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Abstract 

Nickel (Ni), a component of urease, is a micronutrient essential for plant growth and development, but excess Ni 
is toxic to plants. Tomato (Solanum lycopersicum L.) is one of the important vegetables worldwide. Excessive use of fer-
tilizers and pesticides led to Ni contamination in agricultural soils, thus reducing yield and quality of tomatoes. How-
ever, the molecular regulatory mechanisms of Ni toxicity responses in tomato plants have largely not been elucidated. 
Here, we investigated the molecular mechanisms underlying the Ni toxicity response in tomato plants by physio-
biochemical, transcriptomic and molecular regulatory network analyses. Ni toxicity repressed photosynthesis, induced 
the formation of brush-like lateral roots and interfered with micronutrient accumulation in tomato seedlings. Ni toxic-
ity also induced reactive oxygen species accumulation and oxidative stress responses in plants. Furthermore, Ni toxic-
ity reduced the phytohormone concentrations, including auxin, cytokinin and gibberellic acid, thereby retarding plant 
growth. Transcriptome analysis revealed that Ni toxicity altered the expression of genes involved in carbon/nitrogen 
metabolism pathways. Taken together, these results provide a theoretical basis for identifying key genes that could 
reduce excess Ni accumulation in tomato plants and are helpful for ensuring food safety and sustainable agricultural 
development.
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Introduction
Nickel (Ni) is an essential trace element in plants; how-
ever, excess Ni is toxic to plant growth and develop-
ment (Ghasemi et  al. 2009). Ni toxicity inhibits plant 
growth by affecting photosynthesis, root elongation 
and nutrient uptake, thereby reducing crop yields (Has-
san et al. 2019). Ni is one of the 23 metallic pollutants 
that make up 3% of the total composition of the earth 
(Duda-Chodak and Blaszczyk 2008). In recent years, 

with the acceleration of urbanization and industrializa-
tion, Ni toxicity has become a worldwide problem that 
threatens sustainable agricultural development (Yusuf 
et  al. 2011; Pan et  al. 2018). Ni deposition in agricul-
tural soils occurs mainly through natural (wind and 
sand, volcanic eruptions, etc.) and anthropogenic activ-
ities (composting, increased use of greenhouses, low 
recycling of mulch, etc.) (Ameen et  al. 2019; Xu et  al. 
2022). In China, a national survey showed that 4.8% of 
farmland soil was contaminated with Ni, making it the 
second most important soil pollutant (Zhao et al. 2015). 
As a mobile element, Ni can migrate from soil to edible 
parts of crops. Bioaccumulation of Ni in edible parts 
of crops increases food chain contamination (Cempel 
and Nikel 2006). Excessive exposure to Ni can lead to 
diseases such as cancer, and fibrosis of the lungs, pos-
ing a serious threat to human health (Genchi et  al. 
2020). Therefore, reducing the uptake of Ni by plants in 
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Ni-enriched soils and increasing the tolerance of plants 
to Ni toxicity are highly important for ensuring ecosys-
tem health and sustainable agricultural development.

The plant root system absorbs Ni in ionic form from 
the soil by active and passive migration (Ameen et  al. 
2019). Ni uptake is an active process via ZRT/IRT-like 
(ZIP) transporters and Natural resistance-associated 
macrophage proteins (NRAMPs) with low specificity 
in plants (Mizuno et  al. 2005). In addition, members 
of the Mg2+-transporting MRS/MGT family in Arabi-
dopsis exhibit Ni2+ uptake activity (Li et  al. 2001). Ni 
translocation and accumulation are facilitated by bind-
ing to intracellular metal chelators, such as nicotina-
mide (NA), histidine (His) and organic acids (citric acid 
and malate). The maize yellow stripe-like (YSL) trans-
porter ZmYS1 mediates long-distance transport of the 
Ni(II)-NA complex in plants (Schaaf et al. 2004). After 
Ni enters plants, it is usually stored in epidermal cells 
and vesicles rather than within the cell wall (Ahmad 
and Ashraf 2011). Arabidopsis IRON REGULATED 2 
(IREG2), which is localized in the vacuolar membrane, 
is a core gene involved in the Ni toxicity response and 
in the transport of Ni into root vacuoles. Overexpres-
sion of IREG2 results in increased Ni tolerance and 
increased Ni accumulation in roots (Schaaf et al. 2006).

Phytohormones play crucial roles in coordinating 
stress and growth to survive heavy metal toxicity (Saini 
et al. 2021; Cha et al. 2022; Bhat et al. 2023). The exog-
enous auxin indole-3-acetic acid (IAA) alleviates Ni 
toxicity, and overexpression of the auxin biosynthe-
sis-related gene YUC6 improves Ni toxicity tolerance 
by enhancing peroxidase (PRX) activity and reducing 
reactive oxygen species (ROS) accumulation through 
thiol-reductase (TR) activity in YUC6 in Arabidopsis 
(Cha et  al. 2022). Gibberellic acid (GA) promotes Ni 
sequestration in vesicles and transport by upregulat-
ing the expression of GmPC1 in soybean plants (Bhat 
et al. 2023); moreover, GA also upregulates the expres-
sion of catalase (CAT​), iron superoxide dismutase (Fe-
SOD), ascorbate peroxidase (APX) and glutathione 1 
(GSH1), thus alleviating excess Ni-induced oxidative 
damage in soybean plants and ultimately improving 
yield (Bhat et al. 2023). Exogenous abscisic acid (ABA) 
can effectively reduce root Ni absorption and alleviate 
Ni-induced oxidative damage through the nitric oxide 
(NO) and hydrogen peroxide (H2O2) signaling pathways 
(Parwez et al. 2023). Inhibition of ethylene production 
improves Ni toxicity tolerance by reducing ROS overac-
cumulation (Khan and Khan 2014). JA (jasmonic acid) 
and SA (salicylic acid) both improve Ni toxicity toler-
ance by increasing the content of osmoregulatory sub-
stances and antioxidant enzyme activities (Wang et al. 
2009; Sirhindi et al. 2016).

Tomato (Solanum lycopersicum L.) is one of the pop-
ular vegetables worldwide (Vats et  al. 2022). Excessive 
use of fertilizers and pesticides, sewage irrigation and 
manure has resulted in Ni contamination in agricultural 
soils (Hassan et  al. 2019; Roccotiello et  al. 2022). How-
ever, the mechanisms underlying the Ni toxicity response 
in tomato plants have not been fully elucidated. In this 
study, we investigated the molecular regulatory network 
of tomato plants in response to Ni stress. Our results 
provide a theoretical basis for identifying key genes and 
signaling pathways that could reduce excess Ni accumu-
lation in tomato plants and are helpful for ensuring food 
safety and sustainable agricultural development. These 
results obtained in this study provide a theoretical basis 
for an in-depth investigation of the adaptive mechanisms 
of tomatoes in response to Ni toxicity.

Results
Physiological effects of Ni toxicity on tomato seedling 
growth
Ni toxicity markedly inhibited plant growth (Fig. 1). The 
tomato plants exhibited severe dwarfing under Ni toxic-
ity (Fig. 1A and B). Compared with those of the control, 
Ni toxicity reduced the fresh weight (FW), dry weight 
(DW) and the water contents of the leaves and roots of 
tomato plants (Fig. 1C-H). Ni toxicity also inhibits stem 
growth (Fig. 1I). Ni toxicity inhibited primary root (PR) 
growth but induced lateral root (LR) formation (Fig. 1J-
M). Notably, Ni toxicity induced the formation of brush-
like LRs in the region originally occupied by the mature 
zone of the root tips, especially under 30 μM Ni toxicity 
(Fig.  1K), suggesting that excess Ni leads to the prema-
ture differentiation of the root apical meristem in tomato 
plants. In addition, Ni toxicity also markedly inhibited 
leaf growth (Fig. 1N and O).

Ni toxicity results in leaf chlorosis in tomato seed-
lings. Compared with those in the control, the chloro-
phyll contents in the 30 and 50 μM Ni treatment groups 
were reduced by 14.3% and 18.4%, respectively (Fig. 2A). 
Subsequently, we examined chlorophyll fluorescence 
in tomato leaves (Fig.  2B-G). Under 30 and 50  μM Ni 
treatments, qN increased by 15.9% and 15.0%, respec-
tively (Fig.  2C); Y(NPQ) increased by 22.1% and 25.3%, 
respectively (Fig. 2D); Fv/Fm decreased by 0.8% and 2.3%, 
respectively (Fig.  2E); and Y(II) decreased by 5.0% and 
9.2%, respectively (Fig.  2F). Furthermore, qP decreased 
by 3.1% under 50 μM Ni toxicity (Fig. 2G).

We then examined the trace element contents in the 
tomato plants. After 30 μM Ni treatment, the Ni content 
in the leaves and roots increased by 23.5-fold and 41.2-
fold, respectively, compared to that in the control (Fig. 3A 
and B). Under Ni stress, the Fe content decreased by 30.4% 
and 20.5% in the leaves and roots, respectively (Fig.  3C 
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and D); the copper (Cu) content decreased by 34.8% in the 
leaves but increased by 1.07-fold in the roots (Fig. 3E and 
F); the manganese (Mn) content decreased by 4.2% and 

55.5%, respectively, in the leaves and roots (Fig. 3G and H); 
and the zinc (Zn) content decreased by 19.5% in the leaves 
but increased by 11.5% in the roots (Fig. 3I and J).

Fig. 1  Nickel toxicity inhibited tomato seedling growth. Twenty-five-day-old tomato seedlings were transferred to fresh 1/4 Hoagland solution 
supplemented with or without 30 μM Ni or 50 μM Ni for 5 days. A-I, Representative images showing the plant phenotype (bar = 5 cm) (A), plant 
height (B), root fresh weight (FW) (C), root dry weight (DW) (D), leaf FW (E), leaf DW (F), root water content (G), leaf water content (H) and stem 
diameter (I) were measured. J-O, Representative images showing the root phenotype (bar = 5 cm) (J), the outgrowth of lateral roots (LRs) at the root 
tips (bar = 1 mm) (K), the primary root (PR) length (L) and the average LR number (M). N and O, Representative images showing the leaf phenotype 
(bar = 1 cm) (N), and the leaf area was measured (O). The values are given as the means ± SDs (n = 3, 6 seedlings/treatment), (* P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001; ANOVA)
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Transcriptome analysis
A transcriptome analysis was performed to detect the 
differentially expressed genes (DEGs) in the roots of 
tomato plants after 0, 4, 6, 12, or 24 h of 50 μM Ni treat-
ment (Supplementary Fig.  1; Supplementary Table  1). 
A total of 94.94 Gb of clean data was obtained, and the 
percentage of Q30 bases in each sample was not less than 
93.42%. Hierarchical clustering (Supplementary Fig. 1A) 
and intragroup correlation analysis were performed using 
Pearson’s correlation coefficient (Supplementary Fig. 1B), 
which revealed clear differences among the five treat-
ment groups and good similarity among the three bio-
logical replicates in each group. A total of 2,713 DEGs 
were identified in Ni-4 h/control (1,775 upregulated and 
938 downregulated genes), 1,804 DEGs were identified 
in Ni-6  h/control (1,248 upregulated genes, 556 down-
regulated genes), 1,690 DEGs were identified in Ni-12 h/

control (767 upregulated, 923 downregulated genes), 
and 1,561 DEGs were identified in Ni-1d/control (800 
upregulated, 761 downregulated genes) (false discovery 
rate (FDR) < 0.01 and log2 FC > 1 or < -1) (Supplementary 
Fig. 1C). We randomly selected seven genes to verify the 
accuracy of the transcriptome data, and the RT‒qPCR 
results showed good consistency between the RT‒qPCR 
and transcriptome data, indicating that the transcrip-
tome data were reliable (Supplementary Fig. 1D and E).

We then performed weighted gene coexpression 
network analysis (WGCNA). A power value of 25 
was selected as the optimal soft threshold in the net-
work topology (Supplementary Fig. 2). A total of eight 
modules were generated from the WGCNA, and four 
significant modules were screened by correlation anal-
ysis between the modules and samples (correlation 
coefficient > 0.9, P < 0.05) (Supplementary Fig.  3A-E). 

Fig. 2  Effects of nickel toxicity on photosynthesis in tomato seedlings. Twenty-five-day-old tomato seedlings were transferred to fresh 1/4 
Hoagland solution supplemented with or without 30 μM Ni or 50 μM Ni for 5 days. A, SPAD values. B-G, Representative images showing 
the chlorophyll fluorescence parameters (B) and the quantification of qN (C), Y (NPQ) (D), Fv/Fm (E), Y(II) (F) and qP (G). The values are given as the 
means ± SDs (n = 3, 6 seedlings/treatment). One-way analysis of variance (* P < 0.05, ANOVA)
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Subsequently, a network diagram of the gene ontol-
ogy (GO) enrichment analysis was constructed based 
on these significant modules. The four major regions 
were divided according to different biological func-
tions in these modules, including metabolism, signaling 
pathways, response to the stimulus and transport (Sup-
plementary Fig.  4). DEGs in the green module, which 
were involved mainly in “transport” and “response to 
stimulus”, were generally upregulated after Ni treat-
ment; DEGs in the blue module, which were involved 

mainly in “hormone signaling”, “oxidative stress”, “metal 
ion transport”, “channel activity” and “nitrogen com-
pounds”, were generally downregulated after Ni treat-
ment; and DEGs in the brown module, which were 
involved mainly in “amino acid metabolism”, “signaling 
pathways” and “hormone signaling”, were continuously 
upregulated after Ni treatment, reaching a peak at 4 h 
and then downregulated. No significant GO enrich-
ment category was obtained from the pink module 
(Supplementary Figs. 3 and 4).

Fig. 3  Nickel toxicity affects micronutrient element contents in tomato seedlings. A-J, Twenty-five-day-old tomato seedlings were transferred 
to fresh 1/4 Hoagland solution with or without 30 μM Ni for 5 d, the content of Ni in leaves (A) and roots (B), Fe in leaves (C) and roots (D), Cu 
in leaves (E) and roots (F), Mn in leaves (G) and roots (H), and Zn in leaves (I) and roots (J) were determined. The values are given as the means ± SDs 
(n = 3, 6 seedlings/treatment), (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, ANOVA)
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Ni toxicity alters the expression of genes involved in metal 
ion accumulation in roots
The above results showed that Ni toxicity affected the 
accumulation of trace elements (Fig. 3). GO enrichment 
analysis also revealed that Ni toxicity modulated metal 
ion transport (Supplementary Fig.  4). We thus investi-
gated the genes involved in metal ion accumulation, 
and 25 DEGs were identified in the tomato roots (Sup-
plementary Fig.  5; Supplementary Table  2). bHLH100 
is an iron (Fe) deficiency-responsive transcription fac-
tor that upregulates the expression of genes related to 
Fe uptake and accumulation, such as iron-regulated 
transporter 1 (IRT1) and FRO2, in plants (Hirayama 
et al. 2018; Wang et al. 2020). Ni toxicity downregulated 
bHLH100-like (bHLH100L) expression (Supplementary 
Fig.  5). Moreover, the expression of FRO1 and FRO2 
was also significantly downregulated after Ni treatment 
(Supplementary Fig.  5). Vacuolar iron transfer pro-
teins (VITs) are responsible for Fe storage in vacuoles 
(Cao 2019). NRAMPs modulate the uptake and com-
partmentalization of divalent ions such as Fe2+, Mn2+, 
Cu2+, Zn2+, Cd2+ and Ni2+ in plants (Cun et  al. 2014). 
Metal tolerance proteins (MTPs) mediate ionic home-
ostasis by regulating the uptake of Zn2+, Fe2+, Co2+, 
Ni2+, Cd2+ and Mn2+ in plants (Socha and Guerinot 
2014). Similarly, the expression of NRAMP1, five VIT 
and three MTP genes was significantly downregulated 
after Ni treatment (Supplementary Fig.  5). bZIP23 is a 
Zn sensor that modulates Zn uptake in cells by induc-
ing the expression of ZIPs (Lilay et al. 2019). Ni toxicity 
upregulated bZIP23 expression (Supplementary Fig. 5). 
Furthermore, the expression of the three ZIP genes was 
also significantly upregulated after Ni treatment (Sup-
plementary Fig.  5). IREG3 is involved in Fe export to 
mitochondria (Kim et  al. 2021). The metal-nicotian-
amine transporter YSLs play a role in the long-distance 
transport of metal ions (Curie et  al. 2009). The cop-
per transporters (CTRs) are involved in Cu ion uptake 
(Vatansever et  al. 2017). The expression of the IREG3, 
YSL2 and two CTRs was also significantly upregulated 
after Ni treatment (Supplementary Fig. 5).

Ni toxicity affects phytohormone levels and the expression 
of genes involved in phytohormone signaling pathways
GO enrichment analysis revealed that several path-
ways involved in the response to phytohormones were 
enriched in the roots of the Ni-treated tomato plants 
(Supplementary Fig. 4). Therefore, we investigated DEGs 
associated with phytohormone biosynthesis (Fig. 4; Sup-
plementary Table  3). Ni toxicity downregulated the 
expression of 9-cis-epoxycarotenoid dioxygenase (NCED), 
a key ABA biosynthesis gene, whereas it upregulated the 
expression of phenylalanine ammonia-lyase (PAL), a SA 

biosynthesis-related gene (Fig.  4). ACC synthase (ACS) 
and ACC oxidase (ACO) are the key genes involved in 
the biosynthesis of the ethylene precursor 1-aminocy-
clopropane-1-carboxylic acid (ACC) and ethylene in 
plants (Houben and Van de Poel 2019). The expression 
of two ACS genes and three ACO genes was upregulated, 
whereas the other three ACO genes were downregulated 
(Fig.  4). In the brassinolide (BR) biosynthesis pathway, 
the expression of one sterol-C24-methyltransferase 1 
(SMT1) gene and one cytochrome P450 CYP92A6 gene 
was upregulated (Fig.  4). In the GA biosynthesis path-
way, the expression of ent-kaurenoic acid monooxyge-
nase (KAO) was downregulated, whereas two gibberellin 
2 beta-dioxygenase (GA2ox) genes involved in the deac-
tivation of bioactive GAs were upregulated (Fig.  4). 
Tryptophan aminotransferase (TAA​) and aldehyde dehy-
drogenase (NAD +) (ALDH) are the key genes involved in 
IAA biosynthesis. The expression of one TAA​ gene was 
downregulated, whereas one ALDH gene was upregu-
lated (Fig. 4). In the cytokinin biosynthesis pathway, the 
expression of two adenylate dimethylallyl transferase 
(IPT) genes involved in cytokinin biosynthesis and one 
cytokinin dehydrogenase (CKX) gene involved in irrevers-
ible degradation of cytokinin was downregulated, while 
the expression of one cis-zeatin O-glucosyl transferase 
(CISZOG) and two glucosyltransferase 73C (UGT73C) 
involved in inactivation of cytokinin was upregulated 
(Fig. 4). In the JA biosynthesis pathway, the expression of 
one OPC-8:0 CoA ligase 1 (OPCL1), one secretory phos-
pholipase A2 (PLA2G) and two lipoxygenase 2S (LOX2S) 
was upregulated, whereas one hydroperoxide dehydratase 
(AOS) and one 12-oxophytodienoic acid reductase (OPR) 
gene were downregulated by Ni toxicity (Fig. 4).

We subsequently determined the phytohormone con-
tents in the roots of the Ni-treated tomato plants. As 
shown in Fig. 5A-E, after 12 h of Ni treatment, the lev-
els of IAA, ABA, GA and the two cytokinins trans-zeatin 
riboside (tZR) and isopentenyl-adenine (iP) decreased by 
63.1%, 62.8%, 7.3%, 19.1% and 49%, respectively, while 
they decreased by 69.0%, 65.0%, 11.0%, 25.2% and 55.6%, 
respectively, after 24 h of Ni treatment.

Subsequently, we investigated the expression of 
DEGs involved in phytohormone signaling pathways 
(Fig.  6; Supplementary Table  4). In the auxin pathway, 
the expression of two GH3 genes, one auxin influx car-
rier AUXIN 1 (AUX1), two PIN-FORMED (PIN) auxin 
exporters PIN4 and PIN9, one AUX/IAA and four SAUR​ 
genes was downregulated, whereas two PIN genes (PIN5 
and PIN10), one AUX/IAA gene and five SAUR​ genes 
was upregulated. Ni toxicity inhibits the cytokinin, GA, 
JA and SA signaling pathways in the roots of Ni-treated 
tomatoes. In the cytokinin pathway, the expression of two 
A-ARR​ genes, one B-type response regulator (B-ARR​) 
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and one cytokinin response 1 (CRE1) was downregulated. 
In the GA pathway, the expression of one GA receptor 
gene, gibberellin insensitive dwarf 1 (GID1), and one GA-
responsive gene, phytochrome-interacting factor (PIF), 
was downregulated. In the JA pathway, the expression of 
two jasmonate resistant 1 (JAR1) genes involved in the 
biosynthesis of JA-Ile, and one jasmonate ZIM-domain 
(JAZ) gene, which is the repressor of JA signaling, was 
downregulated, whereas the other two JAZ genes were 
upregulated. In the SA pathway, the expression of three 

TGA​ and two NPR1 was downregulated. In addition, Ni 
toxicity affects the signaling pathways of ABA, ethyl-
ene and BR. In the ABA pathway, the expression of one 
ABRE-binding factor (ABF), one protein phosphatase 2C 
(PP2C) and two pyrabactin resistance/PYR-like (PYR/
PYC) was upregulated, whereas the expression of two 
other PYR/PYC genes and one core component of ABA 
signaling, the sucrose nonfermenting-1-related protein 
kinase 2 (SnRK2) gene, was downregulated. In the ethyl-
ene pathway, the expression of one positive regulator of 

Fig. 4  Expression of genes related to phytohormone biosynthesis in tomato roots in response to excess Ni. The heatmaps show the gene 
expression patterns according to the log2(fold change), and the asterisks in the heatmaps represent the DEGs
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one EIN2, two ETR genes and one EBF1 gene was down-
regulated, whereas the other one ethylene receptor eth-
ylene response (ETR), one negative regulator of ethylene 
signaling constitutive triple response 1 (CTR1) and two 
positive regulators of ethylene signaling EIN3 genes was 
upregulated. In the BR pathway, the expression of two 
downstream BR-responsive genes, cyclin D3 (CYCD3) 
and xyloglucan:xyloglucosyl transferase (TCH4), was 
downregulated and upregulated, respectively (Fig. 6).

Ni toxicity induces oxidative stress response
GO enrichment analysis revealed that Ni toxicity induced 
oxidative stress responses in tomato roots (Supplemen-
tary Fig. 4). Therefore, we investigated the DEGs associ-
ated with the antioxidant system (Fig. 7A; Supplementary 
Table 5). Ni toxicity altered the expression patterns of the 
peroxidase (POD) and catalase (CAT​) genes (Fig.  7A). 
The expression of the CAT3 gene was upregulated after 

12  h of Ni treatment. Ni toxicity also markedly induces 
the expression of lignin-forming anionic POD genes and 
cationic POD genes, thereby regulating cell wall metab-
olism and root system growth in response to excess Ni 
(Tamás et  al. 2007). Furthermore, after excess Ni treat-
ment, 50% of the POD genes were upregulated, whereas 
47% of the POD genes were downregulated in the tomato 
roots (Fig. 7A).

We then examined antioxidative enzyme activities 
in tomato plants. Ni stress increased the activities of 
superoxide dismutase (SOD) and peroxidase (POD) 
both in leaves and roots; however, it did not signifi-
cantly affect catalase (CAT) activity (Fig. 7B-G). Next, we 
detected ROS levels in tomato seedlings under Ni toxic-
ity. 3,3’-diaminobenzidine (DAB) and nitroblue tetra-
zolium (NBT) staining further revealed that Ni toxicity 
induced H2O2 and O2

.− accumulation, respectively, in 
the leaves (Fig. 7H and I). Visualization of ROS levels by 
a 2,7-dichlorofluorescein diacetate (DCFH-DA) fluores-
cence probe showed that Ni toxicity induced ROS accu-
mulation in roots (Fig. 7J). The quantitative detection of 
H2O2 content also confirmed these results (Fig.  7K and 
L). The malondialdehyde (MDA) content reflects the 
degree of oxidative damage in plants (Hodges et al. 1999). 
Ni toxicity did not significantly induce MDA accumula-
tion in the leaves (Fig. 7M). However, the root MDA con-
tent increased by 51.1% and 70% after 5  days of 30 and 
50 μM Ni treatment, respectively (Fig. 7N).

Ni toxicity alters the expression of genes associated 
with the primary metabolism
GO enrichment analysis revealed that Ni toxicity altered 
metabolic processes in tomato roots (Supplementary 
Fig. 4). Therefore, we analyzed the DEGs involved in car-
bon and primary nitrogen metabolism (Fig.  8; Supple-
mentary Table 6). In glycolysis pathway, the expression of 
one hexokinase (HK), one fructose-bisphosphate aldolase 
(ALDO), one enolase (ENO) and one pyruvate kinase (PK) 
gene was upregulated under Ni toxicity, but one HK and 
one 6-phosphofructokinase A (pfkA) gene were down-
regulated (Fig. 8). In the pentose phosphate pathway, the 
expression of one G6PD gene and one 6-phosphogluconate 
dehydrogenase (PGD) gene was downregulated, whereas 
one ribose 5-phosphate isomerase A (rpiA) gene was upreg-
ulated (Fig. 8). In the glyoxylate and C4-dicarboxylic acid 
cycle pathway, the expression of one glutamic-oxaloacetic 
transaminase 2 (GOT2), one malate synthase (MS), one 
malate dehydrogenase (ME2), one glutamate: glyoxylate 
aminotransferase (GGAT​) and two phosphoenolpyruvate 
carboxylase (PPC) genes was downregulated, whereas one 
ME2 gene was upregulated (Fig.  8). In the biosynthetic 
pathway of cysteine, the expression of one serine acetyl-
transferase (cysE) gene was upregulated after Ni treatment, 

Fig. 5  Ni toxicity affects phytohormone levels in the roots of tomato 
seedlings. Twenty-five-day-old tomato seedlings were transferred 
to fresh 1/4 Hoagland solution supplemented with or without 50 μM 
Ni for 12 h or 1 d, after which the contents of IAA (A), ABA (B), tZR 
(C), iP (D) and GA (E) were determined. The values are given as the 
means ± SDs (n = 3, 6 seedlings/treatment), (* P < 0.05, ANOVA)
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whereas the expression of one cysteine synthase (cysK) 
gene was upregulated after 4 and 6 h of Ni treatment but 
downregulated after 1 d of Ni treatment (Fig.  8). In the 
primary nitrogen metabolism pathway, the expression of 
two ferredoxin-nitrite reductases (nirA), two glutamine 

synthetases (glnA) and one carbonic anhydrase (CA) gene 
was downregulated, whereas one CA gene was upregu-
lated, and one high-affinity nitrate transporter (NRT) gene 
was downregulated after 6 and 12 h of Ni treatment and 
subsequently upregulated after 1 d of Ni treatment (Fig. 8).

Fig. 6  Expression of genes involved in phytohormone signaling pathways in tomato roots in response to excess Ni. The heatmaps show the gene 
expression patterns according to the log2(fold change), and the asterisks in the heatmaps represent the DEGs

Fig. 7  Nickel toxicity induced oxidative damage and affected antioxidant enzyme activities in tomato seedlings. A, Heatmaps showing 
the expression patterns of antioxidative enzyme-encoding genes according to the log2-fold change, and the asterisks in the heatmaps represent 
the DEGs. B-G, Twenty-five-day-old tomato seedlings were transferred to fresh 1/4 Hoagland solution supplemented with or without 30 μM Ni 
or 50 μM Ni for 12 h, 1 d, 3 d, or 5 d, after which the leaf superoxide dismutase (SOD) activity (B), root SOD activity (C), leaf catalase (CAT) activity (D), 
root CAT activity (E), leaf peroxidase (POD) activity (F) and root POD activity (G) were determined. The values are given as the means ± SDs. Different 
letters indicate significant differences (P < 0.05). H-N, Twenty-five-day-old tomato seedlings were transferred to fresh 1/4 Hoagland nutrient 
solution supplemented with or without 30 μM Ni or 50 μM Ni for 5 days. H, DAB staining. I, NBT staining. Bar = 1 cm. J, DCFH-DA fluorescence 
staining showing ROS levels in the root tips (bar = 500 μm). K-N, Twenty-five-day-old tomato seedlings were transferred to fresh 1/4 Hoagland 
nutrient solution supplemented with or without 30 μM Ni or 50 μM Ni for 12 h, 1 d, 3 d, or 5 d, after which the H2O2 (K, L) and MDA (M, N) contents 
in the leaves (K, M) and roots (L, N) were determined. The values are given as the means ± SDs (n = 3, 6 seedlings/treatment). Different letters 
indicate significant differences (P < 0.05, ANOVA)

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Discussion
Excess Ni inhibits growth and development and reduces 
yield and quality in crops (Ameen et al. 2019). Our study 
also indicated that excess Ni inhibits plant growth by 
decreasing the water content, chlorophyll level and PSII 
activity (Figs.  1 and 2). Ni toxicity inhibits root system 

growth and reduces the number of LRs in rice (Seregin 
et al. 2003; Rizwan et al. 2022), whereas it increases the 
density of LRs in Arabidopsis (Leškovï et  al. 2020). We 
found that although excess Ni (30 or 50 μM) inhibited PR 
growth, it markedly induced LR formation and the for-
mation of brush-like LRs at the root tips in tomato plants 

Fig. 8  Expression of genes associated with carbon and nitrogen metabolism pathways in tomato roots in response to excess Ni. The heatmaps 
show the gene expression patterns according to the log2(fold change), and the asterisks in the heatmaps represent the DEGs
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(Fig. 1J-M). This difference suggested that there were dif-
ferent response mechanisms involved in modulating root 
system growth in response to Ni toxicity between dicoty-
ledons and monocotyledons. Increased LRs improve the 
absorption of water and nutrients, which is beneficial for 
enhancing plant tolerance to heavy metal toxicity. There-
fore, this may be an adaptative mechanism for Arabidop-
sis and tomato plants in response to Ni toxicity. However, 
the underlying molecular mechanisms still need further 
clarification. Heavy metal toxicity interferes with the car-
bon and nitrogen supplies in plants (Ghori et  al. 2019). 
A previous study demonstrated that Ni toxicity affects 
carbon and nitrogen metabolism in wheat (Gajewska and 
Skłodowska 2009; Gajewska et  al. 2013). In support of 
these results, our results indicated that Ni toxicity altered 
the expression of genes involved in primary carbon and 
nitrogen metabolism (Fig.  8), ultimately modulating the 
adaptation of tomato plants to Ni toxicity.

Ni toxicity induced the expression of divalent metal 
cation long-distance transporter YSL2, metal trans-
membrane transporter NRAMP3-Like and divalent ion 
transporters ZIPs in roots (Mizuno et  al. 2005; Oomen 
et  al. 2009; Chu 2010) (Supplementary Fig.  5), thereby 
maintaining the uptake and accumulation of metal 
micronutrients in plants (Fig. 3A and B). Ni toxicity also 
upregulates the expression of two Cu transporter CTRs 
in roots. Consistent with these results, the Cu concentra-
tion in the roots was elevated in the Ni-treated tomato 
plants (Fig. 3F). FRO is responsible for Fe reduction from 
Fe3+ to Fe2+ (Bernal et  al. 2012); subsequently, IRT1 
transports Fe2+ into roots (Brumbarova et al. 2015). The 
Fe deficiency-responsive bHLH100-like gene encodes a 
transcription factor that directly upregulates the expres-
sion of IRT1 and FRO2, thereby positively regulating 
Fe uptake. Ni toxicity downregulated the expression of 
bHLH100-like, FRO1/2 and IRT1 in roots (Supplemen-
tary Fig.  5); consistent with these results, the Fe lev-
els in the leaves and roots of the Ni-treated plants were 
reduced (Fig.  3C and D). VITs are excess Fe-responsive 
genes that are involved in Fe compartmentalization in 
vacuoles (Kim et  al. 2006; Peng and Gong 2014); more-
over, Ni toxicity decreases Fe accumulation; therefore, 
VIT expression was downregulated in Ni-treated tomato 
roots (Fig.  3C and D; Supplementary Fig.  5). Ni toxic-
ity induced the Zn sensor bZIP23 expression, and three 
ZIP genes was also induced in the roots (Supplementary 
Fig. 5). Consistent with this result, Ni toxicity increased 
Zn accumulation in roots (Fig.  3J). Fe, Cu and Mn are 
essential components for maintaining chlorophyll struc-
ture and activity (Ahmad and Ashraf 2011). Ni toxicity 
reduces the levels of Fe, Cu and Mn in leaves (Fig. 3C, E 
and G), thereby repressing photosynthetic efficiency in 
tomato plants (Fig. 2).

Ni toxicity induces ROS overproduction in tomato 
plants (Fig.  7H-L). This result is consistent with pre-
vious reports that Ni toxicity induces oxidative dam-
age in plants (Gajewska et  al. 2006; Gajewska and 
Skłodowska 2007). ROS accumulation in roots pro-
motes LR formation (Orman-Ligeza et  al. 2016). 
Indeed, we observed brush-like LRs in the root tips 
of the Ni-treated tomato plants (Fig.  1J-M). Antioxi-
dative enzymes play an important role in maintain-
ing ROS homeostasis in vivo and preventing oxidative 
damage in plants under abiotic stresses (Dubey and 
Pandey 2011). Ni toxicity upregulated the expression 
of several POD genes and increased POD activity in 
tomato plants (Fig. 7A, F and G). Moreover, Ni toxicity 
also increased SOD activity in tomato plants (Fig.  7B 
and C) but did not affect the expression of SOD genes 
in roots. In addition, Ni toxicity upregulated CAT3 
expression in roots (Fig.  7A) but did not alter CAT 
activity (Fig. 7D and E). These results collectively indi-
cated that Ni toxicity modulates antioxidative enzyme 
activities at both the transcriptional and posttran-
scriptional levels.

In this study, we found that excess Ni decreased the 
concentrations of auxin, cytokinin and GA in tomato 
roots (Fig. 5A-E), thereby slowing plant growth. Leškovï 
et  al. (2020) reported that a high concentration of Ni 
(100 and 150  μM) inhibits PR growth by repressing 
PIN2 abundance in root tips. We found that Ni toxicity 
(50 μM) upregulated the expression of PIN5 and PIN10 
but downregulated the expression of PIN4, PIN9 and 
AUX1 in roots (Fig.  6), suggesting that excess Ni inter-
feres with root auxin transport and distribution, thus 
modulating root system architecture. However, the 
detailed molecular mechanisms need to be further elu-
cidated. Excess Ni downregulated IPT gene expression 
(Fig. 4). In support of these results, the contents of tZR 
and iP decreased in the roots of the Ni-treated plants 
(Fig. 5C-D). In addition, Ni toxicity also upregulated the 
expression of the GA-inactivating enzyme GA2ox; con-
sistent with these results, the GA content decreased in 
the roots (Figs. 4 and 5E). ABA plays important roles in 
modulating abiotic stress tolerance in plants. However, 
we found that Ni toxicity reduces ABA levels in roots 
(Fig.  5). Moreover, Ni toxicity upregulated the expres-
sion of PP2C genes, which are negative regulators of 
ABA signaling, while it downregulated the expression 
of ABA biosynthesis-related NCED genes, as well as 
the SnRK2 gene, the core component of ABA signaling, 
thereby potentially inhibiting the ABA signaling pathway 
(Figs. 4 and 6). However, the detailed molecular mecha-
nism by which excess Ni represses ABA levels and the 
ABA signaling pathway in tomato roots still need to be 
further elucidated.
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Conclusion
In summary, this study investigated the physiological and 
molecular mechanisms underlying excess Ni-mediated 
growth in tomato plants via physio-biochemical and tran-
scriptomic analyses. The results indicated that (i) excess 
Ni reprogrammed root system architecture by induc-
ing the formation of brush-like LRs in tomato plants; (ii) 
excess Ni interfered with micronutrient accumulation 
and photosynthesis efficiency; (iii) excess Ni altered the 
expression of genes involved in primary metabolic pro-
cesses; (iv) excess Ni reduced the levels of IAA, cytokinin 
and GA, ultimately maintaining tomato plant survival 
under Ni toxicity (Fig. 9). This work provides a basis for 
future in-depth studies of the molecular mechanisms 
involved in the Ni toxicity response in tomato plants.

Materials and methods
Plant materials and growth conditions
Tomato (Solanum lycopersicum L.) cv. micro-Tom 
seeds were soaked in sterile water for 30  min, surface 
sterilized with 75% (v/v) alcohol for 40 s, washed with 
50% (v/v) bleach for 6  min, and then rinsed 5 times 
with sterile water. The sterilized seeds were placed on 
sprouting trays for germination. Twelve-day-old tomato 
plants were subsequently transferred to 1/4 Hoagland 
nutrient solution for 10  days. Twenty-five-day-old 
tomato plants were subsequently transferred to fresh 
1/4 Hoagland solution supplemented with or without 
30 or 50 μM NiCl2 for 5 days.

Phenotypic analysis
The plant stem thickness was measured with a Ver-
nier caliper. The root and leaf images were obtained by 
scanning with an Epson Perfection V500 Photo scanner 
(Epson, Japan), and ImageJ (version 1, 44) software was 
subsequently used to measure PR length, plant height 
and leaf area. The FW and DW were measured, and the 
plant water content was calculated using the following 
formula: plant water content (%) = (FW-DW)/DW.

The roots were immersed in FAA fixative (5 ml of 38% 
formaldehyde, 5 ml of glacial acetic acid, 90 ml of 50% 
alcohol, and 5  ml of glycerol) and fixed for more than 
24  h. The fixed roots were first rehydrated by a gradi-
ent of 50% ethanol and 30% ethanol for 5 min, soaked 
in distilled water for 10  min, and then transferred to 
0.01% methylene blue staining solution for 7–10  min. 
The roots were washed three times with distilled water, 
and the number of LRs was observed and counted using 
an optical microscope (Leica, Germany).

Determination of chlorophyll contents and photosynthetic 
indices
The chlorophyll contents were determined using a SPAD-
502 chlorophyll meter (Minolta Camera Co., Ltd., Japan). 
Fluorescence detection was performed using a MAXI 
imaging PAM instrument (Heinz Walz GmbH, 91,090 
Effeltrich, Germany). The seedlings were pretreated in the 
dark for 30 min and subsequently placed in the instrument 
to determine the chlorophyll fluorescence parameters. The 

Fig. 9  A proposed model for the Ni toxicity responses in tomato seedlings
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fluorescence parameters were calculated as follows: PS II 
maximum activity parameter Fv/Fm = (Fm-Fo)/Fm; non-
photochemical quenching coefficient Y(NPQ) = 1-Y(II)-1/
[NPQ + 1 + qL-(Fm/F0-1); nonphotochemical quenching 
parameter qN = (Fm-Fm′)/(Fm-F0); PS(II) effective elec-
tron yield Y(II) = (Fm’—F)/Fm’; and photochemical burst-
ing coefficient qP = (Fm’—F)/(Fm’—Fo’).

Determination of antioxidant enzyme activities, reactive 
oxygen species and malondialdehyde contents
The NBT method was used for the determination of 
SOD activity (Agami and Mohamed 2013). POD activ-
ity was determined using guaiacol as a substrate (Chen 
and Zhang 2016). CAT activity was determined using the 
hydrogen peroxide method (Du et  al. 2017). The H2O2 
content was determined using the iodometric method 
(Wei et al. 2009). In situ H2O2 staining of the roots and 
leaves was performed using the 3,3’-diaminobenzi-
dine (DAB, 1  mg/mL, pH = 3.8) method as described 
by Xia et  al. (2009). In  situ O2

.− staining of the roots 
and leaves was performed using nitroblue tetrazolium 
(NBT, 0.5 mg/ml in 50 mM PBS, pH = 7.8) as described 
by Ahammed et  al. (2013). The ROS fluorescent probe 
DCFH-DA (Beyotime, China) was used to detect endog-
enous ROS levels in the root tips according to the manu-
facturer’s instructions (excitation wavelength of 488  nm 
and emission wavelength of 530  nm). MDA levels were 
determined using the thiobarbituric acid (TBA) method 
(Zeng et al. 2020).

Transcriptome analysis and RT‒qPCR analysis
Transcriptome sequencing libraries were generated using 
the Hieff NGS Ultima Dual-mode mRNA Library Prep Kit 
for Illumina (Yeasen Biotechnology (Shanghai) Co., Ltd.). 
After passing quality control, the libraries were analyzed 
on the Lumina NovaSeq 6000 platform for PE150 mode 
sequencing. The raw reads were further processed and ana-
lyzed using the bioinformatics platform BMKCloud (www.​
biocl​oud.​net). The reference genome sequence is Solanum 
lycopersicum SL4.0_and_ITAG4.0.genome.fa. The raw data 
were submitted to the National Center for Biotechnology 
Information (NCBI) Short Read Archive (SRA) under acces-
sion number PRJNA952335. A FDR < 0.01 and log2 (fold 
change) > 1 or < -1 were used as criteria to screen the DEGs. 
WGCNA was performed according to the methods of Wang 
et al. (2023). GO network analysis was performed by asso-
ciation analysis between the significant modules and treat-
ment groups using the OmicShare cloud platform (https://​
www.​omics​hare.​com), and GO network visual presentation 
was carried out using Cytoscape v3.9.1 (Q value < 0.05).

RNA reverse transcription was performed using 
the cDNA synthesis kit NovoScript® Plus All-in-one 
1st Strand cDNA Synthesis SuperMix (gDNA Purge, 

Novozymes, China). RT‒qPCR analyses were performed 
for three biological and technical replicates. The specific 
primers used are shown in Supplementary Table 7.

Determination of phytohormones
The contents of IAA, GA, and ABA and the cytokinins 
tZR and iP were determined using high-performance liq-
uid chromatography (HPLC) as described by Gao et  al. 
(2022). Briefly, approximately 1  g of tomato root was 
thoroughly ground with liquid nitrogen, and the powders 
were then immersed in 20  ml of 80% methanol (chro-
matographically pure) for 16 h at 4 ℃. After centrifuga-
tion at 1000 rpm for 10 min at 4 °C, the supernatant was 
collected. The residue was transferred to 20  ml of 80% 
precooled methanol and centrifuged, after which the 
supernatants were merged. The supernatant was evapo-
rated at 40  °C to remove the methanol using a rotary 
evaporator (RE-52AA, Shanghai, China). The superna-
tant was extracted three times with 10 ml of petroleum 
ether (chromatographically pure). After adding poly-
vinylpyrrolidone (PVPP) to the ether phase, the mix-
ture was ultrasonicated for 30  min and then shaken for 
30 min. After centrifugation at 13,000 r/min for 10 min, 
the supernatant was collected. Extraction was carried 
out three times. Subsequently, the ester phases were 
evaporated by rotary evaporation at 40  °C, and 1  ml of 
methanol was added to dissolve the ester phases. After 
filtering through a 0.45 μM filter membrane, the sample 
was placed at 4  °C. The separation was performed on a 
Syncroords C18 250 × 4.6 × 5 μm liquid chromatography 
column (Thermo Fisher Scientific, China) with 100% 
methanol as mobile phase A and 0.8% glacial acetic acid 
as mobile phase B. A total of 10 μl of sample was injected 
at a flow rate of 1 ml/min, the column temperature was 
set at 30 ℃, the UV wavelength was 254 nm, and the sam-
ple was detected online by a Dionex UltiMate 300 Diode 
Array Detector (Thermo Fisher Scientific, China).

Trace element determination
The samples were dried in an oven at 65 °C until a con-
stant weight was reached. Subsequently, the samples 
were ground to powder in a mortar and immersed in 
nitric acid. The contents of Ni, Fe, Mn, Cu and Zn were 
determined using ICP‒AES (inductively coupled plasma 
atomic emission spectroscopy; iCAP6300; Thermo Fisher 
Scientific, Waltham, MA, USA).

Statistical analysis
All the experiments were performed in triplicate, and the 
data were analyzed and are presented visually using IBM 
SPSS Statistics 26 and GraphPad Prism 9.5.1. Signifi-
cant differences were determined by ANOVA and t tests 
(P < 0.05).

http://www.biocloud.net
http://www.biocloud.net
https://www.omicshare.com
https://www.omicshare.com
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