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Stress Biology

Current research and future directions 
of melatonin’s role in seed germination
Ze Liu1, Hengrui Dai1, Jinjiang Hao1, Rongrong Li1, Xiaojun Pu1, Miao Guan1* and Qi Chen1*   

Abstract 

Seed germination is a complex process regulated by internal and external factors. Melatonin (N-acetyl-5-meth-
oxytryptamine) is a ubiquitous signaling molecule, playing an important role in regulating seed germination 
under normal and stressful conditions. In this review, we aim to provide a comprehensive overview on melatonin’s 
effects on seed germination on the basis of existing literature. Under normal conditions, exogenous high levels 
of melatonin can suppress or delay seed germination, suggesting that melatonin may play a role in maintaining seed 
dormancy and preventing premature germination. Conversely, under stressful conditions (e.g., high salinity, drought, 
and extreme temperatures), melatonin has been found to accelerate seed germination. Melatonin can modulate 
the expression of genes involved in ABA and GA metabolism, thereby influencing the balance of these hormones 
and affecting the ABA/GA ratio. Melatonin has been shown to modulate ROS accumulation and nutrient mobilization, 
which can impact the germination process. In conclusion, melatonin can inhibit germination under normal condi-
tions while promoting germination under stressful conditions via regulating the ABA/GA ratios, ROS levels, and meta-
bolic enzyme activity. Further research in this area will deepen our understanding of melatonin’s intricate role in seed 
germination and may contribute to the development of improved seed treatments and agricultural practices.
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Introduction
Seed germination is a crucial stage in the life cycle of 
seed plants, which is indispensable for maintaining eco-
logical balance, biodiversity, and maintaining ecosystem 
stability. Seed germination is defined as the initiation of 
the seed from water absorption and completion when 
the radicle protrudes from the seed coat (Ibrahim et  al. 
2021; Wolny et  al. 2018). Both external conditions (e.g., 
moisture, temperature, abiotic stress, after-ripening) and 
internal factors (e.g., endogenous phytohormones, ROS) 

can affect seed germination (Carrera et al. 2008; Ibrahim 
et al. 2021).

Melatonin (N‐acetyl‐5‐methoxytrytamine) is a ubiq-
uitous signaling molecule in plants and animals. The 
biosynthetic melatonin in plant cells is often called phy-
tomelatonin, which regulates multiple plant growth 
stages and processes, including seed germination, stress 
response, and plant immunity. Phytomelatonin is syn-
thesized using tryptophan as a precursor through four-
step enzymatic reactions catalyzed by six biosynthesizing 
enzymes, namely tryptophan hydroxylase (TPH), tryp-
tophan decarboxylase (TDC), tryptamine-5-hydroxylase 
(T5H), N-acetylserotonin methyltransferase (ASMT), 
caffeic acid-O-methyltransferase (COMT), serotonin-
N-acetyltransferase (SNAT). Among them, SNAT and 
ASMT have been regarded as rate-limiting enzymes 
(Back 2021; Back et al. 2016). In 2018, the first phytome-
latonin receptor (PMTR1) has been found in Arabidop-
sis thaliana (Wei et al. 2018). Further studies have found 

Handling editor: Dr. Haitao Shi.

*Correspondence:
Miao Guan
mguan2021@hotmail.com
Qi Chen
chenq0321@163.com; chenq0321@kust.edu.cn
1 Faculty of Life Science and Technology, Kunming University of Science 
and Technology, Kunming 650500, Yunnan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44154-023-00139-5&domain=pdf
http://orcid.org/0000-0003-3103-162X


Page 2 of 11Liu et al. Stress Biology            (2023) 3:53 

that PMTR1 is required for perceiving melatonin sign-
aling in the regulation of stomatal closure and stomatal 
immunity, seed germination and seedling growth, flow-
ering, resistance to drought, salt and high light stresses, 
and leaf senescence (Khan et al. 2023; Li et al. 2020a; Wei 
et al. 2018; Yang et al. 2021a; Yin et al. 2022).

In addition to its recognized importance as a plant hor-
mone in plant development, melatonin also plays vari-
ous roles in regulating seed germination under different 

conditions (Table  1). However, the role of melatonin in 
plant seed germination has not been well assessed. In this 
review, we appraise the literature on this nascent field, 
paying particular attention to the effects of melatonin 
on seed germination in both normal and stressful condi-
tions. We further explore the interplay between abscisic 
acid (ABA), gibberellic acid (GA), reactive oxygen spe-
cies (ROS), and melatonin in the regulation of seed ger-
mination. Finally, we provide an overview of melatonin’s 

Table 1 Effect of melatonin on seed germination under different conditions

Conditions Species Concentrations of melatonin 
(μM)

Effect 
on seed 
germination

Reference

1/2MS Arabidopsis thaliana 500 inhibition (Lv et al. 2021)

Arabidopsis thaliana 10 no effcet (Lv et al. 2021; Yin et al. 2022)

Wet filter paper Stevia (Stevia rebaudiana) 500 inhibition (Simlat et al. 2018)

Stevia (Stevia rebaudiana) 5 promotion (Simlat et al. 2018)

Chilling stress Waxy Maize (Zea mays) 50 promotion (Cao et al. 2019)

Wheat(Triticum aestivum) 500 or 1000 promotion (Li et al. 2018; Zhang et al. 2021a)

Maize (Zea mays) 50 promotion (Kolodziejczyk et al. 2021)

Cucumber (Cucumis sativus) 10 or 25 promotion (Posmyk et al. 2009; Zhang et al. 
2022)

Rice (Oryza sativa) 150 promotion (Li et al. 2021b)

Heat stress Arabidopsis thaliana 300 promotion (Hernandez et al. 2015)

Rice (Oryza sativa) 100 promotion (Yu et al. 2022)

Osmotic (or drought) stress Wheat (Triticum aestivum) 1 or 300 promotion (Cui et al. 2018; Li, et al. 2020b)

Cucumber (Cucumis sativus) 50 promotion (Zhang et al. 2013)

Cotton (Gossypium hirsutum) 100 promotion (Bai et al. 2020)

Triticale (Triticale hexaploide) 20 promotion (Guo et al. 2022)

Maize (Zea mays) 250 promotion (Muhammad et al. 2023)

Aged Maize (Zea mays) 10 promotion (Deng et al. 2017)

Oat (Avena sativa) 200 promotion (Yan et al. 2020; Yan et al., 2021)

Salt stress Wheat (Triticum aestivum) 1 or 300 promotion (Wang et al. 2022; Zhang et al. 
2021b)

Halophyte sea lavender (Limo-
nium bicolor)

1 promotion (Li et al. 2019)

Cotton (Gossypium hirsutum) 20 promotion (Chen et al. 2020b, 2021)

Alfalfa (Medicago sativa) 150 promotion (Yu et al. 2021)

Cucumber (Cucumis sativus) 1 promotion (Zhang et al. 2014, 2017)

Stevia (Stevia rebaudiana) 5 promotion (Simlat et al. 2020)

Tomato (Solanum lycopersicum) SlCOMT1 overexpression promotion (Ge et al. 2023)

Arabidopsis thaliana VvSNAT1 overexpression promotion (Wu et al. 2021)

Cr stress Wheat(Triticum aestivum) 100 promotion (Lei et al. 2021)

Rice (Oryza sativa) 50 promotion (Li et al. 2022a)

Cu stress Rice(Oryza sativa) 100 promotion (Li et al. 2022b)

Red cabbage (Brassica oleracea 
rubrum)

10 promotion (Posmyk et al. 2008)

Dark Almond (Prunus dulcis) 20 promotion (García-Sánchez et al. 2022)

Cotton (Gossypium hirsutum) 20 promotion (Xiao et al. 2019)

Soil Soybean(Glycine max) 50 promotion (Wei et al. 2015)

1 mM ABA Melon (Cucumis melo) 500 promotion (Li et al. 2021b)
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involvement in seed germination and propose future 
research directions to elucidate the molecular mecha-
nisms of the melatonin signaling pathway and its poten-
tial implications in agricultural production.

Melatonin regulates seed germination 
under normal conditions
High concentrations of melatonin inhibit seed germination
Melatonin can inhibit seed germination under normal 
conditions. Recently, Lv et  al. (2021) found that exog-
enous melatonin application at low concentrations (e.g., 
10 μM and 100 μM) had no effect on the germination of 
Arabidopsis thaliana seeds, while high concentrations 
(e.g., 500 μM and 1000 μM) of melatonin inhibited seed 
germination (Lv et al. 2021). Similarly, a high concentra-
tion (500  μM) of melatonin had a significant inhibitory 
effect on the germination of Stevia rebaudiana seeds 
compared with no melatonin treatment (Simlat et  al. 
2018). In addition, the modulation of melatonin biosyn-
thesis genes using T-DNA insertion or over-expression 
alleles induces phenotypes consistent with melatonin 
playing a negative role in seed germination. For exam-
ple, Arabidopsis comt1 or asmt mutant seeds showed 
higher germination rates than the wild type (WT), while 
seeds from the ASMT-overexpressing plants showed a 
lower germination rate than WT. The inhibitory effect 
of melatonin on seed germination remained unaffected 
in the pmtr1 mutant, indicating that PMTR1 may not be 
involved in the melatonin-mediated inhibition of seed 
germination (Lv et  al. 2021). However, a more recent 
study by Yin et  al. (2022) revealed contrasting find-
ings. They found that the germination rate of the pmtr1 
mutant was higher compared to that of the WT. Con-
versely, the germination rate of PMTR1-overexpressing 
seeds was lower than that of the WT (Yin et  al. 2022). 
Actually, the concentrations (500 and 1000 μM) of exoge-
nous melatonin applied by Lv et al. (2021) were very high, 
exceeding the binding threshold of PMTR1. However, 
further investigation is necessary to determine the pre-
cise role of PMTR1 in the melatonin-mediated regulation 
of seed germination.

Melatonin regulates seed germination by interacting 
with plant hormones ABA, GA and auxin
ABA and GA are two well-known hormones in regu-
lating seed germination. ABA induces seed dormancy 
and inhibits seed germination, while GA breaks seed 
dormancy and promotes seed germination. In order to 
complete germination, the content of ABA decreases 
gradually while GA increases gradually after imbibition 
(Pan et al. 2021; Shu et al. 2016). Numerous studies have 
shown that seed germination depends on the balance 
between ABA and GA, rather than their absolute levels. 

An increase in the ABA/GA ratio inhibits seed germi-
nation, while a decrease in the ratio promotes it. (Chen 
et al. 2020a; Shu et al. 2016).

The biosynthesis and catabolism of ABA in plants are 
highly complex, involving multiple pathways that col-
lectively determine ABA levels. In most plants, ABA 
biosynthesis begins with β-carotene and progresses 
through six or seven sequential steps to produce ABA. 
Several key enzymes catalyze the biosynthesis process, 
including Zeaxanthin Epoxidase (ZEP), 9-cis-epoxy-
carotenoid dioxygenase (NCEDs), ABA Deficiency 2 
(Short Chain Alcohol Dehydrogenase, ABA2), and absci-
sic aldehyde oxidase 3 (AAO3). It is worth noting that 
NCEDs is regarded as a rate-limiting enzyme in this 
process (Schwartz et  al. 2003; Yin et  al. 2022). Alterna-
tively, ABA catabolism involves the catalytic action of 
cytochrome P450s, specifically family 707 and subfam-
ily A (CYP707As) (Ali et al. 2022; Yin et al. 2022). It has 
been proposed that the ABA content in seeds is primar-
ily regulated by the expression of NCEDs and CYP707As 
genes (Tuan et  al. 2018). GA is produced with gera-
nylgeranyl diphosphate as a precursor though multiple 
reactions catalyzed by various enzymes. These enzymes 
include ent-copalyl diphosphate synthase (CPS), ent-
kaurene synthase (KS), ent-kaurene oxidase (KO) and 
ent-kaurenoic acid oxidase (KAO) (Xie et al., 2020). The 
level of bioactive GA depends on the balance between 
their biosynthesis and deactivation. The biosynthesis of 
GA is mainly catalyzed by GA20 oxidase (GA20ox) and 
GA3 oxidase (GA3ox), and their deactivation is mainly 
controlled by GA2 oxidase (GA2ox) (Tuan et al. 2018).

In Arabidopsis thaliana, Lv et  al. (2021) found that 
high concentrations of exogenous melatonin upregu-
lated ABA biosynthesis genes in seeds, including 
NCED3 and ABA2, resulting in increased ABA con-
tents. However, the impact on GA was minimal, result-
ing in an elevated ABA/GA ratio, which ultimately 
inhibited seed germination (Lv et  al. 2021). Further-
more, melatonin exhibited a significant enhancement in 
the expression of ABI3 and ABI5, indicating that mela-
tonin partially governs seed germination through the 
ABA pathways mediated by ABI3 and ABI5 (Lv et  al. 
2021). Consistent with this finding, the expression of 
ABI5 in the seeds of the asmt mutant was observed to 
be lower compared to the WT. Conversely, the ABI5 
expression in ASMT-overexpressing seeds was higher 
than that in the WT (Lv et  al. 2021). Moreover, Yin 
et  al. (2022) demonstrated that expression levels of 
ABA catabolism genes (CYP707A1-A4) in dry seeds of 
the pmtr1 mutant were significantly higher than that of 
the WT. Conversely, the expression of the ABA cata-
bolic gene in overexpressing-PMTR1 seeds was signifi-
cantly lower than in the WT. Consequently, the ABA 
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contents in the pmtr1 mutant seeds were lower than in 
the WT, whereas the ABA contents in PMTR1-overex-
pressing seeds were higher than in the WT (Yin et  al. 
2022). These findings suggest that PMTR1 may play a 
role in regulating ABA catabolism during seed develop-
ment and germination in Arabidopsis thaliana.

Auxin is another indole derivative that shares the 
same synthetic precursor, tryptophan, with the mela-
tonin (Arnao et al., 2014; Lv et al. 2021). Auxin has pre-
viously been shown to inhibit Arabidopsis thaliana seed 
germination in an ABA-dependent manner (Liu et  al. 
2013). Interestingly, Lv et al. (2021) reported that exog-
enous IAA can alleviate the inhibition of melatonin on 
seed germination. Furthermore, melatonin was found 
to increase contents of IAA in Arabidopsis thaliana 
seeds via upregulating expression of the IAA response 
genes (e.g., IAA3 and IAA13) (Lv et al. 2021). This could 
be attributed to the competitive mechanism between 
endogenous IAA and melatonin biosynthesis following 
treatment with melatonin or IAA. These findings suggest 
that melatonin plays a similar role to auxin in inhibiting 
seed germination. However, an antagonistic competition 
may also occur in their intracellular signaling pathways.

ABA, GA, and auxin exhibit complex crosstalk with 
melatonin during seed germination. Melatonin and ABA 
act synergistically to inhibit seed germination, while mel-
atonin and GA have opposing effects: GA promotes seed 
germination, while melatonin inhibits it. Additionally, 
melatonin and auxin counteract each other, with auxin 
enhancing the inhibitory effect of melatonin on seed ger-
mination (Lv et al. 2021). In the regulation of seed germi-
nation, several other plant hormones also play significant 
roles. For example, auxin and jasmonic acid could inhibit 
seed germination, while ethylene and brassinosteroids 
have promotion effects (Ibrahim et  al. 2021; Pan et  al. 
2023; Steber et  al., 2001; Wang et  al. 2020). Crosstalk 
between melatonin and other phytohormones in non-
seed germination stage has been reported. For example, 
melatonin has been shown to regulate auxin biosynthe-
sis and signaling for plant root development (Liang et al. 
2017; Yang et al. 2021b). Melatonin enhances postharvest 
disease resistance in blueberry fruit by modulating the 
jasmonic acid signaling pathway (Qu et  al. 2022). Mela-
tonin treatment reduces ethylene production and helps 
maintain apple fruit quality during post-harvest storage 
(Onik et al. 2021). Additionally, melatonin plays an active 
role in regulating growth in dark or shaded conditions 
by affecting brassinosteroid biosynthesis (Hwang and 
Back 2018). However, the question of whether crosstalk 
between melatonin and other plant hormones occurs 
during seed germination remains to be explored.

Melatonin affects seed germination by regulating ROS
Reactive Oxygen Species (ROS) are proposed as "Oxi-
dative Window for Germination" to initiate seed ger-
mination and release seed dormancy (Bailly et al. 2008; 
Waszczak et al. 2018). They are mainly produced by the 
mitochondrial electron transport chain and NADPH 
oxidase (also known as respiratory burst oxidase 
homologues, RBOHs) after seed imbibition and prior 
to radical protrusion (Bailly 2019; Jurdak et  al. 2021). 
The external application of  H2O2 can break seed dor-
mancy and promote seed germination (Liu et al. 2010). 
To complete germination successfully, seeds need to 
accumulate high levels of ROS in a very short time. 
Thereafter ROS are dramatically decreased to func-
tion as signaling molecules in regulating plant growth 
(Bailly 2019; Leymarie et al. 2012; Liu et al. 2010). On 
the other hand, ROS are commonly considered as toxic 
compounds because they can react with almost all bio-
logical molecules, including lipids, nucleic acids and 
proteins, causing severe cellular and biological dam-
age (Demidchik 2015; Mittler 2002). Due to this dual 
role, Jurdak et  al. (2022) proposed that seed germina-
tion can only occur when ROS contents are controlled 
within a suitable range to ensure ROS signaling rather 
than ROS damage. Either too low or too high ROS lev-
els would impair seed germination (Jurdak et al. 2022). 
During seed germination, appropriate ROS can cross 
talk with other phytohormones, mainly ABA and GA. 
Some studies have shown that the accumulation of 
 H2O2 in seeds can increase germination and decrease 
ABA contents by up-regulating the genes (CYP707As) 
responsible for ABA catabolism (Liu et al. 2010). It has 
also been demonstrated that ROS stimulates GA bio-
synthesis by up-regulating genes such as GA3OX1 and 
GA20OX1 (Kai et al. 2016; Liu et al. 2010).

Melatonin, a widely recognized antioxidant, has been 
demonstrated to activate the plant’s antioxidant sys-
tem to eliminate ROS (Bajwa et al. 2014; Lu et al. 2022). 
Therefore, when melatonin is applied under normal 
germination conditions, ROS accumulation in seeds 
can decrease to excessively low levels, which may hin-
der efficient germination. Simultaneously, inadequate 
ROS accumulation can hinder the stimulatory effects of 
ROS on ABA catabolism and GA biosynthesis, leading 
to an elevated ABA/GA ratio that inhibits seed germi-
nation (Fig.  1). However, during seed germination, it 
remains unclear whether high concentrations of mela-
tonin directly increase ABA biosynthesis or whether 
melatonin first reduces the level of ROS, thereby inhib-
iting subsequent the ROS-mediated regulation of ABA 
catabolism.
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Melatonin promotes seed germination 
under stressful conditions
Melatonin promotes seed germination by regulating ABA 
and GA
Stressful germination conditions can lead to an increase 
or a decrease in ABA or GA levels in seeds, respectively. 
For instance, under salt stress, soybean seeds accumu-
lated high levels of ABA due to the up-regulation of ABA 
biosynthesis genes GmNCEDs and GmAAO, while GA 
levels were reduced by the down-regulation of GA bio-
synthesis genes GmKAO and GmGA3OX1, as well as the 
up-regulation of a GA catabolic gene, GmGA2OX8 (Shu 
et al. 2017). However, melatonin can decrease ABA levels 
and increase GA levels, thus reversing the consequences 
caused by stress treatment and ensuring seed germina-
tion. When 10  μM of melatonin was applied to cotton 
seeds germinating under salt stress, lower levels of ABA 
and higher levels of GA were observed in the seeds com-
pared to those without melatonin treatments. Similar 
results were consistently found in rice seeds germinating 
under chromium and low-temperature stress, in cucum-
ber seeds germinating under low-temperature stress, in 
Limonium bicolor seeds germinating under salt stress 
(Li et  al. 2019, 2021a, 2022a; Zhang et  al. 2014, 2022). 
In addition, the reduction of ABA contents through 

melatonin application under stressful conditions was 
demonstrated to be involved in the down-regulation of 
ABA biosynthesis genes NCEDs (e.g., NCED1, NCED3) 
and the up-regulation of ABA catabolic genes CYP707As 
(e.g., CYP707A1, CYP707A2) (Li et al. 2019; Zhang et al. 
2014, 2022). Regarding GA, researchers have discov-
ered that the increase in GA contents in seeds under 
salt stress was attributed to the up-regulation of the GA 
biosynthesis genes GA20OX and GA3OX (Li et al. 2019; 
Zhang et  al. 2014, 2022). Consistent with the informa-
tion provided, the overexpression of melatonin biosyn-
thesis genes can also lead to the phenotype of reduced 
ABA levels and increased GA levels for seed germination 
under stressful conditions. For instance, Ge et al. (2023) 
engineered a SlCOMT-overexpressing Solanum lyco-
persicum L. to enhance melatonin contents in the trans-
genic seeds. In comparison to WT, the transgenic seeds 
exhibited decreased ABA contents, which were attrib-
uted to down-regulation of an ABA biosynthesis gene 
SlABA1 and the up-regulation of an ABA catabolic gene, 
SlCYP707A1. Meanwhile, the GA contents were elevated 
in the transgenic plants due to the up-regulation of a GA 
biosynthesis gene, SlGA3OX. Consequently, these find-
ings contribute to enhanced salt tolerance and improved 
seed germination in the SlCOMT-overexpressing plant 

Fig. 1 Melatonin inhibits seed germination under normal conditions. Exogenous melatonin can promote the biosynthesis of endogenous 
melatonin, and endogenous melatonin can enhance the expression of ABI5. Melatonin promotes ABA biosynthesis by up-regulating the expression 
of ABA biosynthesis genes such as NCEDs, thereby enhances ABI5 and ABI3 expression. As an antioxidant, melatonin may reduce the amount 
of  H2O2.  H2O2 accelerates the breakdown of ABA by up-regulating catabolic genes, such as CYP707As.  H2O2 promotes GA biosynthesis 
by up-regulating the expression of GA biosynthesis genes, such as KS. Melatonin can promote IAA biosynthesis and signaling. ABA and IAA inhibited 
seed germination. GA and  H2O2 promoted seed germination. The arrows represent promotion, the short lines represent inhibition, and the dashed 
lines represent possible pathways
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(Ge et al. 2023). Similarly, seeds of the VvSNAT1-overex-
pressing Arabidopsis thaliana exhibited enhanced toler-
ance to salt stress and faster germination in comparing to 
the WT (Wu et al. 2021).

Melatonin also plays an indirect role in the regula-
tion of ABA signaling components, facilitating effective 
control of seed germination under stressful conditions. 
For example, treatment with melatonin has been shown 
to reduce the ABA content in cucumber seeds exposed 
to low temperatures. In this context, the ABA receptor 
PYR/PYL/RCAR is unable to bind to ABA, thus inhibit-
ing the binding of CsPYL to CsPP2C. Consequently, this 
leads to an increase in CsPP2C activity, while simulta-
neously blocking the activation of CsSnRK2.1 and the 
phosphorylation of downstream factors such as ABA 
responsive element binding factor (ABF)/ABA respon-
sive element binding protein (AREB) by CsSnRK2.1 
(Zhang et al. 2022). In a separate study, Li et al. (2022b) 
found that the rice mutant abi5, which lacks the ability to 
respond to melatonin-induced relief from Cr stress, sug-
gests a potential relationship between ABI5 and the alle-
viation of Cr stress by melatonin (Li et al. 2022b).

Melatonin promotes seed germination by removing 
excessive ROS
A number of studies have shown that plants can produce 
a significant amount of ROS (including  H2O2,  O2-,  OH−, 
etc.) when growing under stressful conditions (Lin et al. 
2013; Liu et al. 2019; Luo et al. 2021). Unlike their signal-
ing function under normal conditions that promote seed 
germination, ROS produced under stress can cause dam-
age to plant cells and are not conducive to plant growth 
and development.

Melatonin has been regarded as a master regulator 
of ROS signaling (Chen et  al., 2022; Wei et  al. 2018). 
When plants are grown under stressful conditions like 
salt stress, drought stress, UV-B exposure, and others, 
melatonin can rapidly activate the antioxidant systems. 
This activation helps to eliminate excess ROS and reduce 
oxidative damage within the plants (Fan et al. 2018; Has-
san et al. 2022; Liu et al. 2022; Sharif et al. 2018; Yao et al. 
2021). For instance, melatonin treatment was observed 
to enhance the germination of waxy maize under cold 
stress (Cao et  al. 2019). Concurrently, the activities of 
several antioxidant enzymes, including superoxide dis-
mutase (SOD), peroxidase (POD), catalase (CAT), and 
ascorbate peroxidase (APX), were significantly increased 
in the group treated with melatonin. Furthermore, the 
levels of  H2O2 and malondialdehyde (MDA) produced 
as results of cold stress were significantly decreased. This 
demonstrates the role of melatonin in mitigating oxida-
tive stress and supporting seed germination in stressful 
conditions (Cao et  al. 2019). Kolodziejczyk et  al. (2021) 

revealed that melatonin has the capability to enhance 
maize seed germination under cold stress (Kolodziejczyk 
et al. 2021). This improvement is attributed to melatonin’s 
ability to elevate the activities of glutathione (GST) and 
glutathione reductase (GSSG-R). These findings sug-
gest that melatonin plays a role in boosting the antioxi-
dative defense mechanisms in maize seeds subjected to 
cold stress, thereby aiding in the germination process 
(Kolodziejczyk et al. 2021).

Melatonin promotes seed germination by regulating 
nutrient mobilization in seeds
Desiccated seeds are rich in storage substances, such as 
starch, storage proteins, and lipids. During seed germi-
nation, these substances are broken down and efficiently 
reutilized to provide the energy required for the initiat-
ing of germination and to facilitate a smooth transition 
into early seedling growth. In seeds, the primary enzymes 
responsible for starch breakdown are α-amylase and 
β-amylase. Among these, α-amylase plays a crucial role in 
remobilizing starch from the endosperm. It achieves this 
by hydrolyzing α-1, 4-glucan bonds within starch, con-
verting them into amylose (Damaris et al. 2019; Zeeman 
et al. 2007). This metabolic process generates transport-
able nutrients, such as maltose and glucose, which play a 
crucial role in supporting seedling growth (Damaris et al. 
2019; Krasensky et al., 2012) These nutrients are closely 
associated with both seed germination and the abil-
ity of plants to tolerate a range of abiotic stresses, such 
as drought, salinity, and extreme temperatures. On the 
other hand, during seed germination, the storage pro-
teins need to be hydrolyzed by protease into free amino 
acids, for recompositing into new proteins to perform 
their function (Yu et al. 2015). Triacylglycerol (TAG), as 
the main storage lipid in seeds, needs to be catalyzed by 
TAG lipase to release fatty acids to produce acetyl-CoA 
that performs important biological roles in plants (Goep-
fert et al., 2007; Huang et al. 2021; Shrestha et al. 2016).

With respect to the utilization of seed storage for ger-
mination, ABA has been found to counteract the effects 
of GA. For instance, ABA can inhibit the metabolism of 
seed reserves (Tonini et al. 2010). However, GA can acti-
vate the expression of the α-amylase gene through the 
GA response element (GARC) in the gene promoter. This 
activation leads to the biosynthesis of α-amylase in seeds, 
facilitating the breakdown of starch (Lanahan et al. 1992; 
Shaik et al. 2014).

Melatonin has been proven to enhance the utiliza-
tion of seed storage during germination under stressful 
conditions. For instance, the application of melatonin 
under Cr stress significantly increased the content 
of soluble sugars produced from starch breakdown 
in wheat seeds (Lei et  al. 2021). This increase was 
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accompanied by an improved activity of α-amylase. 
Furthermore, the seeds treated with melatonin exhib-
ited higher contents of free amino acids resulting from 
proteolysis, compared to the group without mela-
tonin application (Lei et al. 2021). Similarly, Cao et al. 
(2019) found that melatonin can enhance the activity 
of α-amylase and β-amylase in waxy maize seeds under 
cold stress, thereby promoting starch hydrolysis, lead-
ing to an increase in soluble and reducing sugar con-
tents, and ultimately promoting seed germination (Cao 
et  al. 2019). Zhang et  al. (2017) employed a forward 
proteomics approach to investigate the mechanisms 
through which melatonin promotes cucumber seed 
germination under salt stress (Zhang et al. 2017). Their 
findings revealed that melatonin not only enhances the 
expression of anti-stress proteins within the seeds, but 
also substantially increases the expression of proteins 
involved in ATP production for energy metabolism 
across glycolysis, the citric acid cycle, and the glyox-
ylic acid cycle. Additionally, their research indicated 
that melatonin treatment significantly reduces the con-
tent of fatty acids, which are pivotal in mediating the 
utilization of seed reserves. This reduction suggests 
that melatonin facilitates the catabolism of fatty acids, 

thus providing the necessary energy for stress resist-
ance during seed germination (Zhang et al. 2017). The 
phenomenon of increased seed reserve utilization dur-
ing germination under stressful conditions can also be 
induced by overexpressing the melatonin biosynthe-
sis gene COMT. Ge et  al. (2023) developed Solanum 
lycopersicum L. plants with overexpressed SlCOMT, 
which resulted in seeds displaying enhanced germina-
tion under salt stress. This enhancement was attributed 
to the increased activity of amylase, alongside elevated 
levels of soluble sugars and proline within the seeds (Ge 
et  al. 2023). These findings clearly indicate that mela-
tonin can improve the utilization of stored substances 
in seeds by upregulating the activity of related catabolic 
enzymes, thereby improving seed germination under 
stressful conditions.

The exact mechanism by which melatonin regulates 
the activity of substance metabolism enzymes is not yet 
fully understood. It was speculated that melatonin treat-
ment could increase the content of GA, leading to the 
upregulation of α-amylase genes (Lei et al. 2021; Damaris 
et al. 2019). On the other hand, Zhao et al. (2015) dem-
onstrated that melatonin directly upregulates the expres-
sion of the SUS2 gene in maize. The enzyme encoded by 

Fig. 2 Melatonin promotes seed germination under stressful conditions. Briefly, melatonin can improve the internal conditions of seeds 
by regulating the level of plant hormones ABA and GA, and removing extra ROS from seeds to reduce the oxidative damage. In addition, exogenous 
melatonin can promote the biosynthesis of endogenous melatonin, and endogenous melatonin promotes the mobilization of nutrients in seeds 
in a couple of ways: 1) melatonin down-regulates the expressions of ABA biosynthesis genes (such as NCEDs) and up-regulates the expressions 
of ABA catabolic genes (CYP707As), thus reduces the ABA content to alleviate the inhibitory effect of ABA on the mobilization of nutrients in seeds; 
2) melatonin promotes the GAs biosynthesis by up-regulating the expressions of GAs biosynthesis genes (such as GA3ox), and the positive effect 
of GAs on nutrient mobilization in seeds can be enhanced; 3) As an antioxidant, melatonin reduces ROS by improving the activity of antioxidant 
enzymes (such as SOD and POD), to decrease the oxidative damage aroused from stressful conditions to seeds, and ensures efficient mobilization 
of nutrients in seeds. The arrows represent promotion, the short lines represent inhibition
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the SUS2 gene is responsible for the decomposition of 
sucrose (Zhao et al. 2015). Nevertheless, further research 
is needed to shed light on the precise mechanisms under-
lying melatonin’s regulation of substance metabolism 
enzymes.

Conclusions and prospectives
Seed germination is a highly complex process that is 
influenced by multiple factors. Melatonin, a versatile 
signaling molecule, plays a regulatory role in the bal-
ance of ABA/GA and ROS contents in seeds during seed 
germination. This in turn affects substance metabolism 
and regulates seed germination. Under normal germi-
nation conditions, melatonin upregulates the expression 
of ABA biosynthesis genes, leading to an increase in the 
ABA/GA ratio. Additionally, exogenous high levels of 
melatonin have the potential to decrease the levels of 
reactive oxygen species (ROS) below the normal range. 
This reduction in ROS contents obstructs the downward 
transmission of ROS signals, ultimately resulting in the 
inhibition of seed germination (Fig.  1). Under stressful 
germination conditions, melatonin reduces the ratio of 
ABA/GA by downregulating the expression of ABA bio-
synthesis genes and upregulating the expression of GA 
biosynthesis genes and ABA catabolism genes. Simulta-
neously, melatonin reduces the ROS contents induced by 
stress through the upregulation of antioxidant enzyme 
genes. This promotes material metabolism in seeds, ulti-
mately facilitating seed germination (Fig. 2).

In recent years, the regulatory role of melatonin in 
seed germination has been continuously studied. How-
ever, the specific regulatory mechanisms are largely 
unknown. (1) There is evidence suggesting that the 
phytomelatonin receptor PMTR1 plays a negative regu-
latory role in seed germination in Arabidopsis thaliana 
(Yin et  al., 2022a). However, Yu et  al. (2021) reported 
that MsPMTR1 is required for the melatonin-pro-
moted alfalfa seed germination under salt stress condi-
tions (Yu et al. 2021). Nevertheless, it remains unclear 
whether melatonin relies on its receptor PMTR1 to 
directly participate in the regulation of seed germina-
tion under both normal and stressful conditions, and 
the underlying mechanism behind this interaction 
remains unknown. (2) In addition to ABA and GA, sev-
eral other plant hormones are involved in the regula-
tion of seed germination. Crosstalk between melatonin 
and other phytohormones has been reported in non-
seed germination stages. However, it remains unclear 
whether there is crosstalk between melatonin and other 
plant hormones specifically during seed germination. 
If such crosstalk exists, the underlying mechanisms are 
yet to be elucidated. (3) Crop growth faces challenges 
due to climate change; whereas, melatonin shows 

potential in enhancing both the growth and yield of 
crops under stressful conditions. Several studies have 
shown that seed soaking with melatonin could promote 
seed germination, growth, yield and stress resistance 
of soybean, wheat and maize (Ahmad et  al. 2021; Lei 
et  al. 2021; Wei et  al. 2015; Ye et  al. 2020). Therefore, 
the breakthroughs in these questions will improve our 
understanding of the molecular mechanism by which 
melatonin regulates seed germination and provide 
insights into the application of melatonin in agricul-
tural production.
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