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Immunocompromisation of wheat host 
by L‑BSO and 2,4‑DPA induces susceptibility 
to the fungal pathogen Fusarium oxysporum
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Abstract 

Susceptibility is defined as the disruption of host defence systems that promotes infection or limits pathogenicity. 
Glutathione (GSH) is a major component of defence signalling pathways that maintain redox status and is synthesised 
by γ-glutamyl cysteine synthetase (γ-ECS). On the other hand, lignin acts as a barrier in the primary cell wall of vascu-
lar bundles (VBs) synthesised by phenylalanine ammonia-lyase (PAL) in the intracellular system of plants. In this study, 
we used two inhibitors, such as L-Buthionine-sulfoximine (BSO), which irreversibly inhibits γ-ECS, and 2,4-dichlorophe-
noxyacetic acid (DPA), which reduces PAL activity and leads to the induction of oxidative stress in wheat (Triticum aes-
tivum) seedlings after exposure to Fusarium oxysporum. Seedlings treated with 1 mM L-BSO and 2,4-DPA showed high 
levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), carbonyl (CO) content, and low activity of antioxidative 
enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)] 
as compared to wild-type (WT) seedlings under F. oxysporum infection. Further, the content of reduced glutathione 
(RGSH), ascorbate (ASC), and lignin was decreased in BSO and DPA treated seedlings as compared to WT seedlings 
during Fusarium infection. Moreover, treatment with BSO and DPA significantly inhibited the relative activity of γ-ECS 
and PAL (P ≤ 0.001) in WT seedlings during Fusarium infection, which led to disintegrated VBs and, finally, cell death. 
Our results demonstrate that inhibition of γ-ECS and PAL by BSO and DPA, respectively, disrupts the defence mecha-
nisms of wheat seedlings and induces susceptibility to F. oxysporum.
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Introduction
Wheat (Triticum aestivum L.) is one of the globe’s larg-
est economically valuable poaceae crops (Bahadur et  al. 
2022), and its production is severely affected by a dev-
astating soil-borne fungus, Fusarium oxysporum (Sam-
paio et al. 2020). The spores of F. oxysporum species can 
penetrate the host through wounds in the root region. 

The penetration process is increased by certain hydro-
lysing enzymes secreted by Fusarium (Gabrekiristos and 
Demiyo 2020). Inside the root, the cortex is occupied by 
young mycelia, which invade the endodermis and finally 
enter the xylem vessels through the pits. The xylem ves-
sels are blocked due to mycelia producing microconidia 
in the entire shoot, consequently lowering the transpira-
tion rate, which leads to significant cytological alterations 
resulting in vascular wilt, corm rot, root rot, and damp-
ing-off diseases (Garcés-Fiallos et  al. 2017). In addition, 
Fusarium produced mycotoxins, including type B tricho-
tecenes, deoxynivalenol (DON), nivalenol (NIV), 3-acetyl 
and 15-acetyl deoxynivalenol (3ADON and 15ADON), 
and 4-acetyl nivalenol (4ANIV), damaged the host tissues 
(Gabrekiristos and Demiyo 2020). This induces wilting of 
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the entire plant, which eventually leads to death (Abou 
El-ghit HM 2016). The disturbed metabolism in chloro-
plasts and mitochondria leads to the overproduction of 
reactive species (RS), reactive halogen species (RHS), 
reactive nitrogen species (RNS), and reactive oxygen 
species (ROS) such as hydroxyl (OH•), hydrogen per-
oxide (H2O2), superoxide (O2•−), singlet oxygen (1O2), 
nitric oxide (NO•), HOBr, hypochlorous acid (HOCl), 
and HOI, which results in oxidative stress (Pisoschi et al. 
2021). This RS causes damage to critical biological com-
ponents such as nucleic acids, proteins, and lipids. ROS 
can oxidise polyunsaturated fatty acids (PUFAs), result-
ing in the generation of lipid oxidation products such as 
MDA, 4-oxo-2-nonenal (4-HNE), and acrolein (ACR), 
known as reactive carbonyl species (RCS), and also pro-
ducing carbonyl groups (CO) on proteins by irrevers-
ible reaction (Vishnu et  al. 2021). To control RS levels, 
oxidative damage, and the redox status of the cell, plants 
manufacture a diversity of enzymatic (CAT, SOD, APX) 
and non-enzymatic antioxidants (GSH, ASC, β-carotene, 
α-tocopherol) (Hasanuzzaman et al. 2020).

To neutralise the ROS induced oxidative stress inside 
the vascular system (VS), the plants have developed a 
basal defence system constitutively through the induction 
of lignin metabolic pathways. Lignin is a prime phenolic 
compound that organizes the secondary cell wall in vas-
cularized plants and is anabolized from L-phenylalanine 
(L-Phe) and cinnamate by committed PAL (Feduraev 
et  al. 2021). Similarly, the O2

•− and H2O2 radicals rein-
force the cell wall by lignification and inhibit the ingres-
sion of microbial proliferation in VBs (Xie et  al. 2018). 
The host starts a non-enzymatic antioxidant GSH signal-
ling pathway to regulate the ROS and RNS during patho-
gen infestation (Juan et al. 2021). It is generated by using 
γ-ECS and glutathione synthetase (GS) enzymes and 
has two forms, such as reduced glutathione (RGSH) and 
oxidized glutathione (GSSG) (Chen et  al. 2020). It is an 
essential metabolite for maintaining and controlling cel-
lular redox status and providing immunity to pathogen 
infection in plants (Jelena et al. 2021) through the ASC-
GSH cycle (Datta and Chattopadhyay 2018).

Evidence suggests that pathogen invasion and sus-
ceptibility are facilitated by host plant defence enzyme 
inactivation (Peyraud et al. 2017). For example, the sup-
pression of guaiacol-peroxidase (GPx) and polyphenol 
oxidase (PPO) activities by potassium cyanide (KCN) 
induced susceptibility to F. graminearum infection in 
wheat (Mohammadi and Kazemi 2002). Coronatine is 
a toxic compound that analogs the function of the hor-
mone jasmonic acid-isoleucine, which inhibits salicylic 
acid cascade pathways, promotes systemic suscepti-
bility, and causes disease symptoms in plants (Zheng 
et  al. 2012). GPx is recognised as the chief enzyme in 

the cellular system for the detoxification of peroxide 
and provides protection against ROS induced oxida-
tion. The GPx activity was inhibited by methylmercury 
(MeHg) and rendered mouse brain cells susceptible to 
oxidative stress (Farina et al. 2011). However, GPx activ-
ity was also inhibited by NO, homocysteine, and mer-
captans (Lubos et al. 2011). In addition, the competitive 
inhibitors of the PAL enzyme, such as (S)-2-aminooxy-
3-phenylpropionic acid (AOPP), piperonylic acid (PIP), 
2-aminoindane-2-phosphonic acid (AIP), 3,4-methyl-
enedioxycinnamic acid (MDCA), and O-benzylhydrox-
ylamine (OBHA), also significantly reduce the level 
of intermediates of the phenylpropanoid pathway in 
Lycopersicon esculentum (Tyagi et  al. 2022). It is also 
reported that suppression of PAL activity induces sus-
ceptibility to fungal pathogens in wheat, tobacco, and 
flax plants (Lee et al. 2018). Moreover, the inactivation 
of the γ-ECS enzyme, which possesses a low level of 
GSH, resulted in an immunocompromised Arabidop-
sis mutant against pathogens (Hossain et al. 2022). It is 
also reported that a lethal embryo was produced due to 
a lack of the γ-ECS gene (Noctor et al. 2018). Further-
more, L-Buthionine-sulfoximine (L-BSO) preferentially 
inhibits γ-ECS, an enzyme that works as a rate-limiting 
catalyst in the manufacture of GSH in cancerous cell 
lines (Noctor et  al. 2012; Wang et  al. 2015) and carrot 
plants (Flores-Cáceres et al. 2015).

Hence, previous studies suggested that GSH and lignin 
play a crucial role in pathogen resistance. Application of 
inhibitors of γ-ECS and PAL might compromise plant 
health. Therefore, in this study, we applied this concept 
by using two inhibitors, L-BSO and DPA of γ-ECS and 
PAL, respectively, and assessed the induction of suscepti-
bility in wheat seedlings against F. oxysporum.

Results
Reduction of plant growth and induction of oxidative 
stress by BSO and DPA treatment
The wild-type (WT) seedlings showed better growth 
under Fusarium stress as compared to the BSO and DPA 
treated seedlings,where the leaves exhibited signs of yel-
lowing and wilting (Fig.  1a). A significant reduction in 
shoot length (SL, by 33.3% and 27.46%) and root length 
(RL, by 15.80% and 8.82%) was also observed in BSO and 
DPA-treated seedlings as compared to WT under Fusar-
ium infection. Similarly, the fresh weight (FW, by 16.96% 
and 20.58%), dry weight (DW, by 31.26% and 29.33%), 
and relative water content (RWC, by 57.97% and 54.86%) 
were reduced in BSO and DPA treated seedlings as com-
pared to WT under Fusarium infection (Table 1).

The H2O2 content, an indicator of oxidative stress due 
to an imbalance of the redox system, was estimated in 
WT, BSO, and DPA exposed to Fusarium infection. No 
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Fig. 1  Effect of inhibitors on the generation of oxidant content during Fusarium infection. a The upper  panel shows the phenotype of WT, 
BSO, and DPA treated seedlings under non-stress and Fusarium infection condition. b The bottom panel shows the response of histochemical 
assessment of H2O2 in WT, BSO, and DPA treated leaf tissues under non-stress and Fusarium infection condition. c Changes in the level of H2O2 
content in shoot tissues. d Lipid peroxidation expressed in terms of MDA content in shoot tissues. e Changes in the level of CO content in shoot 
tissues. *, ** denote significance at p ≤ 0.05 and p ≤ 0.001, respectively

Table 1  Effect of inhibitors on growth and development of WT, BSO, and DPA treated seedlings under Fusarium infection

Data represent mean value ± SE from three replicates, n = 5

WT: (wild type) seedlings, Fus: WT seedlings infected with Fusarium, BSO + Fus: BSO treated seedlings infected with Fusarium, DPA + Fus: DPA treated seedlings infected 
with Fusarium
*  and ** represent significant and highly significant differences as compared to WT at p ≤ 0.05 and p ≤ 0.01 respectively

Treatment SL(cm) RL(cm) FW(mg/seedling) DW(mg/seedling) RWC(%)

WT 15.77 ± 2.41 9.25 ± 1.13 128.52 ± 10.83 21.39 ± 6.00 92.52 ± 23.42

BSO 9.98 ± 1.85 8.04 ± 0.62 96.40 ± 30.39 12.80 ± 4.17 85.48 ± 12.10

DPA 9.85 ± 0.97 7.08 ± 0.92 111.21 ± 13.63 11.78 ± 4.03 84.32 ± 18.81

Fus 8.63 ± 1.24* 5.44 ± 0.61** 87.30 ± 4.58 8.278 ± 4.74* 81.24 ± 15.76**

BSO + Fus 5.75 ± 2.08 4.58 ± 0.54 72.49 ± 3.37* 5.69 ± 3.67 34.14 ± 12.21

DPA + Fus 6.26 ± 1.52* 4.96 ± 0.88* 69.33 ± 6.17 5.85 ± 3.25* 36.67 ± 8.13*
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significant visual difference was seen in the accumulation 
of H2O2 in WT, BSO, and DPA under non-stress condi-
tion. The reddish brown spots, indicative of H2O2 accu-
mulation, were increased in the leaf tissues of BSO and 
DPA-treated seedlings but less in WT during infection 
(Fig.  1b). These results were corroborated by measuring 
the H2O2 content in the shoot tissues. The H2O2 level was 
enhanced by ~1.75 to ~1.82-fold in BSO and DPA-treated 
seedlings as compared to WT when exposed to Fusarium-
induced stress (Fig.  1c). The lipid peroxidation product 
MDA has been used as an oxidative stress marker in plant 
responses. The MDA was observed to be ~1.58 to ~1.60-
fold greater in BSO and DPA than WT during infection 
(Fig. 1d). Moreover, the protein carbonyl content (CO) is 
indicative of a stress marker in susceptible plants. The CO 
content in BSO and DPA-treated seedlings was increased 
by ~2.16 and ~2.33-fold as compared to WT (Fig. 1e).

Treatment with BSO and DPA reduce the ROS scavenger’s 
activity
In order to detoxify ROS, plants have a dynamic antioxi-
dant machinery that is required for reducing ROS under 
biotic stresses. The effect of BSO and DPA on the activ-
ity of antioxidant enzymes that assist in quenching ROS, 
SOD, CAT, and APX was also measured in shoot tissues. 
All of these enzymes’ activities were reduced ~2.0 to 
~3.0- fold as compared to WT when exposed to Fusar-
ium infection. No significant difference was seen in the 
antioxidant activity of WT, BSO, and DPA under non-
stress condition (Fig.  2a, b, and c). The GR activity was 
also decreased ~5.0-fold in BSO and DPA-treated shoot 
tissues under infection condition (Fig. 2d). Overall, sup-
plementation with BSO and DPA reduced antioxidant 
enzyme activity in WT under the Fusarium infection 
condition more than control.

Fig. 2  Influence of inhibitors on antioxidant enzyme machinery in WT, BSO, and DPA treated shoot tissues after Fusarium infection. a Changes 
in the activity of SOD, b Changes in the activity of CAT, c Changes in the activity of APX, d Changes in the activity of GR. *, ** denote significance 
at p ≤ 0.05 and p ≤ 0.001, respectively
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Effects of inhibitors on ASC‑GSH cycle and lignin 
accumulation
In the ASC-GSH cycle, RGSH regenerates the oxidised 
ASC through the detoxification of H2O2 and MDA, pro-
viding defense responses in plants. The RGSH content 
was decreased ~5.42-fold in BSO and ~2.0-fold in DPA 
treated tissues than in WT shoot tissues under Fusar-
ium infection (Fig. 3a). Moreover, the GSSG content was 
decreased ~1.66-fold in BSO and increased ~1.57-fold 
in DPA treated shoot tissues under infection condition 
(Fig.  3b). Overall, the total glutathione (TGSH) content 
was reduced ~2.1-fold in BSO and enhanced ~1.2-fold 
in DPA shoot tissues under infected condition (Fig.  3c). 
Another ROS quencher, ASC content, was reduced ~7.5-
fold in both BSO and DPA treated shoot tissues when 
infected (Fig. 3d). Additionally, the γ-ECS enzyme replen-
ishes the GSH pool to help plants defend themselves from 
infection. The γ-ECS activity was reduced ~8.2-fold in 
BSO and ~2.6-fold in DPA treated shoot tissues, respec-
tively, as compared to WT during infection (Fig.  3e). 
Hence, the BSO inhibited the defense system through 
inactivation of γ-ECS which result in low level of RGSH, 
GSSG and TGSH content as compared to WT and DPA 
plants under both control and infection condition.

Lignin is a polymer of phenolic compounds that is 
embedded in the VBs to restrict the fungal invasion in 
plants. The lignin accumulation in plants was assayed 
(indicated as red spots), which decreased in the VBs of 
BSO and DPA treated shoot tissues compared to WT. 
There is no significant difference in the VBs of WT, BSO, 
and DPA treated shoot tissues under control condition 
(Fig. 4a). Similarly, the BSO and DPA treated shoot tissues 
showed ~2.14 and ~5.27-fold lower lignin content than 
WT shoot tissues under infection (Fig.  4b). The lignin 
precursor synthesizing enzyme PAL was reduced ~8.0-
fold in DPA and ~3.8-fold in BSO treated shoot tissues as 
compared to WT under infected condition (Fig. 4c).

Development of susceptibility
The BSO and DPA treated seedlings exhibited disease 
lesions 2 d after inoculation, whereas WT seedlings 
showed visible symptoms after 4 d (Fig. S1). The visual 
observation of fungal structures was performed by histo-
chemical staining of leaves with lactophenol cotton blue 
(LPCB). The formation of dark blue spots indicative of 
fungal structure accumulation increased in the VBs of 
BSO and DPA treated leaf tissues but less in WT under 
infection condition (Fig.  5a). In the shoot tissues, the 
thick and branched mycelial network appeared more in 
VBs of BSO and DPA than in WT under infection con-
dition. In addition, the disorganized xylem vessels were 
found more in BSO and DPA shoot tissues than WT. The 

proliferated mycelia exhibited more damaged tissues in 
BSO and DPA than WT shoot tissues (Fig. 5b).

The BSO and DPA treated leaf tissues showed increased 
cell death, indicated by a darker blue color than WT in 
infection condition (Fig. 6a). Similarly, the BSO and DPA 
treated shoot tissues showed ~2.04 and ~2.27-fold more 
cell death content under infection condition than WT 
shoot tissues (Fig. 6b). The BSO and DPA treated seed-
lings showed an enhanced ~1.45 and ~1.54-fold Disease 
severity index (DSI) than WT during Fusarium infec-
tion (Fig. 6c). These results indicated that the application 
of 1  mM concentrations of BSO and DPA induces the 
growth and spreading mycelial network and increases the 
disintegration of shoot tissues.

The association between several factors in WT, BSO, and 
DPA treated plants was determined by analysing the corre-
lation coefficient. The correlation coefficients for cell death, 
H2O2, MDA, SOD, CAT, APX, γ-ECS, GSH, GSSG, TGSH, 
GR, ASC, PAL, and Lignin for control and Fusarium infec-
tion are shown in Table S1 and Fig.  7. Significant corre-
lations were observed between H2O2-DSI, H2O2-SOD, 
H2O2-APX, H2O2-Lignin, CO-MDA, γ-ECS-GSH, GSH-
ASC, GR-GSSG, PAL-Lignin, and Lignin-DSI after BSO 
and DPA treatment (P ≤ 0.05) during infection. However, 
non-significant relationships were found between MDA 
and CO, γ-ECS, GSH, GSSG, and ASC at P ≤ 0.05.

Discussion
Wheat, an economically significant agricultural plant, has 
previously been shown to acquire susceptibility to a vari-
ety of distinct fungal diseases, with F. oxysporum being 
one of the most prominent plant pathogens responsible 
for massive crop losses due to vascular wilt, yellows, corm 
rot, root rot, and damping-off diseases. The findings of the 
present study reveal that wheat seedlings develop a sys-
temically induced susceptibility to F. oxysporum infection 
in response to BSO and DPA applications. Earlier results 
reported that inhibitors like 2,4-DPA and cinnamalde-
hyde (CAld) for PAL (Fujita et al. 2006), 2,4-dinitrophenol 
(DNP), MDCA, N-(3,4-dichlorophenyl)propanamide (pro-
panil), and menadione (MD) for cinnamate 4-hydroxylase 
(C4H), caffeic acid (CA), and ferulic acid (FA) for 4-cou-
marate: CoA ligase (4CL) are used in the phenylpropanoid 
pathway to induce susceptibility in plants (Harding et  al. 
2002). For the formulation of effective ways to manage 
wheat susceptibility, it is necessary to explore and uncover 
the molecular mechanisms underlying plant immunity.

It has been established that under stressful condi-
tion, the physiological parameters like SL, RL, FW, DW, 
and RWC are disturbed and reduced the plants’ growth. 
In this study, treatment with BSO and DPA showed 
more reduced physiological parameters than WT under 
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Fig. 3  Effect of inhibitors on antioxidant content and Ƴ-ECS activity in WT, BSO, and DPA treated shoot tissues under Fusarium stress. a RGSH 
content, b GSSG, c TGSH, d ASC, and e Ƴ-ECS activity. *, ** denote significance at p ≤ 0.05 and p ≤ 0.001, respectively
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infected conditions. Similarly, the 2,4-DPA application 
reduces plant growth by increasing oxidative damage in 
the ZJ 88 (salt-sensitive) rice cultivar (Islam et  al. 2017), 
and BSO also affects physiological aspects in Arabidopsis 
thaliana (Wójcik et  al. 2009). Hence, the BSO and DPA 
treated seedlings showed higher chlorosis and severe wilt-
ing symptoms than the WT during infection. Moreover, 
the proliferation of F. oxysporum mycelium might inhibit 
water transportation, which resulted in wilt symptoms in 
BSO and DPA treated seedlings more quickly than in WT 
(Yadeta and Thomma 2013). Hence, the low RWC leads to 
dissociation of primary metabolites that supply interme-
diates to the defence system and ultimately leads to sus-
ceptibility to F. oxysporum (Bispo et al. 2016).

In pathogen attack, a quick formation and deposition 
of ROS arises, which is extremely hazardous to macro-
molecules and causes lipid peroxidation (MDA), protein 
carbonyl (CO) (an irreversible protein oxidation product) 
(Zhang et al. 2021), resulting disease progression in plant 
tissues (Bi et al. 2021), which is concomitant to the current 

study, where H2O2, MDA, and CO content were observed 
high in WT during Fusarium infection. Moreover, the high 
H2O2 was indicative of high susceptibility in BSO and DPA 
tissues, is evidenced by the localization of H2O2 in shoot 
tissues. Similarly, MAPK inhibitor (U0126) treatment 
increased H2O2 and MDA in plants infected with Botrytis 
cinerea (Zheng et  al. 2015), resulting in cellular dysfunc-
tion and/or cell death (Lu et  al. 2021). In addition, 3AB, 
a PARP inhibitor, also induced oxidation in A. thaliana 
(Briggs et  al. 2017). Some earlier reports also stated that 
inhibitors like diphenylene iodonium (DPI), imidazole, 
tiron, and dimethylthiourea (DMTU) induced resistance 
in Arabidopsis by inhibiting the NADH oxidase enzyme 
and reducing ROS production (Wang et al. 2019).

SOD, CAT, and APX all play a part in eliminating ROS 
and regulating the cellular redox balance (Hojati et  al. 
2017; Islam et  al. 2022). Many researchers have found 
that the antioxidant enzymes SOD, CAT, APX, and POD 
activity decreased during pathogenesis in immunocom-
promised mice (Łanocha-Arendarczyk et  al. 2018; Kot 

Fig. 4  Effect of inhibitors on Lignin content and PAL activity in WT, BSO, and DPA treated shoot tissues under Fusarium stress. a Lignin 
accumulation, b Lignin content, c PAL activity. VBs-Vascular bundles, L-Lignin* and, ** denote significance at p ≤ 0.05 and p ≤ 0.001, respectively
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Fig. 5  Detection of fungal structure. a Fungal development in leaf tissues, and b Fungal structure in VBs and damaged shoot tissues. VBs-Vascular 
bundles, TM-Thick mycelium
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et  al. 2020). Here, a concomitantly low activity of CAT, 
APX, and SOD was observed in BSO and DPA treated 
tissues than WT under infection conditions, which aug-
ments susceptibility like U0126-treated tomato plants 
against B. cinerea infection (Wu et  al. 2021). In addi-
tion, diethyldithiocarbamate (DDC) and 3-amino-1,2,4-
triazole (AT) inhibitors were reported to reduce the 
activity of SOD and CAT, respectively, in rice seedlings 
(Chen et al. 2015). Moreover, the GR converts GSSG into 
RGSH and maintains the GSH pool in the plant (Jung 
et al. 2019). Both the BSO and DPA treated shoot tissues 
showed lower GR activity than WT during infection, as 
also shown by Raja et al. (2020) in Solanum lycopersicum 
during drought, heat, and salinity stress conditions. Thus, 
the decreased antioxidant activity of the treated plants 
helps to overexpress ROS levels and their effect on mem-
branes (MDA and CO formation).

ASC and GSH are both involved in the crucial ASC-
GSH cycle, which aids in the detoxification of H2O2 

(Noctor et  al. 2018) and is regulated by APX, DHAR 
(dehydroascorbate  reductase), MDHAR (monodehy-
droascorbate  reductase), and GR (Hasanuzzaman et  al. 
2019). Here, the BSO treated shoot tissues showed lower 
GSH content than DPA and WT during infection, which 
would be the consequence of irreversible inhibition of 
the γ-ECS enzyme by the redox modulator BSO (Baner-
jee et  al. 2018; Sehar et  al. 2021). Moreover, reduced 
GSSG content was found in BSO treated shoot tissues 
than DPA and WT during infection, due to inhibition 
of GSH synthesis (Sehar et  al. 2021). The DPA treated 
showed higher GSSG than WT, which was indicative of 
elevated H2O2 induced GSH oxidation (Chen et al. 2020) 
in Pisum sativum (Romero-Puertas et al. 2004). In addi-
tion, the TGSH was observed to be lower in BSO treated 
shoot tissues than in DPA and WT due to the oxidative 
burst induced by plant-pathogen interactions (Matern 
et  al. 2015). The BSO and DPA treated shoot tissues 
could not regenerate the ASC due to lower activity of 

Fig. 6  Evaluation of the effect of inhibitors on cell death analysis in WT, BSO, and DPA treated seedlings during Fusarium stress. a Histochemical 
assessment of Cell death in leaf tissues, b Cell death content in shoot tissues, and c Percentage (%) of DSI in seedlings. *, ** denote significance 
at p ≤ 0.05 and p ≤ 0.001, respectively
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APX during infection conditions (Hossain et  al. 2022) 
than WT, resulting in a disrupted ASC-GSH cycle that 
makes them susceptible to pathogens (Hernández et  al. 
2017; Schlaeppi et al. 2008). In addition, the γ-ECS is the 
rate-limiting step for the overall GSH biosynthesis. Fur-
thermore, the γ-ECS-deficient plants showed a low level 
of GSH, rendering them susceptible to pathogens (Noc-
tor et  al. 2012; Hiruma et  al. 2013), which is consistent 
with our result that BSO treated shoot tissues declined 

γ-ECS activity and RGSH more than WT during infec-
tion (Thompson et al. 2021). In addition, the DPA treated 
shoot tissues also reduced γ-ECS activity and RGSH 
(Romero-Puertas et al. 2004). The γ-ECS enzyme activity 
was lowered in plants during Trypanosoma cruzi infec-
tion (Vázquez et al. 2017), which is similar in WT plants. 
Moreover, the lipoxygenase inhibitor ibuprofen (IBU) 
suppressed the TGSH and γ-ECS activity in Agropyron 
cristatum leaves (Shan and Liang 2010). The pattern 

Fig. 7  Correlation coefficient analysis showing the relationship among various parameters between control and Fusarium infection
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of the ASC-GSH cycle is also reduced as marginally in 
BSO and DPA treated shoot tissues than in WT under 
the control condition but reduced highly in the infection 
condition, which might be an influence of F. oxysporum 
pathogenicity.

The lignification machinery has been linked with the basal 
immunity of A. thaliana during fungal interaction (Cesarino 
2019). The decline of lignin deposition was observed in VBs 
of DPA and BSO treated shoot tissues compared to WT dur-
ing infection and was also corroborated by lignin content. 
Similarly, the use of PAL inhibitors AIP and AOPP (100 µM) 
inhibited lignin accumulation in tracheary elements (Den-
nis et al. 2004). PAL is the key enzyme for lignification bar-
riers to fungal invasion into the cell walls of VBs (Cass et al. 
2015) and was shown to be regulated by the herbicide 2,4-
DPA in potato plants (Nassar and Adss 2016). Treatment of 
seedlings with AOPP (Pan et al. 2008), 1.0 mM 2,4-DPA, and 
0.5 M acetic acid (Tomás-Barberán et al. 1997), a chemical 
inhibitor of PAL activity, reduced the accumulation of lignin 
content. In addition, F. virguliforme also reduced lignin dep-
osition in controlled soybean plants (Giachero et al. 2022). 
PAL activity was decreased in DPA and BSO than in WT 
treated shoot tissues during infection, indicating the declina-
tion of lignin in VBs. The depleted lignin can also promote 
the proliferation of Fusarium mycelium in xylem tissues 
(El-Ganainy et al. 2023). Hence, both BSO and DPA induce 
susceptibility through the reduction of lignin deposition 
and PAL activity in WT against F. oxysporum, similar to the 
poly(ADP-Ribose) polymerase (PARP) enzyme’s inhibitor,3-
methoxybenzmide (3AB) in Arabidopsis against Botrytis 
cinerea (Adams-Phillips et al. 2010).

F. oxysporum localization directly reflects the degree of 
development of disease symptoms; these measures are 
widely used in the study of plant susceptibility responses. 
F. oxysporum spores germinated and developed into myce-
lia in the xylem vessels, which further entered the cortex 
and VBs to transform into thick mycelia and cause disin-
tegration at the tissue level, as also reported by Banerjee 
et al. (2018). Finally, the disintegrated VBs degrade the cen-
tral pith and other tissue parts, causing high vascular wilt 
in BSO and DPA. Zhang et al. (2015) also reported that F. 
oxysporum exhibited disintegration of the xylem, collapse 
of the parenchyma tissues, and digestion of the central pith 
in watermelon seedlings. Moreover, the infected hyphae 
proliferated throughout the BSO and DPA treated shoot, 
resulting in enhanced damaged tissues, indicating the high 
susceptibility by BSO and DPA, like AIP, AOPP (Dennis 
et al. 2004), and IBU (Shan and Liang 2010).

The pathogen Cochliobolus victoriae induces cell death 
in immunocompromised Arabidopsis  and oats (Kessler 
et  al. 2020), which was consistent with our study that F. 
oxysporum caused cell death in immunocompromised 
WT induced by BSO and DPA. The elevated cell death 

induces susceptibility in the host, which indicates success-
ful pathogenesis (Coll et al. 2011). Similarly, 1-methylcy-
clopropane (1-MCP) inhibited ethylene receptors in red 
winter wheat and induced susceptibility during heat stress 
(Hays et al. 2007). Aminoxyacetic acid (AOA), aminoeth-
oxyvinylglycine (AVG), and aminohydrazinophenylpropi-
onic acid (AHPP) reduce the activity of aminotransferase 
and PAL, which promotes susceptibility in the NC2326 
cultivar of tobacco plant (Saindrenan and Guest 2017). 
The high degree of fungal colonization of F. oxysporum 
and DSI also confirmed the susceptibility of BSO and 
DPA treated plants as compared to the WT, which is con-
sistent with study by Kocsy et al. (2000).

The significant correlations between H2O2-DSI, H2O2-SOD, 
H2O2-APX, and H2O2-lignin may be due to Fusarium induced 
oxidative stress (Samsatly et al. 2018). The close relationship 
between γ-ECS-GSH, GSH-ASC, and GR-GSSG may possibly 
be attributed to the fact that γ-ECS is the key regulator of the 
ASC-GSH cycle (Hiruma et al. 2013). The lignin-DSI correla-
tion might be due to the depletion of lignin content through 
the inactivation of PAL.

Conclusions
In conclusion, 1  mM BSO and DPA treatment signifi-
cantly inhibited the activity of γ-ECS and PAL, which 
resulted in an increase in susceptibility against F. oxyspo-
rum. A schematic diagram of inhibitors induced suscep-
tibility has been represented in Fig. 8. Thus, the increase 
in susceptibility caused by inhibitors may be due to the 
decrease in GSH and lignin content, which serve as key 
players in the defence system against fungal pathogens.

Materials and methods
Plant material and growth conditions
Healthy and viable wheat seeds (T. aestivum Var. Sharbati 
Sonora) were surface sterilized using 0.01% HgCl2, followed 
by three times washing with sterile distilled water. In order 
to promote germination, the sterilized seeds were kept in a 
sterile beaker containing distilled water and incubated for 
48 h at 26 °C in the dark period. Following incubation, the 
seeds were again cleaned with distilled water before being 
placed in a sterilized Petri dish lined with a wet muslin 
cloth. Then, the plates were incubated at room temperature 
(RT) for 4–5  days (d). Young seedlings that had sprouted 
with uniform root and shoot growth were put into ster-
ile glass test tubes filled with distilled water and kept in a 
growth chamber for 7 d at 32 °C,80% relative humidity, with 
a 16 h photoperiod (240 µmol/ m2s) and 8 h dark period at 
26 °C, 70% relative humidity (Mittra et al. 2004).

Inhibitor treatments and pathogen inoculations
F. oxysporum (FMU01) was grown under dark and immo-
bilized conditions at 28 ± 2 °C for 4 d to produce efficient 
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sporulation. Sprouted wheat saplings were transported 
to sterilized glass test tubes containing distilled water 
after 7 d. One set of seedlings was incubated with 1 ml of 
1 mM BSO and another set with 1 ml of 1 mM 2,4-DPA 
suspension for 48  h at RT (Flores-Cáceres et  al. 2015). 
In a control set, seedlings were grown in DW and kept 
under the same conditions. After that, the wheat roots 
were inoculated with 4 d old F. oxysporum spores (1 × 105 
spores ml−1) by pouring the spore culture into each set of 
test tubes and kept for another 7 d for further growth and 
development.

Plant growth parameters
After 7 DAI (day after inoculation), the seedlings from 
each experimental setup were taken for determination of 

shoot length (SL), root length (RL), fresh weight (FW), 
dry weight (DW), and relative water content (RWC). The 
RWC was calculated using the method and followed the 
below equation (Tahjib-Ul-Arif et al. 2018).

Measurement of oxidants
In planta histochemical detection of H2O2
The localization of H2O2 was carried out histochemically 
in seedlings using the method described by Daudi and 
O’Brien (2012). The seedlings were dipped in sterilized 
glass beaker containing 3,3′-Diaminobenzidine (DAB) 
solution (1 mg ml−1, pH 4.0) for 12 h under the light at RT. 

RWC(%) =
(Freshweight − Dryweight)× 100

(Turgorweight − Dryweight)

Fig. 8  The schematic representation of inhibitors induced susceptibility in WT seedlings during Fusarium infection. The inhibitors (BSO and DPA) 
inhibit the activity of γ-ECS and PAL, respectively which serve as key players in the defence system against oxidative stress. Hence, induces 
susceptibility in plant against F. oxysporum. Abbreviations: BSO-L-Buthionine-sulfoximine; 2,4-DPA-2,4-dichlorophenoxy acetic acid; O2•−-Superoxide 
anion; OH•-Hydroxyl radical; 2O2•−-Peroxide; O2-Oxygen; H2O2-Hydrogen peroxide; 2H+-Hydrogen ion; H2O-Water; MDA-Malondialdehyde; 
CO-Carbonyl; SOD-Superoxide dismutase; CAT-Catalase; APX-Ascorbate peroxidase; GR-Glutathione reductase; RGSH-Reduced glutathione; 
TGSH-Total glutathione; ASC-Ascorbate; γ-ECS-γ-glutamyl cysteine synthetase; GSSG-Oxidized glutathione; L-Phe-L-phenylalanine; 
PAL-Phenylalanine ammonia-lyase Symbols: BSO(○), DPA(Δ), Inhibition(┤), Synthesis of product (─), Reduction of product(---)
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The seedlings were then dipped in 95% ethanol and boiled 
for 20 min to decolorize them. After the decolorization,the 
localized H2O2 was visualized as brown spots.

Assay of H2O2 content
The H2O2 content was measured through the protocol 
of Noreen et al. (2009). Fresh shoot tissues were homog-
enized with 0.1% trichloroacetic acid (TCA), for super-
natant collection through centrifugation at 12,000  rpm 
for 15  min. The reaction mixture containing 0.5  ml of 
the supernatant, 0.5 ml of 10 mM phosphate buffer (pH 
7.0) and 1 ml of 1 M KI in a cuvette was measured at a 
390 nm wavelength. The H2O2 content was calculated by 
the molar extinction co-efficient 0.28 µM−1 cm−1 and was 
expressed as µM g−1 f.w.

Assay of MDA content
MDA was assayed using the method described by Basu 
et al. (2010). 0.5 ml of 5% Trichloroacetic acid (TCA) was 
used to homogenise the shoot tissues and centrifuged at 
12,000 rpm for 20 min. For MDA estimation, 2 ml of thio-
barbituric acid (TBA) reagent (0.5% TBA in 20% TCA) 
was mixed with 0.5  ml of supernatants. The absorption 
of MDA-TBA abduct was evaluated by the molar extinc-
tion co-efficient 155 mM−1 cm−1 at 532 nm, and nonspe-
cific turbidity was corrected by subtracting absorbance at 
600 nm, expressed as µM g−1f.w.

Assay of protein‑carbonyl content
The protein carbonyl content was estimated by Basu et al. 
(2010). The purified proteins were precipitated in 0.5 ml of 
15% TCA under cold condition for 15 min, then the pre-
cipitants were centrifuged at 10,000 rpm. The protein pel-
lets were washed with 20% TCA for two times. The final 
protein pellet was redissolved in 0.5 ml of 0.2 mM sodium 
phosphate buffer (pH 7.0). The absorbance of protein-car-
bonyl content was estimated at 360  nm using the molar 
extinction coefficient of 2,4-Dinitrophenylhydrazine(DNP) 
(17,530 µM−1 cm−1), and expressed in µM g−1f.w.

Measurement of the activities of antioxidant enzymes
Assay of SOD activity
The SOD activity was assayed by photo-inhibition of nitro 
blue tetrazolium (NBT) at 560 nm using the molar extinc-
tion coefficient of 12.8 L mol−1  cm−1, by Kumari et  al. 
(2015). The 3 ml reaction mixture containing 50 mM phos-
phate buffer (pH 7.8), 0.3  ml of 20  µM riboflavin, 0.3  ml 
of 130 mM methionine, 0.3 ml of 750 µM NBT, 0.3 ml of 
10 mM EDTA, 0.25 ml of distilled water, and 50 µl extracted 
enzymes was taken in sterilized test tubes and placed under 

a fluorescent lamp for 10 min. The 1 unit (U) of SOD activ-
ity is considered the quantity of enzyme required to cause 
50% inhibition of the reduction of NBT.

Assay of CAT activity
The CAT activity was determined by Zhang et  al. 
(2021). The reaction mixture containing 50 µl of 30 mM 
H2O2, 2.9  ml of 50  mM enzyme extract was taken in 
a cuvette. The decreased absorbance was estimated at 
240 nm for 3 min using the molar extinction coefficient 
40 mM−1 cm−1 and expressed in U g−1f.w.

Assay of APX activity
The APX activity was measured using the molar extinc-
tion coefficient of 2.8 mM−1 cm−1 for the ASC method by 
Kumari et al. (2015). 1 ml of the reaction mixture com-
prising 600 µl of 50 mM phosphate buffer solution, 100 µl 
of 1 mM EDTA, 100 µl of 5 mM ascorbic acid, 100 µl of 
H2O2, and 100 µl of the enzyme extracts were taken in a 
cuvette. The reduced absorbance was reported at 290 nm 
and expressed in U mg−1 protein. 1U of APX activity is 
established as the quantity of enzyme needed to decrease 
1 µmol of H2O2 min−1 under the assay condition.

Assay of GR activity
According to the GR assay, the homogenates were pre-
pared using 50  mM Tris-HCl buffer (pH 7.5), contained 
1 mM EDTA, 9.94 mM sodium ascorbate, and 0.5% insol-
uble polyvinylpyrrolidone. Then the homogenates were 
centrifuged at 12,000  rpm for 20 min. The 3 ml reaction 
mixture containing 50  mM Tris-HCl (pH 7.5), 3  mM 
MgCl2, 1 mM GSSG, 0.2 mM EDTA, and 0.3 ml enzyme 
extracts were taken into a cuvette. The enzyme activity was 
estimated at 340 nm for 1 min using the molar extinction 
coefficient of 6.22 × 103 M−1 cm−1 and expressed as U g−1 
f.w. following the method of Sahoo et al. (2019).

Measurement of antioxidants and metabolite
Assay of total GSH (TGSH) content
The contents of RGSH and GSSG were estimated by the 
5,5’-dithiobis-2-nitrobenzoic acid (DTNB)-GSSG reduc-
tase method outlined by Ogawa et  al. (2004). The rate of 
formation of 5-thio-2-nitrobenzoate (TNB) was meas-
ured at 412  nm using the molar extinction coefficient of 
0.017 mM−1 cm−1 and GSH was taken as a reference. The 
4-polyvinylpyrrolidone was used to trap the GSH present in 
the 5-sulfosalicylic acid supernatant solution (2 µl/100 µl).

Assay of ASC content
The ASC content was measured by the following method 
by Ainsworth and Gillespie (2007). The 0.5 ml of charcoal 

%of inhibition = [1−Absorbance of each sample /Absorbance of the control]×100
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treated enzyme extracts, 1.5 ml of 4% TCA, 0.5 ml of 2% 
dinitrophenylhydrazine (DNPH), and 2 drops of 10% 
thiourea solution were combined and incubated at 37  °C 
for 3  h to generate osazone crystals. The crystals were 
dissolved in 85% H2SO4 under cold conditions, and the 
absorption was read at 540 nm using the molar extinction 
coefficient of 2.88 mM−1 cm−1, and expressed in µg g−1f.w.

Assay of γ‑ECS activity
The γ-ECS activity was measured by following the method 
of Ogawa et al. (2004). The 1 ml reaction mixture consist-
ing of 500  µl of enzyme extract and 50  mM Tris–HCl 
(pH 7.6) contained 1  mM dithioerythritol, 10  mM ATP, 
0.25  mM glutamate, and 2  mM cysteine and was incu-
bated at 25  °C for 1  h. Then, the reaction mixture was 
mixed with 1.2 ml of phosphorous agent, which contained 
2.5% ammonium molybdate, 10% vitamin C, and 3  mM 
H2SO4 followed by incubation at 45  °C for 25  min. The 
mixture was taken for absorbance at 660  nm using the 
molar extinction coefficient 125 M−1 cm−1 and expressed 
as U mg−1 protein.

In planta histochemical detection of lignin
The accumulated lignin was histochemically stained with 
phloroglucinol following the method by Veronico et al. (2018). 
The shoot tissues were immersed in 70% ethanol for 2 min, 
followed by treatment with HCl for 1 min. The lignin was visu-
alized as a red-orange colour under a light microscope.

Lignin content
The lignin content was assayed using the protocol of 
Sharma et  al. (2000). The dried methanol extracts con-
tained 50  mg of alcohol insoluble residues, 0.5  ml of 
TGA, and 5  ml of 2 N HCL. They were boiled for 4  h. 
Then, the mixture was suspended in 5 ml of 0.5 N NaOH, 
followed by the addition of 1 ml of HCL to precipitate the 
lignin-TGA compound. The lignin-TGA compound was 
estimated at 280 nm and expressed in A280 g−1 of alcohol 
insoluble residues f.w.

Assay of PAL activity
PAL activity was assayed using the molar extinction coef-
ficient of 10.238  M−1  cm−1 by Umesha (2006). 1  ml of 

plant enzyme extract was mixed with 0.5  ml of 50  mM 
L-phe and 0.4  ml of 25  mM borate buffer in setrilized 
test tubes. The tubes were incubated for 2 h at 400 °C in a 
water bath. To stop the reaction, 0.06 ml of 5 N HCL was 

added in tubes to read the absorbance at 290 nm against 
L-phe as a blank, expressed as moles of transcinnamic 
acid m−1 mg−1 protein.

Detection of fungal colonies in infected seedlings
A mixture of acetic acid, ethanol, and water (2:2:1, v/v/v) was 
used to decolorize the shoot pieces at 25  °C to determine 
fungal colonies by Garg et  al. (2010). Then, the parts were 
washed in deionized water and stained with a 1% lactophe-
nol cotton blue solution to image the fungal colonies in blue.

Two millimeter (2-mm) long shoot sections were cut 
using a sterile scalpel under aseptic conditions. The shoot 
parts were fixed by immersing in 5% glutaraldehyde in 
0.1 M phosphate buffer (pH 7.2) for 4 h. Then the tissue 
parts were dehydrated by passing them through a series 
of aqueous ethanol solutions (10, 30, 50, 75, and 95%) and 
then placed in 100% ethanol, each for 5 min at RT. The 
tissue parts were dried, mounted on aluminium stubs, 
and coated with gold film in a sputter coater for 15 min. 
The tissue segments were observed under a scanning 
electron microscope (SEM) (Hitachi, S3400N, 30 kV).

Estimation of cell death and disease severity index (DSI)
The dead cells were examined by using trypan blue fol-
lowing the method of Kerschbaum et  al. (2021). The 
seedlings were dipped into 40 ml of 0.01 g of trypan blue 
for 1  min at RT. Then, the seedlings were cleaned with 
a washing solution containing ethanol and water (1:1) to 
visualise the polymerized blue colour as dead cells.

Cell death was assayed by Gölge and Vardar (2020). The 
shoot tissues were dipped in 10  ml sterilized test tubes 
containing 1 ml of 0.25% Evans blue, and the aliquot was 
measured at 600 nm and expressed in percentage (%).

Using a (0–3) intensity scale, the DSI of wheat plants 
was evaluated after 7 DAI (Strelkov et al. 2006). Accord-
ing to the morphology of the root organs, the seedlings 
were divided into four groups.

Healthy plants 0 = No root rot symptoms
Slightly infected plants 1 = Dark brown to black spots 

on root
Healthy infected plants 2 = Weak, stunted, and rotting 

rot seedlings
Dead plants 3 = Dead and fallen seedlings
The following equation was used to measure the DSI.

Data analysis by correlation coefficient
For various redox parameters of the WT, BSO, and DPA 
seedlings, values are presented as the mean of three rep-
licates. Here, the mean of three replicates represents the 

DSI(%) =
[(ClassNumber)(Number of plants in each class)]

(Total number of plants per sample)(Number of classes− 1)
× 100
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“mean of three independent seedlings”. The results were 
assessed by the Student’s t-test. Significance was defined 
as p ≤ 0.05 (*) and p ≤ 0.001 (**). The covariance cor-
relation was carried out using XLSTAT, 2020 software 
(XLSTAT, Addinsoft, New York, NY).
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