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Abstract 

Plants orchestrate drought responses at metabolic level but the genetic basis remains elusive in rice. In this study, 233 
drought-responsive metabolites (DRMs) were quantified in a large rice population comprised of 510 diverse acces-
sions at the reproductive stage. Large metabolic variations in drought responses were detected, and little correlation 
of metabolic levels between drought and normal conditions were observed. Interestingly, most of these DRMs could 
predict drought resistance in high accuracy. Genome-wide association study revealed 2522 significant association 
signals for 233 DRMs, and 98% (2471/2522) of the signals were co-localized with the association loci for drought-
related phenotypic traits in the same population or the linkage-mapped QTLs for drought resistance in other popu-
lations. Totally, 10 candidate genes were efficiently identified for nine DRMs, seven of which harbored cis-eQTLs 
under drought condition. Based on comparative GWAS of common DRMs in rice and maize, representing irrigated 
and upland crops, we have identified three pairs of homologous genes associated with three DRMs between the two 
crops. Among the homologous genes, a transferase gene responsible for metabolic variation of N-feruloylputrescine 
was confirmed to confer enhanced drought resistance in rice. Our study provides not only genetic architecture 
of metabolic responses to drought stress in rice but also metabolic data resources to reveal the common and specific 
metabolite-mediated drought responses in different crops.

Keywords Drought-responsive metabolite, Natural variation, Drought response, Comparative GWAS, Rice

Introduction
To avoid global food shortage by 2050, it is estimated 
that an annual increase of 44 million metric tons in food 
production is urgently needed (Tester and Langridge 
2010). Scarce and unpredictable water resources usually 
cause drought stress in most rain-fed areas of Asia and 
Africa (Rockstrom et al. 2007), which severely threatens 
crop production and food security. Rice (Oryza sativa L.) 
feeds more than half of the world’s population while its 
yield and quality are highly vulnerable to drought stress 
(Dien et  al. 2019). Genetic improvement of drought 
resistance (DR) is the most important approach to reduce 
yield loss due to drought, and many efforts have been 
made in genetic mapping and validation of QTLs in rice 
(Hu and Xiong 2014). However, DR is a complex trait 
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that is governed by a number of minor-effect genes with 
diverse molecular mechanisms, which results in insuf-
ficient knowledge of its genetic bases (Fukao and Xiong 
2013). Besides, most phenotypic traits used for DR evalu-
ation are not adequately effective due to low heritability 
(such as grain yield), subjectivity (such as leaf drying and 
rolling scores), or bias caused by growth and develop-
ment heterogeneity (such as varying plant size and flow-
ering time) and environment heterogeneity (especially 
for soil moisture status) (Hu and Xiong 2014). To address 
the dilemma of DR evaluation, several efforts involving 
optics-based phenotyping have been made, and highly 
heritable image-traits have been invented to dynami-
cally monitor drought responses and evaluate DR under 
the pot-grown and the actual field conditions (Guo et al. 
2018; Jiang et al. 2021). Although many DR-related QTLs 
have been reported, the large interval of QTL and the 
complex molecular mechanisms involved in DR preclude 
the rapid identification of candidate genes (Blum 2011). 
Evaluating DR is bias-prone and labor-intensive and a 
gene’s effect could be masked by environmental noise, 
especially for a large mapping population. Fortunately, 
construction and phenotyping of a large secondary popu-
lation is not the only approach for QTL fine-mapping and 
cloning in the omics era (Broekema et al. 2020). Metabo-
lites can bridge the gap between DNA sequence variation 
and complex traits (Langridge and Fleury 2011), and thus 
have potentials to reveal genetic architecture of DR and 
provide valuable clues for causal genes.

Understanding plant metabolic responses to drought 
stress benefits the dissection of DR (Obata and Fernie 
2012; Zhang et  al. 2022). Previous studies show that a 
number of metabolites collectively response to drought 
and they function in antioxidant and osmotic adjustment 
(Fabregas and Fernie 2019; Nakabayashi and Saito 2015). 
Abscisic acid (ABA) is well-known for its functions in 
drought response, and other phytohormones, such as 
cytokinins (CK), also collectively cope with drought stress 
(Ullah et al. 2018). As primary metabolites, sugars (such 
as glucose and fructose) and amino acids (such as pro-
line and tryptophan) are induced to protect plants from 
drought stress (Fabregas and Fernie 2019). As the larg-
est group of plant-specialized metabolites, polyphenols 
(including phenolic acids, flavonoids, stilbenoids, and lig-
nans), are involved in stress resistance in plants (Samec 
et al. 2021). Polyamines are essential compounds in most 
living organisms and participate in drought response and 
resistance dependent on ABA. Drought-responsive genes 
confer enhanced DR by altering the levels of metabolites 
involving endogenous ABA, putrescine, proline, acetate, 
trehalose, and flavonoids (Minocha et  al. 2014). Metab-
olome-based genome-wide association study (mGWAS) 
is an efficient approach to identify metabolic genes, but 

most of the mGWAS experiments were performed under 
well-water condition (Chen et  al. 2014; Fang and Luo 
2019; Wen et al. 2014). Recently, mGWAS under drought 
condition was performed in maize (an upland crop) and 
two metabolic genes conferring enhanced DR were dis-
covered (Zhang et al. 2021). However, natural metabolic 
variation under drought condition in rice (a lowland or 
irrigated crop that is vulnerable to drought) and compar-
ative mGWAS under drought condition in different crops 
has not been addressed.

Our previous study proposed a novel integrated 
method of detecting, identifying, and quantifying widely 
targeted metabolites and studied metabolic responses to 
drought stress of two rice varieties – IRAT109 and ZS97 
(Chen et  al. 2013). We utilized an optics-based pheno-
typing facility in another previous work to study the 
genetic architecture of drought responses using a natural 
population consisting of 510 rice germplasms (Guo et al. 
2018). To fully understand the metabolic variations under 
drought condition, the metabolites were simultaneously 
quantified in the same population when subjected to the 
optics-based drought phenotyping, and the mGWAS 
results were integrated with the phenome-based GWAS 
results to further dissect the genetic basis of drought 
responses in rice.

In this study, hundreds of drought-responsive metabo-
lites were identified and these metabolites could predict 
DR in high confidence. Candidate genes of mGWAS 
loci were efficiently explored for diverse DRMs in rice. 
Furthermore, we compared the metabolite-mediated 
drought responses and their genetic bases in rice and 
maize and found that common and specific metabolite-
mediated drought responses co-exist and are underlain 
by both homologous and non-homologous genes in the 
two representative crops.

Results
Metabolic profiling of drought‑responsive metabolites 
in rice under drought condition
To identify drought-responsive metabolites (DRMs) in 
rice, leaf metabolic samples from 60 drought-sensitive 
or tolerant rice varieties (including 30 indica and 30 
japonica) from a core germplasm panel were collected 
for metabolic profiling under drought stress and normal 
irrigation conditions. By liquid chromatography–mass 
spectrometry, 682 distinct metabolite features, including 
184 annotated metabolites, were successfully detected 
and quantified (Supplementary Table 1). The 184 known 
metabolites were assigned into 11 major groups (hor-
mone, tryptamine metabolites, phenolamide, polyphe-
nol, amino acid and derivative, nucleotide and derivative, 
flavonoid, terpene, lysophosphatide, vitamin, and fatty 
acid) (Fig.  1A). Based on principal component analysis 
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(PCA) for the 682 metabolic features of the 60 acces-
sions under two water regime conditions (Supplementary 
Table  2), the first principal component (PC1) obviously 
discriminates the accessions under two treatments, indi-
cating that drought stress predominantly disturbs rice 
metabolome and the metabolic changes are related to the 
rice responses to drought stress (Fig.  1B), and the sec-
ond principal component (PC2) discriminates indica and 
japonica accessions (Fig. 1B). Further, we found that very 
few metabolites were overlapped between drought-nor-
mal differentiated metabolic features and indica-japonica 
differentiated features, suggesting metabolic responses to 
drought stress may not be associated with indica-japon-
ica differentiation.

A metabolic feature with VIP (variable importance 
for the projection)≧1 and FDR (false discovery rate) of 
paired t-test < 0.01 was defined as DRMs, and a total of 
233 DRMs were determined (Fig. 1C and Supplementary 
Table  3). Enrichment analysis showed that these DRMs 
were annotated to a variety of different metabolic path-
ways such as hormones and phenolamides (Fig. 1D), sug-
gesting the complexity of metabolite-mediated drought 
responses. Based on the DRMs, the accuracy rate in 
discriminating the accessions under the two water con-
ditions was 99.17% using linear discriminant analy-
sis. Coefficients of variance (CV) of DRM levels under 
drought condition were significantly greater than those 
under normal condition (P = 2.35 ×  10−9, paired t-test; 

Fig. 1 Characterization of the drought-responsive metabolites. A Groups of 184 annotated metabolites. B PCA of 60 rice accessions (including 
30 indica and 30 japonica accessions) under drought and normal conditions based on the 682 distinct metabolic features. Red, green, blue, 
purple dots represent indica accessions under drought condition, japonica accessions under drought condition, indica accessions under normal 
condition, japonica accessions under normal condition, respectively. C Volcano plot of drought-responsive metabolites (DRMs). Orange and cyan 
dots represent up-regulated and down-regulated DRMs, respectively. FDR values were calculated based on paired t-test. D Groups of DRMs 
and enrichment analyses. E Distribution of coefficients of variance (CV) of DRMs under drought and normal conditions, respectively. F Distribution 
of correlation coefficients of DRMs’ levels between the two water conditions (drought and normal conditions) G Intensity of abscisic acid (ABA) 
under drought and normal conditions
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Fig.  1E and Supplementary Table  3). For 69% (160/233) 
of the DRMs, metabolic levels under drought condition 
showed weak correlation to those under normal condi-
tion (absolute Pearson correlation coefficients |R| < 0.3) 
(Fig. 1F; Supplementary Table 3). ABA, known as a abi-
otic stress hormone (Nambara and Marion-Poll 2005), 
was identified as a typical DRM in the hormone group 
(VIP = 2.11, −log10FDR = 17.65), and it showed elevated 
level on average at population scale and large variation 
under drought condition (fold change of drought / nor-
mal (FC) =7.74;  CV_D = 0.46,  CV_N = 0.20), and Pearson 
correlation coefficient (PCC) between the two water 
conditions was only 0.08 (P = 0.42) (Fig.  1G), indicat-
ing large variation of drought responses at metabolic 
level. Besides, many new DRMs were identified in this 
study. For example, flavonoids function as antioxidants 
to scavenge ROS caused by abiotic stress, such as UV-B 
radiation (Fini et  al. 2011), but the role of flavonoids in 
drought response has not been well-characterized. Out 
of 87 flavonoids in the study, 11 flavonoids belonging to 
DRMs were down-regulated under drought condition, of 
which C-hexosyl-luteolin O-hexoside showed dramatic 
reduction (FC = 0.23, VIP = 1.83) and larger metabolic 
variation under drought condition than that under nor-
mal condition  (CV_D = 1.08,  CV_N = 0.58). These results 
imply a necessity to decode the natural metabolic varia-
tions under drought condition.

Metabolite‑based prediction of drought resistance in rice
To test whether DRMs can predict DR, we quantified the 
DRMs under drought condition in a large core collection 
comprised of 510 diverse rice accessions (Supplementary 
Table 4), which were simultaneously phenotyped by both 
non-destructive optical phenotyping facility and manual 
measurements in our previous study (Guo et al. 2018).

We performed DRM-based prediction of DR indices 
using four modeling algorithms including ridge regres-
sion Best Linear Unbiased Predictor (rrBLUP), Bayesian-
Least Absolute Shrinkage and Selection Operator (BL), 
Random Forest (RF), and Ensemble (En, an integration 
of the former three algorithms). Leaf water content, bio-
mass, and yield under drought condition (represented by 
a suffix “_D”) and their ratio values of drought/normal 
(represented by a suffix “_R”) were used to evaluate DR 
capability. Meanwhile, green projected area ratio (GPAR) 
and perimeter/projected area ratio (PAR), two repre-
sentative image traits measured by the non-destructive 
phenotyping facility, were also included in the DR predic-
tion because the two image traits were successfully mod-
eled to evaluate stay-green and leaf-rolling, respectively, 
at the whole plant level under drought condition, and 
stay-green and leaf-rolling are closely related to drought 
tolerance and drought avoidance, respectively (Guo et al. 

2018). The DR prediction performance was evaluated 
using PCC between the predicted and the actual phe-
notypic values. As expected, the algorithm En outper-
formed the other three modeling algorithms considering 
that the En integrates the prediction results of the other 
algorithms (Fig. 2A and Supplementary Table 5). There-
fore, the prediction results of En were focused on in the 
following sections. The PCC values of DRM-based pre-
diction ranged from 0.46 to 0.82 with a median value 0.76 
(Fig.  2A and Supplementary Table  5), suggesting large 
DR contribution from DRMs. For example, the PCC val-
ues of GPAR_R and PAR_R were 0.82 and 0.71, respec-
tively (Fig.  2A). To determine the performance of DRM 
in predicting DR, we quantified the importance score of 
each DRM. The DRMs with importance scores ranking 
top 50 were focused in the following analyses (Supple-
mentary Table 6). Two hormones, ABA and trans-zeatin 
riboside (a bioactive form of cytokinin), performed well 
in predicting leaf water content_D, PAR_R, GPAR_R, 
and yield_R (Fig.  2B). We also found that both trypto-
phan and tryptamine, belonging to tryptamine-metabo-
lites group, well predicted yield_D and yield_R (Fig. 2B). 
C-hexosyl-luteolin O-hexoside, a flavonoid, also per-
formed well in the prediction of PAR_R, which is consist-
ent with previous studies showing the role of flavonoids 
in drought avoidance (Brunetti et al. 2018; Watkins et al. 
2017). Besides, the DRMs from other metabolic groups, 
such as polyphenol, phenolamides, and amino acid also 
performed well in the DR prediction (Fig. 2B and Supple-
mentary Table  6). These results indicate that the DRMs 
have promising values in DR prediction and some of 
them may be further explored as bio-markers for DR.

Genome‑wide association study of DRMs
Since the DRMs showed large contribution to DR and 
large variations under drought condition, but had lit-
tle correlations between drought and normal conditions 
(Supplementary Table 3 and 5), it is of significance to dis-
sect the genetic bases of DRM variations under drought 
condition. For the 233 DRMs, 84.5% (197/233) metabo-
lites showed high broad-sense heritability (H2 > 0.5) in 
the rice population comprised of 510 accessions (Sup-
plementary Table  7), indicating large contributions of 
genetic components in determining the DRMs’ levels.

To reveal these genetic components, we performed 
GWAS of 233 DRMs (hereinafter named “dmGWAS” for 
“drought-responsive metabolites-based GWAS”) using 
linear mixed model. Based on Bonferroni correction of 
multiple tests, the genome-wide significance thresholds 
were set to 1.21 ×  10−6, 1.66 ×  10−6, and 3.81 ×  10−6 in 
the whole population, indica and japonica subpopula-
tions, respectively. Considering the linkage disequilib-
rium (LD) decay distance in rice, the adjacent significant 
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SNPs with high LD to each other (r2≧0.25) were defined 
as a locus to avoid the redundancy of association signals. 
As a result, 2522 significant loci were associated with 
233 DRMs in at least one subpopulation (Fig.  3A; Sup-
plementary Table  8). Based on the dmGWAS results, 
multiple loci controlling a specific DRM or single locus 
effective for multiple DRMs were found. For example, 
seven loci distributed on chromosome 1, 2, 6, 7, and 8 
were significantly associated with ABA. Among these 

loci, locus 593 on chromosome 1 was associated with 
ABA and scopoletin (a DRM belonging to polyphenol 
group). Ninety-four percent (2382/2522) of dmGWAS 
loci were co-localized with previously reported DR QTLs 
(drQTL) in rice (Fig.  3A and Supplementary Table  9), 
which were retrieved from three public databases (Trop-
GeneDB (Hamelin et al. 2013; Ruiz et al. 2004), QTARO 
(Yonemaru et al. 2010), and PubMed (https:// www. ncbi. 
nlm. nih. gov/ pubmed/)). This result suggests that the 

Fig. 2 DRMs-based prediction of DR. A The performance of DRMs-based prediction of phenotypic traits of evaluating DR capacity, using the four 
modeling algorithms. The performance was evaluated by the Pearson correlation coefficient (PCC) between the actual phenotypic values 
and the DRMs-based predicted phenotypic values. B The DRMs with the importance scores ranking top 50 in the prediction of PAR_R, GPAR_R, 
yield_D, and yield_R, respectively. The suffix “_D” “_R” represent the values under drought condition and the ratios (drought / normal), respectively

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
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Fig. 3 Integration of dmGWAS, dpGWAS, and drQTLs. A Circos plot showing dmGWAS loci, co-localized drQTLs from previously reported studies, 
and co-localized dpGWAS loci of PAR_R and GPAR_R. The five tracks (from inner to outer) represent the number of significant SNPs for each 
association signal, significance (−log10 P) of dmGWAS signals, co-localized drQTLs from previously reported studies (partially shown), the number 
of DRMs associated with each association signal (shown by heat map), and co-localized dpGWAS loci of PAR_R and GPAR_R (partially shown), 
respectively. B Association network of dmGWAS and dpGWAS. In the network, each node represents an annotated DRM or a phenotypic trait 
of evaluating DR capacity (measured by optical phenotyping facility and manual measurements in our previous study); each edge represents 
that a DRM and a phenotypic trait are connected by a co-localized locus. Different colors represent different metabolic groups. Each purple circle 
in the center of the network represents a specific phenotypic trait
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causal genes underlying these drQTLs may be related 
to metabolism. For example, the dmGWAS loci associ-
ated with two hormones (ABA and trans-zeatin riboside) 
were co-localized with previous drQTLs controlling leaf 
water content, leaf rolling score, leaf drying score, relative 
yield (drought/normal) or yield under drought condition, 
which is consistent with the results of DRMs-based pre-
diction mentioned above.

Since the population for dmGWAS were simultane-
ously phenotyped for DR using optical imaging and man-
ual measurement (Guo et al. 2018), the GWAS results of 
DR-related traits, termed dpGWAS referring to GWAS of 
the image traits and traditional phenotypic traits under 
drought condition and the ratio traits of drought/normal, 
were extracted from previous study and integrated with 
the dmGWAS of this study to construct a metabolome-
phenome association network (Fig. 3B). In the association 
network, 77% (1939/2522) of dmGWAS loci were co-
localized with dpGWAS loci (Supplementary Table  10). 
For example, the locus 593 (chr1:37480916–37,811,473) 
was detected by ABA, GPAR_R, and yield_R; and the 
locus 2155 (chr4:14055749–14,121,776) was detected by 
tryptamine, yield_R and spikelet fertility_R. These co-
localized loci suggest that the physiological indices or 
yield traits under drought condition may be contributed 
by these DRMs. We noticed that a DR-related phenotypic 
trait could be connected with several DRMs in the asso-
ciation network (Fig.  3B and Supplementary Table  10). 
For example, GPAR and yield_R were connected with 35 
and 24 known DRMs, respectively, such as ABA, trans-
zeatin riboside, and tryptamine. These results suggest 
that multiple DRMs may collectively contribute to DR-
related complex traits.

Candidate genes of representative dmGWAS loci related 
to DR
Integrating information of metabolite structure, gene 
annotation and expression level can accelerate the explo-
ration of candidate genes and facilitate efficient and pre-
cise breeding (Chen et  al. 2014). Therefore, we further 
checked whether the integrated analyses could efficiently 
identify candidate genes for the DRM groups described 
above, and candidate genes were identified for six repre-
sentative DRMs as follows.

Two known genes related to ABA metabolism were sig-
nificantly associated with ABA level under drought con-
dition: LOC_Os07g07050 (AAO3 (Seo et al. 2000); PLMM 
value: 5.89 ×  10−3) and LOC_Os02g47470 (ABA8ox1 
(Krochko et  al. 1998); PLMM value: 2.27 ×  10−3). Besides, 
an association signal for ABA level on chromosome 6 was 
identified in indica sub-population (locus 3256, PLMM 
value: 2.04 ×  10−7) (Fig. 4A), and this dmGWAS locus co-
localized with a previously reported drQTL controlling 

leaf relative water content under drought condition (Sup-
plementary Table  9) and a dpGWAS locus for yield_R 
(Supplementary Table  10). In the dmGWAS locus, 
LOC_Os06g37150 encodes L-ascorbate oxidase (named 
“AO” (Wu et  al. 2017)) and its cis-eQTL was identified 
by GWAS of RNA-seq data under drought condition 
(PLMM = 2.75 ×  10−18, Supplementary Table  11). The role 
of AO in ABA biosynthesis has been demonstrated by a 
reported study, which showed that AO negatively regu-
lated ABA biosynthesis and that the down-regulation of 
AO enhances salt tolerance in rice (Wang et al. 2021). To 
explore its function in DR, we generated three knock-
out mutant lines of the AO gene and found that these 
mutants showed enhanced DR (Supplementary Fig.  1). 
This gene may be a causal gene underlying the locus with 
contribution to the ABA content and drought response.

Cytokinin, another phytohormone, has significant 
roles in modulating DR (Rivero et  al. 2007). In this 
study, the level of trans-zeatin riboside (tZR), a bioactive 
form of the naturally occurring cytokinin, was elevated 
with average FC of 7.84 (VIP = 1.22) in the rice popula-
tion under drought condition. However, the tZR’s level 
under drought and normal conditions showed no signifi-
cant correlation (Pearson correlation efficient R = 0.03, 
P > 0.05). The variation of tZR levels under drought con-
dition was much larger than that under normal condi-
tion  (CV_D = 1.52,  CV_N = 0.34). A dmGWAS locus on 
chromosome 3 (locus 1738, PLMM value: 2.60 ×  10−10) 
was identified (Fig. 4B). In the locus, LOC_Os03g58010, 
annotated as N-acetyltransferase, showed down-reg-
ulated expression under drought stress (Supplemen-
tary Table  12) according to our previous microarray 
data of two representative rice varieties (IRAT109 and 
ZS97) at the seedling and reproductive stages (Ding 
et  al. 2013). Further, a strong cis-eQTL of the gene was 
detected under drought condition (PLMM = 8.29 ×  10−13, 
Supplementary Table  11). These results suggest that 
LOC_Os03g58010 may be a candidate gene for transfer-
ring acetyl group to tZR and down-regulation of the gene 
expression under drought condition may elevate tZR 
level to enhance DR.

In the tryptamine metabolism pathway, tryptophan 
and tryptamine were representative DRMs that pre-
dicted DR very well (Fig.  2B). The metabolic levels of 
the two DRMs were induced by drought stress (Sup-
plementary Table  3). Similar to most of other DRMs, 
no significant correlation was detected for metabolic 
level of tryptophan or tryptamine between drought 
and normal conditions. For tryptophan, a GWAS 
locus on chromosome 11 was identified (locus 5978, 
PLMM = 4.62 ×  10−7) (Fig.  4C). The locus co-localized 
with a reported QTL controlling leaf rolling score (Sup-
plementary Table  9) and a dpGWAS locus associated 
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with fertile panicle number under drought condi-
tion (Supplementary Table  10). In this locus, LOC_
Os11g42510 is annotated as tyrosine aminotransferase, 
which catalyzes the transamination of aromatic amino 
acids, such as tyrosine and tryptophan (Mehere et  al. 
2010; Sasidharan and Saudagar 2019). Further, a cis-
eQTL of the gene was also detected under drought con-
dition (PLMM = 3.64 ×  10−7, Supplementary Table  11). 
These results indicate that LOC_Os11g42510 may be a 

causal gene underlying the tryptophan variation under 
drought condition.

For tryptamine, two loci on chromosome 12 were 
identified in the whole population and the indica sub-
population, respectively (PLMM value: 1.42 ×  10−7 and 
4.50 ×  10−9 for locus 6344 and 6572, respectively). In 
the locus 6344, LOC_Os12g16720 was annotated as 
tryptamine 5-hydroxylase hydroxylating tryptamine (Lu 
et al. 2022), and it was down-regulated by drought stress 

Fig. 4 Identification of the candidate genes underlying the metabolic variation of the informative DRMs. The metabolic levels under normal (blue) 
and drought (red) conditions (the upper left panel), Manhattan plot (the bottom panel) and quantle-quantile plot of dmGWAS (the upper right 
panel) for abscisic acid (A), trans-zeatin riboside (B), L-tryptophan (C), tryptamine (D), N-feruloyltyramine (E), and C-hexosyl-luteolin O-hexoside 
(F). For the Manhattan plot, significance values (indicated by -log10 P) of genome-wide SNPs are plotted against the SNPs’ position on each of 12 
chromosomes; the horizontal gray dotted line indicates the genome-wide significance threshold. For the quantile-quantile plot, the observed -log10 
P values are plotted against the expected -log10 P values; the red line indicates the diagonal
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(Supplementary Table 12). We speculate that this gene is 
a possible causal gene and down-regulation of its expres-
sion levels might reduce the catabolism of tryptamine 
and thus enhance DR. In the locus 6572, most genes were 
annotated as “expressed protein”, “hypothetical protein”, 
or “retrotransposon protein” (Fig.  4D). Among them, 
LOC_Os12g32250 was annotated as “WRKY DNA-bind-
ing domain containing protein” and was down-regulated 
at transcriptional level under drought condition (Supple-
mentary Table 12), and this gene might be a causal gene 
because numerous reported studies have demonstrated 
the roles of WRKY transcription factors in regulating DR 
(Jiang et al. 2017).

As a typical DRM from the phenolamide group, N-fer-
uloyltyramine could also predict DR. Its metabolic lev-
els were up-regulated upon drought stress (FC = 4.59, 
VIP = 1.37). GWAS of the DRM identified a strong and 
clear association signal on chromosome 8 (locus 4319, 
PLMM value: 5.28 ×  10−10) (Fig.  4E). The dmGWAS locus 
co-localized with reported drQTLs controlling spike-
let sterility under drought condition. In this locus, two 
linked genes (LOC_Os08g32160 and LOC_Os08g32170) 
were annotated as 2-oxoglutarate-dependent dioxyge-
nase that convert cinnamate derivatives to coumarins, 
which is closely related to the chemical structure of 
N-feruloyltyramine (Shimizu 2014). Of the two genes, 
LOC_Os08g32160 showed elevated expression levels 
under drought condition (Supplementary Table 12) and a 
strong cis-eQTL was identified under drought condition 
(PLMM = 7.82 ×  10−12, Supplementary Table  11). These 
results indicate that LOC_Os08g32160 may be a causal 
gene underlying the increased feruloyltyramine level 
under drought stress.

C-hexosyl-luteolin O-hexoside, a DRM among the fla-
vonoid group, showed dramatic reduction at metabolic 
level under drought condition and it could also predict 
DR (Supplementary Table  6). A dmGWAS locus with a 
strong and clear association signal on chromosome 2 was 
identified (locus 1037, PLMM value: 1.56 ×  10−28) (Fig. 4F), 
which was also significantly associated with another 
four DRMs from the flavonoid group (Supplementary 
Table  8). The locus co-localized with a reported drQTL 
controlling leaf rolling score under drought condition. In 
this locus, LOC_Os02g37690, annotated as “UDP-glucor-
onosyl and UDP-glucosyl transferase”, was reported to be 
associated with the biosynthesis of flavonoids (Chen et al. 
2014). The gene showed down-regulated expression lev-
els upon drought stress (Supplementary Table 12), which 
is consistent with decrease of the DRM under drought 
stress. Further, a strong cis-eQTL of the gene was dis-
covered under drought condition (PLMM = 4.12 ×  10−22, 
Supplementary Table  11). Previous studies demonstrate 
that flavonoid accumulation in guard cells inhibited 

ABA-induced stomatal closure (Brunetti et  al. 2018; 
Watkins et al. 2017). Therefore, we speculate that LOC_
Os02g37690 may be a causal gene that underlies the 
decreased flavonoids accumulation and thus promotes 
the ABA-induced stomatal closure under the drought 
stress condition.

Comparative dmGWAS in rice and maize
Rice and maize are two important representing cereal 
crops that have been evolved and selected under distinct 
water regime conditions (lowland- and upland-grown, 
respectively), but few studies involve the comparison of 
genetic bases underlying drought responses of the two 
crops. We wondered whether comparison of the dmG-
WAS in this study and a reported dmGWAS study in 
maize (Zhang et al. 2021) can provide metabolic insight 
into common and specific drought responses of the 
two crops. Out of 40 common metabolites between the 
two studies, five common DRMs and 14 specific DRMs 
(drought-responsive only in one crop) were identified. 
The common DRMs included two phenolamides (N-feru-
loylputrescine and N-feruloyltyramine), two amino acids 
(L-arginine and L-tryptophan), and one organic acid 
(caffeoyl shikimic acid) (Fig. 5A), of which the first four 
DRMs were up-regulated in the two crops under drought 
condition, but caffeoyl shikimic acid showed an opposite 
change trend (down- and up-regulated in rice and maize, 
respectively). Out of the 14 specific DRMs, all the three 
vitamins were up-regulated in rice (FC = 1.91–4.03) but 
were not significantly changed in maize (VIP = 0.23–
0.88) upon drought treatment. These results suggest 
that common and specific metabolite-mediated drought 
responses co-exist in rice and maize. We further com-
pared the dmGWAS results of the common DRMs in the 
two crops. The comparison revealed four scenarios: two 
common DRMs (N-feruloylputrescine and L-arginine) 
and their underlying homologous genes showing com-
mon drought responses (Fig.  5B); two common DRMs 
(N-feruloyltyramine and L-tryptophan) showing com-
mon metabolic responses, but being underlain by non-
homologous genes; one specific DRM (riboflavin/vitamin 
B2) showing drought-responsiveness only in rice, but 
being underlain by a pair of homologous genes (Fig. 5B); 
one common DRM (caffeoyl shikimic acid) with opposite 
metabolic responses and 13 specific DRMs being under-
lain by non-homologous genes.

As a member of phenolamides group, N-feruloyl-
putrescine (Fer-Put for short hereinafter) can predict 
DR (Supplementary Table  6). Based on the dmGWAS 
results in the two crops, two genes (LOC_Os09g37180 
and LOC_Os09g37200) in the locus 4811 and three 
genes (LOC_Os10g01690, LOC_Os10g01720, and LOC_
Os10g01920) in the locus 4841 in rice are homologs of 
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Fig. 5 Common DRMs and comparative dmGWAS in rice and maize. A Venn plot showing the common DRMs in the two crops based on this 
rice study and the previously reported study in maize. The grey, purple, and pink circle indicates 40 common metabolites, nine DRMs in maize, 
15 DRMs in rice, respectively. B Comparative dmGWAS results in rice and maize. The links of Circos plot represent the homologous genes that are 
significantly associated with the same DRM in rice and maize. Different colors represent different metabolites. The bar’s height in the track of Circos 
plot represents the significance of association signal (indicate by -log10 P value). C Manhattan plot of dmGWAS of N-feruloylputrescine (Fer-Put) 
in rice (the left upper panel) and in maize (the left bottom panel), the metabolic levels of Fer-Put under normal (blue) and drought (red) condition 
in rice (the right upper panel) and in maize (the right bottom panel). D GWAS of expression levels of LOC_Os09g37200 under drought condition (the 
left panel) and its FPKM values based on RNA-seq under normal (blue) and drought (red) conditions (the right panel). E Performance of the two 
independent overexpression lines of LOC_Os09g37200 under drought stress and after re-watering. F Seedling survival rates of the overexpression 
lines and WT plants after re-watering recovery following drought stress. P values are calculated using two-sided fisher’s exact test
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GRMZM2G013530 in a locus on chromosome 7 in maize 
(Fig. 5B-C). All these genes were annotated as hydroxy-
cinnamoyl transferase, which was associated with the 
chemical structure of Fer-Put (Chen et  al. 2014). Inter-
estingly, a strong cis-eQTL of LOC_Os09g37200 was 
detected and it was co-localized with the dmGWAS 
locus 4811 in rice (Fig. 5D and Supplementary Table 11). 
The genotype-G group of the gene showed both higher 
expression levels and higher metabolic levels of Fer-Put 
than those of the genotype-A group (Supplementary 
Fig.  2)A; and significant correlation between the gene 
expression levels and the Fer-Put levels was observed in 
rice (Supplementary Fig.  2B). These results suggest that 
the metabolic variation may be attributed to the differ-
ent transcriptional levels of LOC_Os09g37200. In maize, 
although no significant cis-eQTL of GRMZM2G013530 
(a homolog of LOC_Os09g37200) was detected (Supple-
mentary Fig. 2)C, the association between the transcrip-
tional levels of GRMZM2G013530 and the metabolic 
levels of Fer-Put in maize was consistent with that of 
LOC_Os09g37200 in rice (Supplementary Fig.  2)D-F. 
These results indicate that the common metabolite-
mediated drought responses may be underlain by homol-
ogous genes.

Although LOC_Os09g37200 has been confirmed to be 
responsible for Fer-Put biosynthesis under well-water 
condition (Chen et  al. 2014), its role in drought resist-
ance and the causal variants remains unknown. The over-
expression lines of LOC_Os09g37200 showed enhanced 
DR based on seedling survival rate after drought stress 
(Fig. 5E-F). To explore the causal variants, we performed 
a candidate-gene association analysis and found that the 
significant variants were enriched in promoter region 
(Supplementary Fig. 3)A, which was located in the identi-
fied cis-eQTL (Fig. 5D). Based on the significant variants, 
two major haplotypes were identified. Among them, two 
INDELs may disrupt a priori cis-elements in the unfa-
vorable haplotype (Supplementary Fig. 3B), which may be 
the causal variants underlying the metabolic variation of 
Fer-Put.

Arginine is an important precursor of Fer-Put (Chen 
et  al. 2016), and it could predict stay-green levels of 
stressed plants (Supplementary Table  6). Based on the 
comparative dmGWAS of arginine in the two crops, 
LOC_Os01g52680 in the locus 500 on chromosome 1 
in rice was a homolog of GRMZM2G446426 in a locus 
on chromosome 4 in maize (Fig.  5B). Both candidate 
genes are annotated as MADS transcription factor and 
belong to the SRF superfamily of MADS-box protein. 
Based on previous studies, Arg80 (the first MADS-box 
protein) and Mcm1, belonging to the SRF superfam-
ily, regulate arginine metabolism in Saccharomyces cer-
evisiae (Messenguy and Dubois 2003). We propose that 

the homologous genes may be responsible for the com-
mon arginine-mediated drought responses in rice and 
maize. Besides, another two common DRMs, N-feru-
loyltyramine and L-tryptophan were up-regulated in rice 
and maize, but no homologous genes were discovered in 
the comparative dmGWAS results of the two crops. The 
results of the common DRMs suggest that the common 
metabolic responses can be underlain by both homolo-
gous and non-homologous genes.

As a specific DRM, riboflavin (vitamin B2), the direct 
precursor of the cofactors flavin adenine dinucleo-
tide (FAD) and flavin mononucleotide (FMN), could 
predict stay-green levels of stressed plants (Supple-
mentary Table  6). The metabolite was up-regulated in 
rice but not responsive in maize under drought condi-
tion. Despite this, a candidate gene LOC_Os06g36400 
in a locus on chromosome 6 in rice was a homolog of 
GRMZM2G141277 in a locus on chromosome 8 in 
maize (Fig. 5B). Both genes are annotated as HAD phos-
phatase, which have been identified and characterized in 
the riboflavin biosynthesis in Arabidopsis thaliana (Sa 
et al. 2016). Despite divergent metabolic responses in dif-
ferent crops, the metabolic variation of riboflavin under 
drought condition may be underlain by a pair of homolo-
gous genes.

Besides, 13 specific DRMs and one common DRM 
(caffeoyl shikimic acid) showed divergent drought 
responses. Different from riboflavin, no homologous can-
didate genes were identified. Altogether, the comparative 
dmGWAS results indicate that homologous and non-
homologous genes collectively contribute to the common 
and specific metabolite-mediated drought responses in 
rice and maize.

Discussion
DR involves various metabolic and physiological 
responses to drought stress. It is an extremely complex 
trait that is controlled by a large number of minor-effect 
genes with diverse molecular mechanisms, so it is diffi-
cult to identify the reliable genetic loci and their causal 
genes (Hu and Xiong 2014). To solve the dilemma, a rice 
core collection was phenotyped using high-throughput 
optics phenotyping facility and genetic mapping was per-
formed in our previous study (Guo et al. 2018). However, 
diverse molecular mechanisms involved in DR results 
in insufficient clues/ a priori knowledge for the explora-
tion of causal gene in a locus, which usually spans large 
confidence interval and thus includes many annotated 
genes. Previous molecular studies demonstrate that the 
metabolic responses to drought stress and their under-
lying genes collectively contribute to DR (Kumar et  al. 
2021). Therefore, the metabolome could bridge the causal 
genes and DR as intermediary. In this study, we identified 
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and quantified drought-responsive metabolites, DRMs, 
in a large rice core collection. Most DRMs could predict 
DR in high confidence and some DRMs have potentials 
to be used as bio-markers to select rice materials for DR 
breeding. Most of dmGWAS loci co-localized with the 
previously reported drQTLs, suggesting the large contri-
bution of the DRMs to DR. Further, we efficiently identi-
fied seven candidate genes for six DRMs, which belong 
to four metabolic groups, by considering only two fac-
tors: i) the logic connection between gene annotation and 
metabolite structure, and ii) gene expression change pat-
tern under drought condition. Among them, the down-
regulation of AO gene, which was associated with ABA 
content variation under drought condition, resulted in 
enhanced DR (Supplementary Fig. 1). Besides, the com-
parative dmGWAS in rice and maize facilitated the rapid 
identification of candidate genes and three pairs of candi-
date homologous genes underlying the variations of three 
DRMs were identified. Furthermore, cis-eQTLs for seven 
out of 10 candidate genes were detected by GWAS of 
RNA-seq data under drought condition (Supplementary 
Table 11), suggesting that the expression polymorphism 
at transcriptional level may be a main source of the natu-
ral variation of metabolite-mediated drought responses.

Even though rice and maize are originated from a recent 
common ancestor (Liu et  al. 2017; Murat et  al. 2017), 
these two important cereal crops have been evolved 
under distinct water regime conditions (lowland and 
upland respectively). Different water conditions could 
result in different periods of water deficiency, which may 
promote the two crops to evolve divergent mechanisms 
to resist short- and long-term drought stress. Besides, 
rice and maize belong to C3 and C4 plants, respectively, 
which divergently respond to drought stress in stomatal 
development (Song et  al. 2023). During domestication 
and genetic improvement, the lowland rice undergoes 
directional selection for high yield potential during 
domestication since it is mostly grown in the field with 
sufficient water, sometimes with irrigation equipment, 
and thus faces low risk of drought stress (Xia et al. 2019). 
By contrast, the maize grown in drought-prone field may 
undergo bi-directional selection for high yield potential 
and DR. Due to trade-offs between DR and yield poten-
tial, bi-directional selection may result in balancing 
selection in maize. Divergent selection patterns of rice 
and maize correspondingly result in divergent drought 
responses. However, few studies eyed on the compari-
son of drought responses between rice and maize. In this 
study, for the first time, we integrated the DRM GWAS 
in rice with the similar study in maize (Zhang et al. 2021) 
to find the common and distinct metabolic responses 
between rice and maize. As a proof, Fer-Put levels were 
up-regulated under drought condition in the two crops 

and the metabolic variations were underlain by expres-
sion differences of a pair of homologous genes encoding 
hydroxycinnamoyl transferase. And the gene was dem-
onstrated to enhance DR in rice (Fig.  5E-F), which may 
enhance DR in other crops. The comparison of metabo-
lite-mediated drought responses is a promising approach 
to explore crucial DR-related genes and to enhance DR of 
multiple crops efficiently.

In future, unknown DRMs need to be identified to 
reveal a more complete landscape of drought response. 
As an alternative approach, integration of gaussian 
graphical modeling (GGM) network and mGWAS may 
facilitate the annotation of unknown metabolites (Chen 
et al. 2016). We tried to construct a GGM network and 
to integrate it with the dmGWAS results. As a proof, an 
unknown DRM, gl0238 (FC = 2.11, VIP = 1.88) was suc-
cessfully annotated. This DRM was connected with trans-
zeatin N-glucoside (q = 4.22 ×  10−7) in the GGM network, 
and the dmGWAS loci of gl0238 and trans-zeatin N-glu-
coside were co-localized. In this locus, LOC_Os05g12450 
was annotated as “UDP-glucosyltransferase” and showed 
expression response to drought stress (Supplementary 
Table  12). A cis-eQTL locus of LOC_Os05g12450 was 
co-localized with the dmGWAS locus (Supplementary 
Table  11). It is speculated that LOC_Os05g12450 is a 
causal gene and its encoded UDP-glucosyltransferase 
converts gl0612 to trans-zeatin N-glucoside and thus 
gl0612 could be trans-zeatin, a bioactive form of the 
naturally occurring cytokinins. The example highlights 
the potential of integrating GGM and dmGWAS for the 
identification of unknown DRMs, though further confir-
mation is needed.

Methods
Plant materials and experimental design
A total of 510 rice (Oryza Sativa) accessions comprised 
of landraces and elite varieties were used in the study. The 
population was re-sequenced at the genome level using 
an Illumina Hiseq 2000 platform to obtain genotypic 
information, which can be retrieved and downloaded 
from the RiceVarMap database (http:// ricev armap. ncpgr. 
cn/ v1), of which the reference genome is Nipponbare 
(Oryza sativa L. ssp. japonica) of MSU Rice Genome 
Annotation Project Release 6.1. To avoid the bias of DR 
evaluation caused by heading date variation, the rice 
accessions were assigned into two groups based on the 
heading date, and the germination dates were staggered 
to ensure flowering synchrony for the two groups. Clean 
seeds were soaked in water for 1 d and then incubated 
for 1 d. The pre-germinated seeds were sown in the 
field and 20-day-old seedlings were transplanted to the 
greenhouse of a high-throughput rice phenotyping facil-
ity at Huazhong Agricultural University, Wuhan, Hubei 

http://ricevarmap.ncpgr.cn/v1
http://ricevarmap.ncpgr.cn/v1
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Province, China (30°28′N 114°20′E). Four healthy plants 
for each accession were grown in four pots filled with 
4.5 kg of soil per pot, which was air-dried, pulverized, 
and well-mixed with organic fertilizer in advance. After 
transplanting, irrigation was performed to keep standing 
water of 3-5 cm depth in pots. Another two plants of each 
accession were needed to trace panicle development in a 
destructive way. When a rice accession grew to the boot-
ing stage (panicle elongation), the irrigation was stopped 
to start drought stress for the accession. The soil water 
content was dynamically monitored by TRIME-PICO32 
(IMKO Micromodultechnik GmbH, Ettlingen, Germany) 
on the basis of time domain reflectometry (TDR). When 
the soil water content decreased to 15% (TDR value), the 
plants were watered once per day to keep the soil water 
content at 15% (TDR value) for 5 days. Then the plants 
were phenotyped using an optics-based high-throughput 
phenotyping facility (reported in our previous study), 
followed by leaf sampling for metabolite profiling. For 
the four plants of each accession, the first upper mature 
leaves of each two plants were harvested and combined 
into one tube (frozen in liquid nitrogen in advance) as 
one biological replicate and thus there were two biologi-
cal replications for the following metabolite profiling. 
To identify the drought-responsive metabolites (DRMs), 
four plants of 60 extremely drought-responsive rice 
accessions (including 30 indica and 30 japonica acces-
sions) from the rice core collection, were grown under 
normal (non-stress) condition and their leaf samples 
were collected as those under drought condition.

Metabolite profiling
The freeze-dried leaves were crushed using a mixer 
mill (MM 400, Retsch) with a zirconia bead for 1 min at 
30 Hz. And 100 mg dried powder of each rice accession 
was weighed and extracted overnight at 4 °C with 1.0 ml 
pure methanol (or 70% aqueous methanol) containing 
0.1 mg  L−1 lidocaine for lipid- and water-soluble metabo-
lites, followed by analyses of LC-MS. A scheduled mul-
tiple reaction monitoring (sMRM) method of AB SCIEX 
QTRAP 5000 LC-MS system was used for the quantifi-
cation of metabolites. The detailed procedures of sample 
preparation, metabolites extraction, construction of the 
 MS2 spectral tag (MS2T) library, metabolites annotation 
and quantification, have been described in the previous 
study (Chen et al. 2013).

Statistical analyses
To show the effect of drought stress on rice metabolome, 
principle component analysis (PCA) was performed 
using R package “factoextra” and “FactoMineR” and lin-
ear discriminant analysis was performed using R pack-
age “MASS”. To identify DRMs, the variable importance 

for the projection (VIP) of OPLS-DA (using R package 
“ropls”) and false discovery rate (FDR) of paired t-test 
between the drought and normal conditions were cal-
culated; the metabolite of VIP > 1 and FDR < 0.001 was 
defined as DRM. The enrichment scores of DRMs were 
calculated and plotted using a customized R script, which 
is available on request. The metabolome-based predic-
tion of DR capacity was performed using four mod-
eling algorithms including ridge regression Best Linear 
Unbiased Predictor (rrBLUP), Bayesian-Least Absolute 
Shrinkage and Selection Operator (BL), Random For-
est (RF), and Ensemble (En, an integration of the former 
three algorithms). The prediction performance was eval-
uated by the Pearson correlation coefficient between the 
predicted phenotypic values and the actual values. The 
influence of a metabolite on the prediction performance 
was evaluated by the importance scores and the DRM 
with the importance scores ranking top 50 was consid-
ered as informative DRM. The scripts for the four mod-
eling algorithms were from the previous study (Azodi 
et al. 2020). Paired-sample or independent-sample t-test, 
Kruskal-Wallis one-way ANOVA, and Pearson correla-
tion coefficients (R) were performed or calculated using 
IBM’s SPSS version 19 (IBM Corp., Armonk, USA). Fish-
er’s exact test was performed using R program.

Genetic analyses
The broad-sense heritability (H2) was calculated using 
ANOVA (one-way analysis of variance) based on the 
phenotypic data: H2  =  VG /  (VG + Ve / N); phenotypic 
variance was partitioned into genotype  (VG) and envi-
ronment (Ve); N represents the number of biological 
replications (N = 2 in this study). The best linear unbi-
ased prediction (BLUP) values for each metabolite were 
calculated for genome-wide association study (GWAS). 
SNPs of the minor allele frequency (MAF) less than 
0.05 were removed and a total of 4,358,600, 2,863,169, 
and 1,959,460 SNPs remained for GWAS in the whole, 
indica, and japonica populations, respectively (Guo et al. 
2018). In GWAS, a linear mixed model was adopted 
using the factored spectrally transformed linear mixed 
models software (FsST-LMM) (Lippert et  al. 2011). The 
genome-wide threshold was calculated as 1/Ne (Li et al. 
2013), of which Ne is the effective number of SNPs calcu-
lated by GEC software (Li et al. 2012). The Ne is 829,451, 
602,309, 262,222 for the whole population, indica and 
japonica subpopulations, respectively. As a result, the 
thresholds were set to 1.21 ×  10−6, 1.66 ×  10−6, 3.81 ×  10−6 
in the whole, indica, and japonica populations, respec-
tively. The independent lead SNPs were determined by 
removing LD-causing redundant SNPs using “--clump” 
function of Plink (Purcell et  al. 2007). The confidence 
interval (genomic region) of an association signal was 
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determined using “--clump-r2” “--clump-kb” “--clump-
range” functions of Plink (Purcell et  al. 2007). The loci 
with overlapped confidence internals were considered 
as co-localized loci. A Circos plot was drawn using an 
R application “shinyCircos” (Yu et  al. 2018). A “locus-
trait” association network was constructed using Gephi 
(https:// gephi. org/). Gene synteny and collinearity 
between rice and maize were performed using MCScanX 
(Wang et al. 2012). Previously reported DR-related QTLs 
were retrieved from TropGeneDB (http:// TropG eneDB 
db. cirad. fr/ TropG eneDB/ JSP/ inter face. jsp? module= 
RICE), QTARO (http:// qtaro. abr. affrc. go. jp/), and Pub-
Med (https:// www. ncbi. nlm. nih. gov/ pubmed/). Gauss-
ian graphical modeling (GGM) was performed using R 
package “GeneNet” and “DMwR” as the previous study 
(Krumsiek et al. 2012).

Expression levels of candidate genes
The expression data under drought and normal condi-
tions for two rice varieties (IRAT109 and ZS97) were col-
lected based on Affymetrix GeneChip from a previous 
study (Ding et al. 2013). The Fragments Per Kilobase Mil-
lion (FPKM) values were calculated from RNA-seq data 
using standard protocol of Hisat2 and Stringtie (Pertea 
et al. 2016).

Function confirmation of candidate genes
To confirm the role of LOC_Os09g37200 in drought 
resistance in rice, overexpression lines were generated by 
directionally inserting the full cDNAs from Nipponbare 
first into the entry vector pDONR207 and then into the 
destination vector pJC034 using the Gateway recombi-
nation reaction (Invitrogen) (Supplementary Table  13). 
The sequence-confirmed constructs were transformed 
into Agrobacterium tumefaciens strain EHA105 and 
then transferred into the rice variety Zhonghua 11 
(Chen et  al. 2014; Hiei et  al. 1994). The expression lev-
els of LOC_Os09g37200 in transgenic lines were quan-
tified using primers AT-exp-F (5′-CTT CAT GCC GTC 
CTA CTT CC-3′) and AT-exp-R (5′-GAG GTT GTG GTC 
GAAGA CG-3′) (Supplementary Fig. 4). Overexpression 
lines of LOC_Os09g37200 and wild-type plants (WT) 
were planted in pots and treated with drought stress at 
the 4-leaf stage. The stressed seedlings were re-watered 
and the survival rates were calculated. The P values were 
calculated using two-sided fisher’s exact test.

To confirm the role of LOC_Os06g37150 in drought 
resistance in rice, three independent CRISPR lines were 
developed. A CRISPR vector was constructed using a 
tandemly arrayed tRNA-gRNA editing system (Xie et al. 
2015) using primers UGW-U3-F (5′-GAC CAT GAT TAC 
GCC AAG CTT AAG GAA TCT TTA AAC ATACG-3′) and 
UGW-gRNA-R (5′-GGA CCT GCA GGC ATG CAC GCG 

CTA AAA ACG GAC TAG C-3′). The sequence-confirmed 
construct was transformed into Zhonghua 11 via Agro-
bacterium-mediated transformation. We examined the 
genotypes of transformed materials using primers AO-
seq-F:5′-TGG GCG GAC GGG ACG GCA T-3; AO-seq-
R:5′-TCT TAC CCC TTG AAT CTT GACG-3′. CRISPR 
lines of LOC_Os06g37150 were planted in pots. When 
rice plants grew to the panicle elongation stage (the most 
sensitive stage to drought stress) and the soil water con-
tent decreased to 15% (the TDR value was measured by 
using a TRIME-PICO32 (IMKO Micromodultechnik, 
Ettlingen, Germany)), the CRISPR lines and WT plants 
were phenotyped by our optics-based phenotyping plat-
form before drought stress treatment. Irrigation was then 
stopped to impose drought stress. Under drought stress 
condition, the plants were phenotyped again by the phe-
notyping platform and the image traits were extracted.
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