

In addition to the FDrisk, screening tools using AI 
methodology are currently in development and have 
great future potential to identify undiagnosed patients 
with FD. One such tool, the OM1 Patient Finder™ (OM1 
Inc., Boston, MA, USA), uses deidentified longitudi-
nal health history data and predictive analytics to iden-
tify patients most likely to qualify for, and participate 
in, specific trials  [37]. This includes patients who may 
have relevant but undiagnosed disease. Using data, e.g., 
medication history, prescription information, laboratory 
results, symptoms and signs, procedures, and diagnoses 
extracted from patient-level health care claims and elec-
tronic medical records Jefferies et al. [26], examined the 
performance of the OM1 Patient Finder in identifying 
patients with FD by looking at the phenotypic patterns of 

a study population of 1,004,978 patients which included 
4978 patients with confirmed FD. They concluded that 
the tool has “a very strong analytic performance” in iden-
tifying patients with FD, and that it may contribute to 
increasing the diagnosis of FD.

Michalski et al. [27] developed a decision-support scor-
ing system for FD, using natural language processing 
(NLP), to evaluate the electronic health records of 19,385 
patients, including 13 with FD from a multi-hospital Pol-
ish healthcare system. Based on physician opinion, 13 
curated clinical features of FD were chosen and scored. 
The FD risk score was determined by the sum of the 
scores for each clinical feature. A patient with a risk score 
of ≥ 4 was further evaluated. One patient in the control 
group with a score of eight as well as one patient from the 
study group with a score of three were ultimately diag-
nosed with FD. Although the scoring system achieved an 
AUC of 0.998, there were several limitations cited by the 
authors which impacted the accuracy and discrimination 
power in identifying patients with FD. The authors con-
cluded that further development and testing with a larger 
and more diverse patient population are needed.

Fig. 2 Fabry disease risk prediction model, ROC plot: risk prediction results of test samples for males and females
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Fig. 3 Fabry disease (FD) risk prediction model, box plot: predicted risk probabilities of true FD for test samples for the full analysis set

Fig. 4 Fabry disease (FD) risk prediction model, box plot: results of predicted risk probabilities of true FD for test samples for males and females
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When studying rare diseases, it is often a challenge to 
curate cohorts with hundreds of samples. However, in 
this retrospective chart review, a relatively large number 
of patients with confirmed FD and relevant clinical data 
were identified [38]. Nonetheless. there are a number 
of limitations given our available data. First, in order to 
match clinical features for the analysis, several detailed 
individual features in the case cohort were grouped 
to fit into some of the more broadly defined pre-estab-
lished categories of clinical features in the AAKP control 
cohort.

Second, due to limitations in the AAKP database, all 
the patients in the control cohort had a positive family 
history of FD. Since not all patients in the case cohort had 
positive family history of FD, family history was excluded 
in the final analysis to avoid bias caused by training data 
curation. Including family history would have falsely 

indicated that those with a positive family history have 
less risk of having FD. Nonetheless, as instructed in the 
tool, anyone with a family history of FD needs to be 
tested no matter the resulting risk score. It is important 
to note that all three prediction models (full analysis set, 
male and female) performed very well as determined 
using ROC curves and AUC values. The resulting AUC 
values, greater than 0.9 for all three models, indicate a 
high prediction accuracy by these risk prediction models.

The third limitation, ascertainment bias, is present 
since both the case and control cohorts were collected 
from single centers.

Future directions are to pilot the FDrisk in clinics such 
as cardiology, nephrology, and neurology to determine its 
clinical efficacy and promote awareness of both FD and 
this tool. Depending on these results, a “next-generation” 
tool may be generated utilizing an expanded training data 

Fig. 5 Effect size. Estimated coefficients (beta) of predictive clinical variables in Fabry disease risk prediction models. a Full analysis set (FAS). b 
Males. c Females

Fig. 6 FDrisk risk score generation. Online, real-time, interactive graphic display of the predicted Fabry disease risk probability distribution
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set which would include case and control databases with 
additional equally matched clinical variables, including 
family history.

At this time, the FDrisk, as an open and easily acces-
sible, user-friendly tool, can generate a risk score in the 
clinic using information directly obtained from the 
patient. With its ease of use, and availability online, inves-
tigators may choose to study the clinical efficacy of the 
FDrisk in their own populations. Eventually, the FDrisk 
tool could be used in the screening of a large number of 
patients by applying it to data captured from the elec-
tronic medical records of selected groups in concert with 
an AI-based model.

Conclusion
We believe that the implementation of this FDrisk tool 
will have a positive impact on people with FD and their 
families by increasing the number of people screened for 
FD, decreasing the frequency of missed and misdiagno-
ses, and leading to earlier and correct diagnosis. Once 
identified, patients can be appropriately treated by cli-
nicians experienced in the care of individuals with FD 
along with a team of multidisciplinary specialists who 
can provide appropriate drug treatment, organ-specific 
management, treatment of variable adjuvant conditions, 
genetic counseling, and psychosocial support. Initiating 
earlier disease-specific therapy could slow disease pro-
gression and development of complications [39, 40] and 
ultimately make a meaningful difference in the lives of 
people living with FD.
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