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Abstract 

In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of “The 
Hygiene Hypothesis” in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorgan‑
isms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of anti‑
biotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes 
in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics 
that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first 
described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning 
period and the impacts brought by antibiotics usage. Evidence of in‑feed additives with immuno‑modulatory proper‑
ties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized 
and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open 
new avenues for health management in pig production.
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Introduction
The routine usage of antibiotics to maintain animal 
health and productivity has been a hallmark of modern 
animal husbandry. In pig production, antimicrobials are 
not only used as therapeutics against pathogenic bacte-
ria; but also as prophylaxis to prevent infection; and as 
antibiotic growth promoters (AGPs) to improve produc-
tion efficiency (Van Boeckel et  al. 2015; Waluszewski 
et  al. 2021), where the average growth rate of pigs was 

improved between 4-8% (Li 2017; Luecke et  al. 1951). 
However, the overuse of antibiotics in livestock has led 
to the dissemination of antimicrobial resistance (AMR) 
genes into pathogenic bacteria, causing drug-resistant 
infections in humans (Mestrovic et al. 2022; Van Boeckel 
et  al. 2015), in addition to impairing the host intestinal 
development, metabolism homeostasis, and even show-
ing transgenerational effects (Cox et  al. 2014; de Greeff 
et al., 2020; Zarrinpar et al. 2018). Concerns arise as low-
dose of repeated antibiotic administration in farming 
could promote AMR by selection pressure; contaminate 
the environment with antibiotic-resistant bacteria, trans-
ferring AMR horizontally; and produce animal products 
with antibiotic residuals, causing de novo AMR genes and 
bacteria (Aslam et al. 2021; Rahman et al. 2022). A car-
dinal study established a comprehensive pig gut micro-
biome gene reference catalogue revealed that the highest 
prevalent AMR genes are resistant to tetracycline, mac-
rolide, bacitracin, cephalosporin, and streptogramin B 
(Xiao et  al. 2016). While metagenomic data analysis of 
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pig and human intestinal samples uncovered a shared 
core resitome of 27 AMR genes (Wang et  al. 2021a). In 
2016, the emergence of plasmid-mediated colistin resist-
ance gene MCR-1 in Enterobacteriaceae from pigs and 
human samples was identified, where colistin is consid-
ered the last resort of antibiotics for treating drug-resist-
ant bacterial infections (Liu et al. 2016).

In this context, a global effort has been made to reduce 
antibiotic usage in the livestock sector. The earliest in-
feed AGPs ban was legislated in Sweden and Denmark 
and put into effect in Europe by 2006 (Aidara-Kane et al. 
2018; Waluszewski et al. 2021). Whereas China, the larg-
est producer of pigs and the largest consumer of veteri-
nary antimicrobials, unveiled its National Action Plan 
to combat AMR in 2016 and has now officially entered 
the era of “no antibiotics in feed” (China 2016; Tian et al. 
2021). However, the ban on in-feed antibiotic usage has 
unintended impacts on pig production, such as increased 
morbidity and mortality of infectious diseases and higher 
associated economic losses. In addition, despite the vari-
ation in classes and the route of application, antibiotics 
are still massively used in livestock (Cuong et  al. 2018; 
Lekagul et al. 2019; Waluszewski et al. 2021). The global 
antibiotic usage for domestic animals was estimated 
at 68,535–193,052 tons in 2020 and was projected to 
increase by 8% in 2030 (Mulchandani et al. 2023). There-
fore, finding antibiotic alternatives to manage animal 
health and production became a pressing issue.

To achieve that, we are first learning the mechanisms 
by which antibiotics promote animal growth and other 
unintended impacts (Van Boeckel et al. 2015; Yang et al. 
2017). Several hypotheses have been proposed: antibi-
otics could improve animal performance by reducing 
intestinal infection and bacterial toxin production; by 
preserving nutrients from microbial destruction; or by 
enhancing nutrient absorption via its mucus thinning 
effect. These antibiotic actions all link to their ability to 
influence microflora (Plata et al. 2022; Yang et al. 2017). 
Indeed, the role of the gut microbiome under antibiotics 
perturbation or in response to newly developed alterna-
tives in pigs has been intensively studied (Kim and Isaac-
son 2015; Levast et al. 2014; Wang et al. 2019d). Whereas 
the effects of antibiotics on the host immunophysiology 
directly or via the collateral damage of the drug on com-
mensal bacteria were less explored. From the perspec-
tive of general physiology, immunity is considered the 
gatekeeper for maintaining the molecular homeostasis 
of the whole body, especially to counteract pathogenic 
invasions. It is reported that chronic low-dose penicil-
lin administration induces a global down-regulation of 
intestinal immunity in mice, such as reduced expres-
sion of transcription factors and cytokines important for 
Th17 cell function and genes related to defense responses 

(Cox et al. 2014). Early-life antibiotic exposures (ampicil-
lin and neomycin) impair antibody responses to several 
vaccines in mice, including the failure of the Bacillus 
Calmette-Guerin vaccine (Lynn et  al. 2018). Alterna-
tively, antibiotics may affect host cell metabolism and 
their inflammatory signaling, thus resulting in changes in 
gut microflora (Zarrinpar et al. 2018). However, the exact 
nature of these interactions is still elusive.

Therefore, in search of alternatives to antibiotics in 
pig production, we focus on results and candidates that 
exhibit the potential to maintain or restore the physi-
ological state of pigs and support their optimal growth 
and immune responses. In this review, we will briefly 
describe pig mucosal immunity as a physiological system 
in its functions, followed by discussions of the gut micro-
biota dynamics in swine during the weaning period. Fur-
thermore, evidence of in-feed antibiotic alternatives with 
immuno-modulatory properties will be summarized in 
a non-exhaustive way highlighting probiotics, prebiot-
ics, and phytobiotics. Finally, we will conclude the review 
with our immunophysiological perspective on the status 
of the field and ask questions important for its future 
perspective.

The mucosal immunity of pigs
The intestinal mucosal immune system contains mul-
tiple layers, each composed of phenotypic diverse and 
functional plastic cell subsets. The inter-dependent cel-
lular network must act in concert while each component 
endows with specialized and complementary functions 
(Ansaldo et  al. 2021; Collins and Belkaid 2022). The 
mucosal sites of the gastrointestinal (GI) tract are con-
stantly exposed to high loads of antigens, including the 
microbiome, dietary components, and other environ-
mental factors. As a result, the host responses to oral 
delivery of antigens should be tightly regulated by the 
local intestinal mucosal immune system to prevent 
inflammation and other damages (Lavelle and Ward 
2022). There are more than 80% similarities in analyzed 
parameters of the immune system between pigs and 
humans (Pabst 2020). Indeed, pigs are invaluable animal 
species not only for their economic significance but also 
for the high resemblance (Käser 2021; Pabst 2020). It 
has led to an increasing interest in using the pig as a bio-
medical model, exploring their digestive immunophysi-
ology and nutritional regulation in health and diseases 
(Wylensek et  al. 2020). However, the porcine intestinal 
immune cell landscape is less defined. Enhanced char-
acterization of the porcine mucosal immunity, especially 
immune cell functionality, may provide insights into the 
mechanisms and outcomes of feed antigens added as 
alternatives to antibiotics in pig production (Peng et  al. 
2021; Wiarda et al. 2022).
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The organization of gut‑associated lymphoid tissues
The gut-associated lymphoid tissues (GALT) in pigs com-
prises two types of Peyer’s patches (PPs), a number of 
isolated lymphoid follicle (ILF) and the intestine-draining 
lymph nodes (Fig.  1). It is the primary inductive site of 
antigen recognition, elimination, and antigen-specific B 
and T cell reactions (Furukawa et  al. 2020). Unlike the 
evenly distributed PPs throughout the small intestinal 
wall of mice, the porcine PPs in the jejunum and upper 
ileum are discrete, while the terminal ileal PPs present 
as a continuous strip (Haley 2017). Both types of PPs are 
covered by follicle-associated epithelium (FAE), includ-
ing the specialized M cells, to take up intestinal luminal 
antigens and transfer them to MHCII expressing anti-
gen-presenting cells (APCs) beneath. In the follicular 
and interfollicular regions of PPs in pigs are abundant 
 CD20+ B cells and a few T cells, with significantly higher 
numbers in the ileum than in the jejunal compartments 
(Nochi et  al. 2020). Based on the expression of anti-
body isotype, the porcine PPs  CD20+ B cells are further 
divided into  CD20+IgM- cells in the marginal zone and 
the  CD20+IgM+ phenotype in the central zone (Furu-
kawa et al. 2020). Unlike most follicles deep in the para-
cortex, the porcine GALT presents an inverted structure. 
The tissue is composed of cortical areas and paracortex, 
with internally placed germinal centers and a medulla 
located on the outside of the node. In these structures, 
lymphocytes exit via high endothelial venules directly 

into the blood instead of via efferent lymph vessels (Mair 
et  al. 2014). However, the functional relevance of these 
inverted lymph node structures remains elusive.

In conventionally-raised piglets, the number of PPs 
follicles may peak at one or two months of age, reaching 
75,000. The number then declines while these PPs gain 
structure maturity at six months. Microbial exposure 
is not required for porcine jejunal or ileal PPs organo-
genesis. Similarly, in humans, GALT is already in devel-
opment at the embryonic stage, which could prepare 
the neonates to establish robust protective immunity 
at birth (Furukawa et  al. 2020). Although not necessary 
for PPs development, commensal microbiota is vital for 
the immunological maturity of porcine GALT in young 
adults, priming appropriate T and B cell activation, and 
IgA responses (Furukawa et  al. 2020). In germ-free or 
gnotobiotic pigs, B cells in PPs preferentially differentiate 
into  IgM+ than  IgA+ cells. Their GALT shows poor post-
natal development with limited IgA repertoire diversifi-
cation (Butler and Wertz 2012).

The immunophysiological roles of IgA induction 
and production
The primary task of GALT is IgA induction, consequently 
controlling intestinal mucosal secretory IgA (SIgA) 
responses (Liu et al. 2021; Rollenske et al. 2021). SIgA is 
the dominant class of antibodies secreted into mucosal 
barrier sites at gram levels. With the introduction of 

Fig. 1 The organization of Peyer’s patches (PPs). (a) Schematic representation of PPs and the immune cell distribution. (b) Immunohistochemical 
staining of rodent ileum PPs with anti‑GL7 (cyan) for germinal center and anti‑B220 (magenta). (c) Histological image of porcine ileum PPs with H&E 
staining. Scale bars = 100 μm. FAE, follicular associated epithelium; IEL, intraepithelial lymphocyte; HEV, high endothelial venules
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gut microbiota diversity, we are also learning that SIgA 
plays a broad range of immunophysiological roles in host 
animals (Huus et  al. 2021). Firstly, SIgA acts through 
agglutination and immune exclusion to limit bacterial 
colonization and prevent pathogen invasion. One exam-
ple is SIgA binding to Salmonella enterica to inhibit its 
type III secretion and spread systemically (Richards 
et  al. 2021). Furthermore, Bansept and coworkers have 
demonstrated that IgA cross-links bacteria into clusters 
as they divide, where fast-replicating ones are poten-
tial pathogens thereby induce more immune reactions 
and vice versa (Bansept et al. 2019). Secondly, SIgA can 
directly affect bacterial gene expression and epitope pro-
duction, including dampening the expression of their 
motility genes. In contrast, SIgA may also promote bac-
terial colonization by forming adhesive sites/biofilm and 
influencing metabolic interactions between bacteria. For 
instance, IgA responses can be co-opted by commensal 
Bacteroidetes to facilitate bacterial adherence via regulat-
ing their gene expression of polysaccharides utilization 
(Donaldson et al. 2018). By estimation, a single bacterium 
in the intestinal lumen is coated by up to 800 SIgA mol-
ecules (Bansept et al. 2019). Based on the parallel generic 
and unique epitope-specific effects of SIgA, it can target a 
single microbe with distinct effects on microbial carbon-
source uptake, bacteriophage susceptibility, motility and 
membrane integrity, thus differentiating the commensals 
from the pathobionts (Rollenske et al. 2021).

In swine, the placenta does not allow the transpor-
tation of maternal IgA and other proteins during fetal 
development. Thus, the acquisition of passive immunity 
(systemic and mucosal) in pigs occurs only after birth 
from colostrum and through lacteal uptake until wean-
ing. It is a critical time to obtain ‘natural antibodies’ to 
survive and to establish tolerance to dietary proteins and 
commensal microbes (Butler and Wertz 2012; Virdi et al. 
2019). In germ-free conditions, piglets are immuno-unre-
sponsive, where neither T cell-dependent nor independ-
ent IgA responses can be formed appropriately. However, 
the provision of live bacteria or purified microbe-associ-
ated molecular pattern (MAMP) is sufficient to stimulate 
both types of T-cell reactions and the development of 
adaptive immunity in these animals, which is reviewed in 
detail elsewhere (Butler and Wertz 2012). In this regard, 
the dietary addition of probiotics, organic acids, bioac-
tive plant components, and spray-dried plasma as adju-
vants to increase intestinal IgA secretion has been widely 
tested in pig production (Krimpen et  al. 2014). These 
bring about a now-popular idea that SIgA-microbiota 
interaction represents a significant axis of host homeo-
stasis. And oral feed-based immune regulation can be a 
promising strategy in post-weaning piglets’ management 
(Virdi et al. 2019).

The intestinal barrier
Although produced by the adaptive immune system, 
SIgA also constitutes part of the ‘natural defense’ of 
the gut barrier, cross-linking bacteria as they divide, 
thus controlling their cluster and interaction with 
epithelium (Saalmüller and Gerner 2016). The intes-
tinal mucosa is a highly stratified system containing 
multiple layers. And maintaining the integrity of this 
system is of utmost importance in health and disease 
(Suzuki 2020). The first line of defense against extraor-
dinary microbial pressure is the bilayer of mucus. This 
immune defense line of the intestine is formed by the 
continuous secretion of mucin by goblet cells. In the 
rodent colon, the mucous gel is divided into two lay-
ers: the loosely adherent mucus layer enchained with 
SIgA, which serves as a unique niche for some bacte-
rial groups such as Akkermansia muciniphila and the 
abundant Bacteroides species; while the firmly adher-
ent mucus layer is responsible for keeping commensal 
microbiota from the epithelium monolayer (Liu et  al. 
2019). During inflammation, malnutrition, or antibi-
otic perturbation, the mucus bilayer may be disrupted 
and thin out, allowing bacteria to invade epithelial cells 
and impair the barrier function (Paone and Cani 2020). 
However, whether the porcine mucus layer is organized 
in the same manner and plays similar roles in pig health 
is unclear. Finally, the epithelial layer serves as the last 
line of defense and is maintained by tight-cell junctions 
with a surprisingly complex protein composition. This 
paracellular diffusion barrier is formed predominantly 
by three transmembrane proteins, occludin, claudins, 
and junction adhesion molecule proteins (Suzuki 2020). 
These are associated with an array of peripheral mem-
brane proteins, such as ZO-1 and heat shock proteins 
(HSPs), which join together to stabilize the cytoskele-
tons of adjacent cells and control paracellular perme-
ability (Liu et al. 2014a). The latter chaperone proteins 
of epithelium are also emerging immuno-regulatory 
molecules, closely linked with gut microbiota altera-
tions (Liu et al. 2014a; Liu et al. 2022a).

Lastly, interactions between the epithelial layer and 
luminal bacteria can provide the signals directing the 
type of immune responses in the lamina propria by alter-
ing the cytokine microenvironment (Peng et  al. 2021). 
At weaning, the intestinal bacterial community compo-
sition of piglets fluctuates dramatically and induces a 
transient increase of epithelium permeability. This would 
facilitate the passage of toxic substances and pathogens 
at the mucosal barrier, and stimulate a vigorous immune 
response (Moeser et al. 2017; Pluske et al. 2018). In con-
trast, inhibition of this weaning reaction by eliminating 
all bacterial activity with antibiotics would lead to patho-
logical imprinting of immunity (Al Nabhani et al. 2019).
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Other intestinal immune components
In addition to GALT, the intraepithelial T cells (IETs) and 
lamina propria lymphocytes are also important compo-
nents of intestinal mucosal immunity. As the earliest 
immune cells populating the intestine, IETs can provide 
immune protection during early life by releasing cyto-
toxic molecules and/or antimicrobial peptides (Wiarda 
et al. 2020). The porcine IETs belong to both γδ and αβ 
T cell lineages preferably with  CD8+ phenotype (i.e., 
 CD3+CD2+CD8α+ γδ T and  CD3+CD4−CD8α+ αβ T 
cells) and a few  CD3+CD2+CD8α− γδ T cells. The num-
ber of IETs increases over time along with the gut micro-
biota colonization and becomes comparable to adult pigs 
at two months of age (Wiarda et  al. 2020). While their 
distribution is site-dependent, with more in the ileum 
(30 per 100 enterocytes) than in the jejunal compartment 
(20 per 100 enterocytes) (Wiarda et al. 2020; Wiarda et al. 
2022). In germ-free piglets, the IET numbers are low, 
indicating a lack of microbial antigens stimulation and a 
compromise of immunity (Potockova et al. 2015).

In contrast to IETs, the porcine lamina propria T cells 
are predominantly  CD4+ phenotype and play a central 
role in animal health and against infectious diseases, 
which is thoroughly discussed elsewhere (Käser 2021). 
In pigs, the lamina propria effector T cells are preferably 
recruited to their site of origin during recirculation, by 
molecular machinery of integrin α4β7, addressin MAd-
CAM, chemokines CCL25 and CCL28, etc. (Peng et  al. 
2021). Furthermore, this effector site also serves for the 
regulation of IgA responses, containing the majority 
of IgA-producing plasma cells of pigs. In lamina pro-
pria, plasma cells and plasma cell precursors are more 
often present in the crypts. This pool of IgA-producing 
plasma cells in the pig intestine is clearly associated with 
responses to commensal microbiota (Nochi et  al. 2020; 
Wiarda et al. 2022).

The porcine gut microbiota and The Hygiene 
Hypothesis
The gut microbiota in swine and its association 
with antibiotics
The mammalian gut microbiota is a very complex ecosys-
tem with high diversity, evolving with time and changes 
according to the composition of diet. It influences many 
aspects of intestinal physiology, including fermenting 
dietary fiber to produce short-chain fatty acids (SCFAs), 
regulating lipid metabolism and generating second-
ary bile acids, forming a microbial barrier to exclude 
pathogenic bacteria, and modulating the immune sys-
tem to protect pigs against infections (Gresse et al. 2017; 
Wang et al. 2019d). With the advent of 16S rRNA ampli-
con sequencing and metagenome-assembled genomes 
analysis, we are uncovering diversity within pig-specific 

bacterial groups, including Lactobacillus spp., Streptococ-
cus spp., Clostridium spp., Fusobacterium spp. and even 
new genera that yet to be defined (Wylensek et al. 2020; 
Yang et al. 2022). In pig production, weaning is one of the 
most critical events which frequently leads to intestinal 
disorders and antibiotic therapies, raising concerns for 
the economy and public health (Massacci et al. 2020). It is 
reported that the predominant bacterial groups of piglets 
after birth are Lactobacillus spp., followed by Escheri-
chia/Shigella. Soon enough, the microbial community of 
suckling piglets is represented by Lactobacillus, Escheri-
chia/Shigella, as well as Fusobacterium, Bacteroides, and 
Megasphara (Chen et al. 2017). At weaning, piglets face 
sudden milk withdrawal, changes in social conditions 
and physical environments, and ingest solid feed for the 
first time in life (Gresse et al. 2017). During the weaning 
transition, the relative abundance of Lactobacillus spp. 
decreases, whereas anaerobes such as Clostridium spp. 
and Prevotella spp. become more abundant. The num-
ber of Lactobacillus spp. continues to decline during 
the post-weaning time, among which the number of L. 
amylovorus and L. reuteri decrease the most in the por-
cine ileum (Call et al. 2018), while Clostridium spp. and 
E. coli eventually colonize the intestine of piglets (Alain 
et al. 2014; Gresse et al. 2017). At this time, not only the 
intestinal microbiota is unstable, but also the animals 
still have an immature immune system and low digestive 
capacities, together profoundly impact pig growth per-
formance and their susceptibility to infectious diseases 
(Luise et al. 2021b; Luo et al. 2022). Meanwhile, introduc-
ing fiber and protein to post-weaning diets is challenging 
for the piglet’s intestine, which may induce gut microbi-
ota dysbiosis and inflammation. For instance, high pro-
tein inclusion of up to 20% can increase bacterial protein 
fermentation and the production of potentially toxic 
metabolites such as ammonia and amines in the large 
intestine, thus increasing the risk of diarrhea in weaning 
piglets (Luise et al. 2021a). Therefore, in the animal hus-
bandry, oral administration of antibiotics, especially dur-
ing weaning periods becomes the most common practice 
worldwide (Van Boeckel et al. 2015).

Although the mechanisms by which AGPs promote 
animal growth are not fully understood, it is at least 
partly mediated by changes in gut microbiota, as the 
effects diminished in germ-free animals (Plata et  al. 
2022; Yang et  al. 2017). Direct effects of antibiotics on 
the intestinal bacteria include inhibiting opportunistic 
pathogens and reducing competition for nutrients (Rah-
man et al. 2022). However, antibiotic administration also 
has negative impacts on the commensal bacterial popula-
tions. Gao et al. (2018) revealed that ceftriaxone sodium 
administration causes tens of multiple-folds decrease of 
Lactobacillus and Bifidobacterium spp. in the porcine 
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ileum (Gao et al. 2018). The relative abundance of lactic 
acid bacteria was also found to decrease by amoxicillin 
treatment in the jejunum of weaned piglets (Bosi et  al. 
2011). Furthermore, ASP250 (chlortetracycline, sulfamet-
hazine, and penicillin) supplementation in feed results in 
reductions of intestinal Coprococcus, Succinivibrio, Strep-
tococcus, Treponema, and Turicibacter spp. in pigs (Allen 
et al. 2011). In these studies, a simultaneous increase in 
Escherichia population is observed regardless of antibi-
otic classes used. In addition to causing such gut micro-
biota dysbiosis, the overuse of antibiotics eventually 
leads to resistance virulence factors to be found in gene 
families unique to the swine fecal metagenome, including 
sequence homology to genes in the dominant bacterial 
populations (e.g., Bacteroidetes and Clostridia) (Lamen-
della et al. 2011), and dysregulation of the immune sys-
tem (Bosi et al. 2011; Schokker et al. 2014).

The Hygiene Hypothesis in livestock
Indeed, in mammals, the gut commensal microbiota dic-
tates the host’s immunophysiology. For instance, bacteria 
can stimulat+e B cell division in GALT via TGFβ sign-
aling (Liu et  al. 2021) or promote intestinal epithelium 
differentiation and integrity via a proliferation-inducing 
ligand (APRIL) regulation (Allaire et  al. 2018). Without 
appropriate signals from the microbiota, such as inhibi-
tion of weaning reaction by antibiotics, skewed immune 
responses can take place (Al Nabhani et  al. 2019). It is 
what “The Hygiene Hypothesis” entails, describing how 
host immunity and their microbiota interact in a con-
tinuously modernizing environment. In the livestock 
production system, the evolution of porcine gut micro-
ecology is consistent with the basic idea of “The Hygiene 
Hypothesis” in humans: improved hygiene conditions, 
reduced exposure to environmental microorganisms in 
early life, and frequent use of antimicrobial drugs drive 
immune dysregulation (Pfefferle et al. 2021). In addition 
to antibiotic overuse in swine, the dietary structure/for-
mulation and feeding management have also changed 
significantly during modernization, resulting in a decline 
of bacterial community diversity, a complete loss of some 
bacterial taxa and their function, and a persistent impact 
on animal immunophysiology (Gao et  al. 2019; Gresse 
et  al. 2017; Yang et  al. 2022). For instance, long-term 
use of antibiotics could alter the intestinal expression of 
toll-like receptors (TLRs) and PPs cellularity (Grasa et al. 
2015), subsequently one’s tolerance to the commensal 
microbiota (Kim et  al. 2017). It may also affect animal 
liver regeneration (Wu et al. 2015) and bile acid synthesis 
(Chen et al. 2022) and disrupt body composition, includ-
ing fat depot (Li et  al. 2021b). However, disparate find-
ings are reported as antibiotics have a broad spectrum of 
activities.

Alternatives to antibiotics in pig production: 
modulating the immunophysiology
Basic studies focusing on how antibiotic substitutes affect 
the physiology and immunology of livestock are scarce. 
As a monogastric, omnivorous large animal species, pig 
is ideal for studying the immuno-regulatory mechanisms 
of probiotics, prebiotics, and other natural feed/food 
additives and their applications (Dowarah et  al. 2017). 
In the following, specific types of substrates that display 
immuno-modulatory properties in the health manage-
ment of pig production are discussed.

Probiotics
Probiotics refer to live microorganisms that can con-
fer health benefits on the host when given in adequate 
amounts, such as restoring the gut microbiota homeo-
stasis and improving the immunophysiological health of 
mammals (Salminen et al. 2021) (Fig. 2). They are supe-
rior to antibiotics as being safe for long-term adminis-
tration and do not cause severe side effects (Virdi et  al. 
2019). Among the tested probiotics including lactic acid 
bacteria, Bacillus (e.g., B. subtilis), Enterococcus (e.g., E. 
faecium), Streptococcus (e.g., S. infantarius), Pediococcus 
(e.g., P. acidilactici), some butyrate-producing bacteria, 
yeast, Aspergillus, and Trichoderma, etc., Lactobacil-
lus species seem to have the highest potential to replace 
antibiotics in swine (Patel et al. 2015). Nevertheless, the 
question remains as to how the addition of a small pop-
ulation of ingested, transient bacteria could stir the gut 
microbiome and the host immune system. Our previous 
study in mice demonstrates that distinct B cell subsets 
in the PPs act as relays that sense, enhance, and transmit 
the Lactobacillus reuteri signals, thereby promoting IgA 
responses, which shapes the microbial community and 
protects against inflammation (Liu et al. 2021).

Indeed, one of the key effects of Lactobacillus-based 
probiotics in pigs is the modification of humoral immune 
responses through promotion of IgA production and 
suppression of pro-inflammatory cytokines (Table  1). 
In healthy piglets at the early stage of post-weaning, 
dietary supplementation of Lactobacillus spp. (e.g., L. 
plantarum, L. fermentum, L. delbrueckii and/or L. rham-
nosus) increased their serum IgA, IgM (Peng et al. 2022; 
Wang et  al. 2019d; Wang et  al. 2018), and IgG (Ahmed 
et  al. 2014; Shin et  al. 2019) concentrations, as well as 
enhanced the small intestinal SIgA production (Li et  al. 
2019; Yi et  al. 2018). Whereas under pathophysiologi-
cal conditions such as diarrhea or weaning stress, the 
circulation levels of TNF-α (Wang et  al. 2019b), IFN-γ 
and IL-6 (Qiao et  al. 2015; Yang et  al. 2020) are sub-
stantially reduced by Lactobacillus-based probiotics in 
piglets. Consistently, the expressions of the former two 
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pro-inflammatory cytokines are also decreased in the 
small intestinal mucosa of challenged piglets by L. del-
brueckii (Chen et  al. 2020) and by L. plantarum treat-
ment (Tang et al. 2021), respectively.

Another key effect of Lactobacillus-based probiotics 
on pigs is the modification of intestinal cellular immune 
responses specific or non-specific to bacterial antigens 
(Maldonado Galdeano et  al. 2010; Patel et  al. 2015). 
Although it is not fully understood how immune activa-
tion or tolerance is achieved in response to the probi-
otic bacteria, interactions between MAMPs and pattern 
recognition receptors (PRRs) of the host intestinal cells 
are involved (Liao and Nyachoti 2017). One such mecha-
nism by which Lactobacillus-based probiotics suppress 
inflammation has been suggested to be initiated by TLR2 
(Peng et  al. 2022; Wang et  al. 2019a), TLR4 (Peng et  al. 
2022; Tang et  al. 2021; Yi et  al. 2018), or NOD1 activa-
tion (Kim et al. 2021) through NF-κB or MAPK signaling 
pathways in the jejunum and ileum of pigs. Thereafter, 
the recognition of probiotic antigens leads to regula-
tions of cell-mediated immune responses in the porcine 
intestine. A recent study has demonstrated that oral gav-
age of L. delbrueckii promotes the intestinal professional 
APCs’ maturation of suckling piglets. The corresponding 
chemokine CCL20-chemokine receptor CCR6 signal-
ing was upregulated upon probiotic stimulation, thereby 
mediating a strong APCs activation in the porcine small 
intestine. Intriguingly, this modulation of local intestinal 
immune responses by L. delbrueckii produced a long-
lasting effect in piglets until after weaning (Peng et  al. 

2022). Subsequently, a better primed T cell reaction may 
be expected in response to Lactobacillus probiotic treat-
ments. In Salmonella infantis-induced diarrhea in pig-
lets, L. johnsonii administration results in the expansion 
of  CCR6+CD4+ T cells in GALT while inhibiting systemic 
inflammation (Yang et  al. 2020). Furthermore, Shonyela 
and co-workers (2020) reported that orally administered 
LGG can enhance T cell differentiation with an increased 
 CD4+ T cell population in the porcine GALT (Shonyela 
et al. 2020). In a neonatal piglet model of human rotavi-
rus infection (HRV), LGG-based probiotic combination 
attenuates disease by promoting both innate MHCII-
expressing APC and Th1 immunity via TLR expres-
sion (Chattha et al. 2013). It is also shown that L. reuteri 
strongly upregulates the expression of β-defensin 2 and 
protegrin 1-5 in the small intestinal mucosa of healthy 
piglets when compared to their antibiotic-treated coun-
terparts (Yi et al. 2018). In contrast, transcriptome analy-
sis reveals that L. plantarum down-regulates ileal gene 
signatures associated with innate defense responses and 
promotes gut development in weaned pigs (Shin et  al. 
2019). Interestingly, a study in neonatal piglets suggests 
that the Lactobacillus-enhanced natural defense response 
is associated with intestinal immuno-metabolism altera-
tions (Tang et  al. 2021), such as peroxisome prolifera-
tor-activated receptor-γ (PPAR-γ) activation and SCFAs 
production (Liu et  al. 2017). It is shown in drosophila 
that L. plantarum modulates the host capacity of food-
derived protein digestion by enhancing their intestinal 
proteolytic enzyme activity via NF-kB signaling, whereas 

Fig. 2 Schematic illustration of the regulatory effects of probiotics in swine
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the pathway can be highjacked by pathogen infection 
(Erkosar et  al. 2015; Park et  al. 2015). Nevertheless, it 
remains elusive how the hosts prioritize immuno-metab-
olism in response to commensal microbes versus patho-
genic bacteria.

Although antibiotics and Lactobacillus are both effec-
tive growth promoters and prophylaxis to prevent infec-
tion in livestock, unlike probiotics, in-feed antibiotics 
cannot be used as immune enhancers in healthy pigs, 
if not the opposite. It is why we address Lactobacillus 
spp. and other antibiotic alternatives by looking through 
the lens of immunophysiology in the current review, as 
it may open up new avenues for health management in 
pig production. However, there are several weak points 
of probiotics: firstly, a lack of consistent effects on por-
cine immunity and understudied regulatory mechanisms 
(Mingmongkolchai and Panbangred 2018); secondly, 
lacking viability and efficacy tests and established appli-
cation protocol in farm conditions (Barba-Vidal et  al. 
2019). It is partly due to the extremely high complexity 
and diversity of gut microbiota in pigs, like humans (Yang 
et  al. 2022), thus the varied responses to one probiotic. 
The newly developed pipeline of probiotics investiga-
tions focuses on thorough characterizations of the por-
cine commensal bacterial community first, then precisely 
identifying the potential probiotic candidates and strate-
gically applying them into different scenarios (Hu et  al. 
2018; Wang et al. 2022). Towards this end emerges fecal 
microbiota transplantation (FMT) as an alternative strat-
egy, introducing the microbiome to improve gut health in 
farm animals (Hu et  al. 2018; Rouanet et  al. 2020). The 
approach has been actively used in poultry and is arising 
in the health management of swine (Canibe et al. 2019).

Prebiotics
Prebiotics are substrates that can promote the growth 
of specific groups of commensal bacteria and/or their 
metabolism, and confer health benefits in the host (Salm-
inen et  al. 2021). Taking the classic prebiotic inulin for 
example, it is proven to increase the population of probi-
otic Lactobacillus spp. and Bifidobacterium spp., and pro-
mote lactic acids and SCFA production with a reduced 
pH in the intestine, thus suppressing pathogenic bacte-
ria growth (van der Aar et al. 2017). In addition to SCFA 
promotion, the proposed mechanisms of prebiotic action 
also include blocking receptor sites for bacterial adhesion 
and immuno-modulation, etc. (Bai et al. 2022; Cunning-
ham et  al. 2021). In particular, prebiotics may improve 
the immune barrier by interacting with PRRs on intesti-
nal epithelium and/or leukocytes in the GI tract, as well 
as with other immune components such as IgA (Table 2).

The most commonly used prebiotics in swine are die-
tary fiber fractions and non-digestible oligosaccharides 

derived from plants. It includes arabinoxylans, pectin, 
xyloglucans, resistant starch (Azad et  al. 2020; Bach 
Knudsen et  al. 2017), fructo-oligosaccharides, lactulose, 
raffinose, maltodextrin, mannitol, galactooligosaccharide 
and inulin (Williams et  al. 2019). Dietary supplementa-
tion of chicory-pectin to newly weaned piglets has been 
shown to improve their growth performance and enhance 
the cytoprotective HSPs expression in the epithelium, 
implying an improved gut function (Liu et al. 2014b). A 
recent study found that prebiotic xylooligosaccharide 
also induces HSPs accumulation in the intestinal mucosa 
of weaned piglets, while suppressing their IL-6 and IL-8 
expression through G-protein coupled receptors (Tang 
et  al. 2022). Accordingly, results of several studies have 
demonstrated that prebiotic supplementations reduce 
pro-inflammatory interleukin production and increase 
anti-inflammatory cytokine levels in pigs (Pié et al. 2007; 
Trachsel et  al. 2019; Wan et  al. 2016; Wang et  al. 2016; 
Yin et  al. 2008). Galactomannan-oligosaccharides and 
Chitosan additions upregulate IL-1β expression in the 
porcine jejunum and lymph nodes, and increase IL-1β, 
IL-2 and IL-6 in the serum (Yin et al. 2008). In contrast, 
β-galactomannan and mannanoligosaccharide supple-
ments reduce IL-6 and CXCL8 levels against Salmonella 
infection in vitro (Badia et al. 2013). Furthermore, in pigs 
fed diets with citrus-pectin, the jejunal IL-10 expression 
was increased while the expression of IL-1β, IL-6, IL-8, 
IL-17 and TNF-α was decreased, likely through the gut 
microbiota-derived tryptophan-activated AhR/IL-22/
STAT3 signaling pathway (Dang et  al. 2023). There is 
also increased production of antibodies in the GI tract 
as well as in circulation of pigs fed diets with prebiotics. 
Lactulose can act as a prebiotic in weaned piglets chal-
lenged with S. typhymuriun by enhancing pathogen spe-
cific IgM, IgG and IgA responses (Naqid et al. 2015). In 
healthy pigs, prebiotic isomaltooligosaccharides (Wang 
et al. 2016; Wu et al. 2017) and fermented rapeseed meal 
increase IgA, IgM, and IgG levels in circulation (Czech 
et al. 2022). In contrast, results of a study using chicory, 
mannan oligosaccharides, or chitosan as antibiotic alter-
natives for weaning pigs showed no effects on animal 
growth or serum IgA levels (Li et al. 2016).

Although the mechanisms by which prebiotics affect 
antibody responses are not fully understood, it is sug-
gested they may act in concert with regulatory T cell 
(Treg) regulation or by altering the gut microbiome 
(Liu et  al. 2018; Trachsel et  al. 2019). Indeed, the ben-
eficial effects of a given prebiotic are proportional to its 
fermentability (Jiao et al. 2021), which is determined by 
gut microbiota maturity. On the other hand, the benefi-
cial effects of a given prebiotic depends on its structural 
complexity (Beukema et  al. 2020). I.e., classic prebiot-
ics such as inulin belongs to fructan with a degree of 
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polymerization of 2 to 60. A wide range of bacteria in the 
distal part of the small intestine can utilize it due to its 
simple structure (Williams et al. 2019). It may explain the 
inconsistent prebiotic effects of inulin observed in man-
aging gut health. In contrast, dietary fiber fraction with 
complex molecular structure can only be hydrolyzed by 
a few bacteria (Cantu-Jungles and Hamaker 2020). For 
instance, the unique pectin-Bacteroides thetaiotaomicron 
interaction makes the microbe highly targetable (Luis 
et al. 2018). Nevertheless, the use of prebiotics and their 
regulation are not well-established in swine.

Phytobiotics
Phytobiotics, also known as phytochemicals or phyto-
genics, is an umbrella term for a diverse subset of plant-
derived bioactive compounds. This comprises a list of 
more than 5,000 biologics identified from essential oil, 
fruits and vegetables, whole grains, herbs, and nuts, 
etc. (Li et  al. 2021a). Although without nutritive values, 
numerous studies have shown growth-promoting effects 
of phytobiotic feed additives in swine (Bartos et al. 2016; 
Su et al. 2018; Wang et al. 2021b; Yang et al. 2019). Fur-
thermore, Martel et  al. (2020) have recently proposed 
that a fraction of phytobiotics that pass by the gut lumen 
may improve intestinal health and animal development 
by acting as prebiotics (Martel et al. 2020). The beneficial 
effects of phytobiotics on animals also include increase 
nutrient digestion, absorption, and secretion of intesti-
nal mucus, saliva, and bile, anti-bacterial activities, anti-
oxidation and immuno-modulation (Lillehoj et  al. 2018; 
Valenzuela-Grijalva et al. 2017).

The search for phytobiotics as antibiotic alternatives 
began with herbal and spice extracts called essential 
oils (Helander et  al. 1998). They are primarily a com-
plex mixture of volatile, aromatic, and lipophilic organic 
compounds, including terpenes and phenylpropenes (Li 
et  al. 2021a). Essential oils are well recognized for their 
broad-spectrum antimicrobial activities against patho-
genic bacteria by damaging the cell walls (Omonijo et al. 
2018). Acetone crude leaf extracts of Syzygium legatii 
and Eugenia zeyheri disrupt the cytoplasmic mem-
brane of enterotoxigenic E. coli of swine origin and 
result in increased influx of propidium iodide (Famuy-
ide et  al. 2020). And thymol and cinnamaldehyde sup-
press Clostridium perfringens by altering the cell wall and 
lipids and proteins of the cell membranes, respectively 
(Gómez-García et  al. 2020), reducing the risk of intes-
tinal disorders. On the other hand, the very first proved 
botanical feed additive in livestock in Europe, an essential 
oil blend, is highlighted for its immunity enhancement 
effects (Lillehoj et al. 2018) (Table 3). Under physiologi-
cal conditions, tea tree oil is shown to increase serum IgG 
levels and enzymes associated with anti-oxidant capacity 

(e.g., superoxide dismutase and glutathione peroxidase) 
in pigs (Wang et al. 2021b). Likewise, the serum levels of 
IgG and IgM were also elevated in piglets fed diets with 
thymol and cinnamyl aldehyde supplementation (Su et al. 
2018). While the same essential oil mixture reduces the 
plasma IL-6 and TNF-α concentrations and promotes 
lymphocyte proliferation (Li et  al. 2012). Furthermore, 
dietary supplementation with Macleaya cordata (sangui-
narine) reduces the blood concentrations of haptoglobin 
and serum amyloid A (Kantas et al. 2015). Local immuno-
modulatory effects are also detected in young pigs 
administered essential oil. In addition to improve serum 
antibody reaction, tea tree oil is shown to increases liver 
IL-10 and decreases the IL-1β and TNF-α concentrations 
(Wang et al. 2021b). Hofmann et al. (2022) have demon-
strated that oregano essential oil can increase expressions 
of TJP1 (encoding tight junction protein ZO-1), Akt3, 
interferon signaling and CCL21 in the porcine small 
intestine (Hofmann et  al. 2022). Capsicum oleoresin or 
turmeric oleoresin supplement up-regulates the gene sig-
nature of immune activation (C1QA, C5, CCL25, CD46, 
CFB, and FCN2), cell membrane integrity, and tight junc-
tions in the porcine ileum mucosa; while garlic extract 
increases the expression of genes involved in fatty acid 
biosynthesis, defense response, and oxidation reduction 
in pigs (Liu et al. 2014c).

In piglets challenged with various stressors such as 
lipopolysaccharides (LPS) (Gräber et  al. 2018; Lo Verso 
et al. 2020; Stelter et al. 2013) or E. coli (Xu et al. 2020b; 
Yang et  al. 2019), phytobiotics consistently suppress 
intestinal inflammation and improve their immune sta-
tus. Chinese medicinal herbs can reduce diarrhea fre-
quency in weanling pigs by increasing the respiratory 
burst and Salmonella-killing ability of polymorphonu-
clear cells (Huang et al. 2012). The leukocyte population 
(i.e.,  CD3+CD4−CD8αhigh T cells) is also altered while 
TNF-α production is inhibited in piglets given feed addi-
tives containing cranberry extract, encapsulated car-
vacrol, yeast-derived products, and vitamins complex 
(Lo Verso et  al. 2020). Additionally, agrimonia procera 
increases the release of TNF-α in the plasma of LPS-
treated piglets associated with the increasing expression 
of DEFB1, GPX2, CXCL1 and IL-8 (Gräber et al. 2018). 
It is suggested that in piglets with stress, phytobiotic sup-
plementations can suppress inflammation through inhi-
bition of the NF-κB/P38 signaling pathways (Cappelli 
et  al. 2021; Huang et  al. 2019). It is suggested to be co-
opted by the nuclear factor-erythroid 2-related factor-2 
(Nrf2), as Nrf2 can be activated by the essential oil, trans-
located into the nucleus, and prevents the activation of 
NF-κB (Zou et al. 2016). It is also worth mentioning that 
in these in vivo studies, the immuno-modulatory effects 
of essential oils have often been associated with changes 
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in gut microbiota, including enriched Lactobacillus 
group and/or a reduction of pathogen loads (Firmino 
et al. 2021).

Other than the varied results and unclear mechanisms 
mentioned in probiotics and prebiotics, there are sev-
eral concerns in using essential oils as feed additives: i. 
potential toxic effects with their lipophilic characteris-
tics, which may impair the liver, GI tract and the repro-
ductive system of animals in high concentrations (Horky 
et  al. 2019); ii. possible interactions with other dietary 
components including sugar, fat and protein, leading to 
compromised antimicrobial activity and efficacy, which 
may be resolved by microencapsulation (Lo Verso et  al. 
2020; Perricone et al. 2015; Wang et al. 2021b; Xu et al. 
2020b); iii. high inclusion costs in pig production due to 
their volatility and the requirement of a minimal inhibi-
tory concentration (MIC) for killing bacteria (Lambert 
et al. 2001; Mariotti et al. 2022). Meanwhile, other phy-
tobiotics including tannins, saponin herbs, and alkaloids 
also exhibit anti-microbial actions. For instance, tannin 
extracts can inhibit bacterial growth by iron depriva-
tion, or affect cellular membrane enzymes of microbes; 
while alkaloids can disrupt bacterial DNA synthesis via 
topoisomerase inhibition. However, so far, the immuno-
modulatory effects of these phytobiotics in swine are 
mostly explained by their anti-oxidant activities (Girard 
and BeeG. 2020; Huang et al. 2018). Future studies should 
therefore focus more on dissecting changes in various 
immune components of GALT in response to individual 
phytobiotics to fully unlock their potential as antibiotics 
alternatives in pig production.

Others
Zinc oxide (ZnO)
Following the ban of in-feed antibiotics in livestock 
in Europe in 2006, ZnO supplementation has quickly 
become a popular alternative. In a survey carried out in 
Spain in 2014, it was shown that more than half of pig-
lets had received ZnO pre-weaning, and the percentage 
maxed to 73% during the growth stage (Moreno 2014). 
High levels of ZnO inclusion exhibits anti-bacterial prop-
erties, which can protect against post-weaning diarrhea 
and infections of piglets (Bonetti et  al. 2021; Johanns 
et  al. 2019). In challenged piglets, ZnO supplementa-
tions modified the gene expressions of SOCS (suppressor 
of cytokine signaling proteins) involved in inhibiting the 
JAK-STAT signaling pathway in ileal GALT (Schulte et al. 
2016); as well as stimulated the production of IL-1β, IL-6, 
IL-8, IL-10, and TNF-α in the serum (Guan et al. 2021); 
whereas in healthy piglets, upregulated gene expressions 
of ZO-1, IL-10, TGF-β1, and increased SIgA produc-
tion in the small intestine were reported, thus reducing 
the incidence of diarrhea (Shen et al. 2014). Meanwhile, 

Kloubert et  al. (2018) and Pei et  al. (2019) have dem-
onstrated that ZnO supplementation improved both 
innate and adaptive immunity of healthy piglets, includ-
ing the changed activity of natural killer cells (Kloubert 
et  al. 2018; Pei et  al. 2019), enhanced IgA and cytokine 
concentrations (Pei et  al. 2019) and increased number 
of Tregs (Kloubert et  al. 2018). Likewise, it is recently 
shown that piglets exhibited strong T cell reactions in 
response to ZnO treatments, including the increased 
population of T-bet+,  FoxP3+, RORγt+ and  GATA3+ T 
cells in the GALT of piglets (Oh et  al. 2021). However, 
given the suspected environmental pollution, and the fact 
that ZnO may promote AMR in high dosages, Europe has 
restricted the use of veterinary drugs containing ZnO 
in livestock to a maximum level of 150 ppm from 2022 
(Bonetti et al. 2021; Ciesinski et al. 2018), suggesting our 
search of AGPs alternatives must continue.

Antimicrobial peptides
Antimicrobial peptides (AMPs) are a diverse class of nat-
urally occurring defense molecules that are produced by 
many multicellular organisms. They are embodied with 
active anti-bacterial, anti-fungal, anti-viral, and even 
anti-cancer properties, and can be used to treat bacterial 
infections, especially those caused by multidrug-resist-
ant pathogens (Rima et al. 2021). For instance, positively 
charged AMPs can kill microorganisms by selectively 
binding to their membranes through electrostatic inter-
actions, disrupting their integrity and/or further affecting 
their intracellular functions (Zhang and Gallo 2016). In 
addition, AMPs exhibit the growth-promoting ability and 
modulate host immunity, making them attractive antibi-
otic substitutes in swine (Ghosh et  al. 2019; Rima et  al. 
2021; Xu et al. 2020a). It is also well-established that most 
AMPs are innate and adaptive immune effector molecules 
that can modulate pro- and anti-inflammatory responses 
and chemotactic activity (Rima et al. 2021). Dietary sup-
plementation of an AMPs mixture sufficiently improved 
the cellular immune functions in healthy weaned pig-
lets, reducing splenic cell apoptosis, increasing  CD4+ T 
cell populations in blood, and enhancing their prolifera-
tion (Ren et al. 2015). While lactoferrin supplementation 
in newborn piglets significantly increased IgA, IgG and 
TGF-β1 levels in circulation, enhanced the intestinal 
integrity and reduced the mortality (Sarkar et  al. 2023). 
Furthermore, AMP addition improved the jejunum bar-
rier integrity, increased the IgM levels and modified 
the cytokine IL-10, IL-12 and TGF-β concentrations in 
blood in healthy weaning piglets (Liu et  al. 2022b). The 
immuno-enhancement effect of AMPs on the levels of 
immunoglobulins in piglets was consolidated by Xu et al. 
(2020a, 2020b) in a meta-analysis, along with the signifi-
cantly improved growth performance (Xu et  al. 2020a). 
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In addition, some AMPs have been shown to stimulate 
angiogenesis and chemotaxis and promote leukocyte 
activation and differentiation (Ghosh et  al. 2019; Zhang 
and Gallo 2016).

Concluding remarks
The goal of “One Health” is to interconnect human 
beings, animals, plants, and microorganisms in a hope-
fully harmonious environment, to achieve optimal health 
outcomes for all on the earth (Destoumieux-Garzón et al. 
2018). During industrialization, the overuse of antibiot-
ics, improved hygiene, and the transformation of the 
dietary structure have brought about a loss of microbiota 
compositional and functional diversity and an overall 
alteration of immunophysiology, finally conceptualizing 
“The Hygiene Hypothesis” (Gao et al. 2019; Gresse et al. 
2017; Pfefferle et al. 2021; Yang et al. 2022). As it is bet-
ter to prevent than cure, we focus on searching for anti-
biotic substitutes that improve the immunophysiological 
state of pigs. We argue that any potential antibiotic alter-
natives must be safe for animals and the public without 
encouraging AMR; they should be able to confer health 
benefits. Preferably they may exhibit specific immuno-
modulatory properties and economic feasibility in swine.

Numerous alternatives have been developed to replace 
antibiotics to improve the health and management of 
pigs, including probiotics, prebiotics, phytobiotics, 
organic acids, fermented liquid feeds, enzymes, minerals, 
proteins/antibodies, AMPs etc. Among these, probiotics 
have made the most progress in research and application 
in livestock, offering options for animal health improve-
ment. However, as opposed to the broad spectrum of 
antibiotics, their effects are often strain- or species-spe-
cific. Natural plant-derived prebiotics and phytobiotics 
hold a positive image in the public eye, and some of them 
are more cost-effective than others. However, whether 
their immuno-modulatory effects are direct or indirect 
is still unclear. Antimicrobial peptides behave most like 
antibiotics, and attracted a lot of attention but are still in 
their nascent stage of application at large. In conclusion, 
the data from various studies discussed in this review 
show progress in developing alternatives to antibiotics in 
pig production.

Future perspectives
In search of in-feed supplements to promote perfor-
mance and health, relationships between immuno-
modulation and the physiological status of pigs should 
be addressed. Especially the intestinal immunophysi-
ology that maintains the host homeostasis through its 
digestive functioning and balancing between oral toler-
ance and immune activation through a complex cellular 
and molecular network. Future studies should focus on 

documenting the immuno-modulatory effects of antibi-
otic alternatives in swine. Dissect the porcine immune 
cell landscape using next-generation sequencing and 
multi-omics methodology, verify individual regulatory 
pathways and outcomes of the tested candidate, and 
evaluate its efficacy. Questions remain as to what is the 
desired immunity and physiological state? What is the 
relative importance of gut microbiota? And how to dif-
ferentiate it? Can a combination strategy of different bio-
logics with immuno-modulatory agents circumvent some 
limitations and open up new avenues in pig health man-
agement? Are there new methods and technologies that 
can expedite the development of antibiotic alternatives?
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