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Maleic acid and malonic acid reduced 
the pathogenicity of Sclerotinia sclerotiorum 
by inhibiting mycelial growth, sclerotia 
formation and virulence factors
Yu‑chen Fei1,2, Qin Cheng1†, Huan Zhang1, Chuang Han1, Xu Wang3, Yan‑feng Li1, Shi‑qian Li2* and 
Xiao‑hu Zhao1* 

Abstract 

Sclerotinia sclerotiorum is a necrotrophic plant pathogenic fungus with broad distribution and host range. Bioactive 
compounds derived from plant extracts have been proven to be effective in controlling S. sclerotiorum. In this study, 
the mycelial growth of S. sclerotiorum was effectively inhibited by maleic acid, malonic acid, and their combination 
at a concentration of 2 mg/mL, with respective inhibition rates of 32.5%, 9.98%, and 67.6%. The treatment of detached 
leaves with the two acids resulted in a decrease in lesion diameters. Interestingly, maleic acid and malonic acid 
decreased the number of sclerotia while simultaneously increasing their weight. The two acids also disrupted the cell 
structure of sclerotia, leading to sheet‑like electron‑thin regions. On a molecular level, maleic acid reduced oxalic acid 
secretion, upregulated the expression of Ss-Odc2 and downregulated CWDE10, Ss-Bi1 and Ss-Ggt1. Differently, malonic 
acid downregulated CWDE2 and Ss-Odc1. These findings verified that maleic acid and malonic acid could effectively 
inhibit S. sclerotiorum, providing promising evidence for the development of an environmentally friendly biocontrol 
agent.

Keywords Sclerotinia sclerotiorum, Maleic acid, Malonic acid, Inhibition

Introduction
Sclerotinia sclerotiorum, a cosmopolitan necrotrophic 
pathogen, is a saprophytic and parasitic fungus that 
infects more than 400 dicotyledons such as sunflowers, 
soybean, canola and oilseed rape (Chen et al. 2022; Kim 
et  al. 2011; Shahoveisi et  al. 2022). Sclerotinia stem rot 
(SSR) caused by S. sclerotiorum occurs in many areas, 
resulting in a severe yield loss of oilseed rape in China, 
Canada, the United States and other regions (Bolton et al. 
2006; Hu et al. 2019). SSR reduced the annual output of 
oilseed rape by 10%-30% and even 80% in extreme cases, 
which seriously endangered agricultural production and 
caused economic losses (Hu et al. 2017; Qin et al. 2011). 
Since SSR is a soil-borne disease, the formation of sclero-
tia in soil plays a significant role in the pathogenic process 
(Cheng et  al. 2019). There are two different approaches 
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for S. sclerotiorum to infect the host plant: the main way 
is hyphae formed directly from germinating sclerotia, 
and another is through the germinated ascospores (Ding 
et  al. 2021). Pathogenic factors are responsible for the 
successful infection of S. sclerotiorum. Researches have 
shown that S. sclerotiorum releases oxalic acid (OA) to 
help its colonization of oilseed rape (Ghosh et  al. 2016; 
Fujinami et al. 2022). In the early stage of infection, high 
concentrations of OA create a reducing environment that 
can inhibit the oxidative burst of plants and facilitate fun-
gal invasion (Kim et  al. 2011). In contrast, low concen-
trations of OA induce resistance in plants. Therefore, the 
sclerotial formation and OA secretion of S. sclerotiorum 
are vital for the pathogenic process.

Utilizing chemical pesticides has long been an effec-
tive method for preventing and controlling S. sclero-
tiorum (Liu et  al. 2018, 2021; Oliveira et  al. 2013a, b). 
However, the current issues of pesticide reduction 
and fungicide-resistant strains of S. sclerotiorum have 
received considerable attention (Sun et  al. 2018; Besil 
et  al. 2018; Zhou et  al. 2014a, b). Although numerous 
pieces of research focus on alternative methods like 
agricultural practice, biological methods and breeding 
disease-resistant cultivars (Alvarez et al. 2012; Grandini 
et  al. 2022; Zhang et  al. 2020), these methods are not 
always available and effective. Botanical pesticides are 
an emerging component of modern pesticide develop-
ment (Coman et al. 2013; Zhao et al. 2022; Ngegba et al. 
2022). Recently, secondary metabolites, such as organic 
acid, alkaloids and phytosterol, have been used as the 
main active ingredients of new botanical pesticides, 
which are biodegradable, economical and environmen-
tally friendly (Luo et al. 2021; Li et al. 2022; Chen et al. 
2011a, b). The application of plant extracts as the main 
active compounds of pesticides to control fungal dis-
eases has a promising prospect.

In our previous studies, we found that dissolved organic 
matter derived from oilseed rape straw supplemented 
with selenium (Se) in soil   (RSDOMSe) inhibited the 
mycelial growth of S. sclerotiorum (Jia et al. 2020, 2019; 
Cheng et al. 2020). Among the eight metabolites upregu-
lated in  RSDOMSe, maleic acid and malonic acid inhib-
ited the mycelial growth of S. sclerotiorum effectively (Jia 
et al. 2019). However, there was no report on the effects 
of the two acids on morphological and physiological 
characteristics, and relevant pathogenic gene regula-
tions of S. sclerotiorum were unknown. To further eluci-
date the potential inhibitory effects of the two acids on S. 
sclerotiorum, experiments were conducted: (1) to exam-
ine the impacts of maleic acid and malonic acid on the 
antifungal sensitivity, mycelial growth, the pathogenicity 
of mycelia on detached leaves, sclerotial formation and 
subcellular structure of sclerotia  of S. sclerotiorum, and 

(2) to quantify oxalic acid (OA) secretion in mycelia and 
assess the expression of relevant pathogenic genes.

Results
Effect of maleic acid and malonic acid on the growth of S. 
sclerotiorum
In this study, we clearly clarified the sensitivity of S. 
sclerotiorum to maleic acid and malonic acid (Fig. S1), 
with the half-maximal effective concentrations  (EC50) for 
maleic acid and malonic acid determined to be 2.6  mg/
mL and 7.0  mg/mL, respectively. The following studies 
utilized the  effective concentration of 2 mg/mL, which 
exhibited lower toxicity.

As shown in Table  1, the mycelial growth of S. scle-
rotiorum was significantly inhibited by maleic acid, as 
well as malonic acid. The inhibition ratios of the three 
treatments, namely maleic acid (32.5%), malonic acid 
(9.98%)  and maleic acid + malonic acid (67.6%), were 
determined in comparison to the control. Additionally, 
the combination of maleic acid and malonic acid effec-
tively inhibited the lesion diameters on detached leaves of 
oilseed rape. The inhibition ratios were 6.22% for maleic 
acid, 12.44% for  malonic acid, and 20.73% for  maleic 
acid + malonic acid, when compared with the control.

Inhibitory effect on sclerotial formation
The sclerotial formation was  examined (Fig.  1). 
The  results indicated  sclerotial formation was inhibited 
by malonic acid, leading to a decrease in the number of 
sclerotia. However, an increase was observed in  their   
weight (Fig. 1). Compared with the control, the weight of 

Table 1 The lesion diameters of S. sclerotiorum determined after 
48 h incubation on PDA media with maleic acid and/or malonic 
acid and the lesion diameters of S. sclerotiorum determined after 
36 h incubation on detached leaves

Data were analyzed by one-way ANOVA and shown as means ± standard error 
(SE). The concentrations of maleic acid, as well as malonic acid, were 2 mg/mL. 
Different letters indicated statistically significant differences (p < 0.05)

Object Treatments Lesion length 
(cm)

Inhibition 
ratio (%)

Mycelia Control 8.42 ± 0.09a 0

Maleic acid 5.68 ± 0.04c 32.5

Malonic acid 7.58 ± 0.06b 9.98

Maleic 
acid + Malonic acid

2.73 ± 0.08d 67.6

Detached leaves Control 1.93 ± 0.04a 0

Maleic acid 1.81 ± 0.11a 6.22

Malonic acid 1.69 ± 0.12ab 12.44

Maleic 
acid + Malonic acid

1.53 ± 0.03b 20.73
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sclerotia in the treatments of malonic acid and the two-
acid combinations increased by 40% and 58%, respec-
tively. The reduction ratios of sclerotial numbers with 
the two treatments were 17% for malonic acid, and 46% 
for maleic acid + malonic acid  in comparison to the con-
trol. However, the treatment with maleic acid increased 
both  the number and the  weight of sclerotia, although 
these changes were not statistically significant.

Effect of the two acids on the ultrastructure of sclerotia
The internal structure sclerotia was observed using TEM. 
Both acids negatively affected sclerotia compared to the 
control. In normal sclerotia cells, the cytoplasm exhibits 
uniformity, the organelles are distinctly visible, and the 
electron density within the cytoplasm is consistently dis-
tributed. (Fig. 2A). After acid treatment, the matrix was 
sparse and exhibited uneven electron density. The integ-
rity of the  cell membrane was compromised, leading to 
the emergence of multiple patchy regions with reduced 
electron density within the cell (Fig.  2B, C, and D). In 
addition, the cell wall became thinner after acid treat-
ment (Fig.  2B, C, and D). Overall, the cellular structure 
remained largely intact with only a small amount of local-
ized damage observed.

Analysis of OA secretion and acid production in mycelia
The OA secretion in mycelia with different treatments 
was shown in Fig.  3. The corresponding standard curve 
was shown in Fig. S2, and the  R2 value of which reached 
0.9993. Compared with the control, maleic acid sig-
nificantly reduced OA secretion, whereas malonic acid 
treatment and maleic acid + malonic acid treatment sig-
nificantly increased OA secretion. The decreased ratio 
of maleic acid on the OA secretion was 45%, and the 
increased ratios for the treatments of malonic acid and 
maleic acid + malonic acid were 42% and 46% respec-
tively. pH of maleic acid, malonic acid and their combina-
tion in PDB were 2.53, 2.24 and 2.12 respectively. Low pH 
of the two acids were related to lower pathogenicity of S. 
sclerotiorum.

qRT‑PCR verification of the target gene expression levels
Two oxalate decarboxylase (OxDC) genes (Ss-Odc1, 
Ss-Odc2), two cell wall degradation enzymes (CWDE2, 
CWDE10) and two genes related to virulence (Ss-Bi1, 
Ss-Ggt1) were evaluated by qRT-PCR. The treatments of 
malonic acid and the two-acid combination significantly 
decreased the relative expression level of Ss-Odc1, and 
maleic acid upregulated the expression level of Ss-Odc2, 

Fig. 1 Effects of maleic acid and malonic acid (2 mg/mL) on the number and weight of sclerotia. Data for each column were the per number 
and weight of sclerotia in one PDA plate. Data were analyzed by one‑way ANOVA and shown as mean ± standard error (SE). Different letters 
indicated statistically significant differences among the different treatments (p < 0.05) by Duncan’s tests
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as shown in Fig. 4A and B. The treatments of maleic acid 
and the two-acid combination significantly lowered the 
expression of CWDE10 with the corresponding ratios 
of 36% and 32%, while malonic acid significantly down-
regulated the expression of CWDE2 (Fig. 4C and D). As 
for Ss-Bi1, maleic acid decreased the gene expression by 
29%, compared with the control. In addition, the expres-
sion of Ss-Ggt1 was declined in the treatments of maleic 
acid and two-acid combination, with the maleic acid 
treatment resulting in a 75% decrease (Fig. 4E and F).

Discussion
Long-term use of traditional pesticides has been found 
to be  detrimental to environment, human health and 
the progress of  ecologically sustainable development 
(Zhou et  al. 2014a, b; Sahni et  al. 2016). To reduce the 
usage of conventional fungicides, alternative methods are 
worth more attention. In our previous study, it has been 
proved that  RSDOMSe can inhibit the mycelial growth 
of S. sclerotiorum. Maleic acid and malonic acid, which 
was among the upregulated metabolites of  RSDOMSe, 
showed significant  inhibitory effect  on mycelial growth 
(Jia et al. 2019). Maleic acid is an important intermediate 

Fig. 2 Effects of maleic acid and malonic acid on ultrastructural changes of sclerotia. Representative TEM images of sclerotia sections selected 
from four specimens in each treatment: A The control; B 2 mg/mL maleic acid; More particles were formed in sclerotia and different contents 
reduced. C 2 mg/mL malonic acid; Fewer and bigger particles were formed and also the contents degraded. D 2 mg/mL maleic acid + 2 mg/mL 
malonic acid. (I: bar = 2 μm; II: bar = 1 μm). The cell wall became thinner in treatments of the acids, compared with the control. Yellow circles were 
to mark the changes of contents in sclerotia. The thickness of the cell wall was indicated via yellow arrows
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in chemical industries (Ayoub et  al. 2022). It is usually 
utilized as an acidic catalyst in the food processing indus-
try, due to its non-toxic nature and ediblility (Zhang et al. 
2022a, b). Malonic acid is a common component of many 
products and processes in the pharmaceutical and cos-
metic industries (Gu et al. 2022). Studies have shown that 
malonic acid and maleic anhydride or related compounds 
have definite antibacterial effects (Chen et  al. 2011a, 
b; Kuwaki et  al. 2002). Based on the previous findings, 
this study provided some evidences that maleic acid and 
malonic acid inhibit the growth of S. sclerotiorum in vitro 
(Fig. 5).

Maleic acid and malonic acid reduced the pathogenicity 
of S. sclerotiorum
The activities of fungicides on various plant pathogenic 
fungi followed the principle of hormesis, described as 
high-dose inhibition and low-dose stimulation (Zhang 
et al. 2019). To ensure effective inhibition, the  EC50 val-
ues of the two acids on S. sclerotiorum were determined. 
 EC50 of maleic acid and malonic acid were 2.6 and 7.0, 
respectively. Yeon et  al. found that maleic acid exhib-
ited antifungal activity against a diverse range of fungi 
and oomycetes, with the  minimum inhibitory concen-
tration  ranging from 312.5 to about 2,500  μg/mL (Yeon 
et al. 2021). In addition, the previous studies showed that 
malonic acid at a concentration of 2 mg/L had a signifi-
cant inhibitory effect on S. sclerotiorum (Jia et al. 2019). 
Therefore, the same concentration of 2  mg/mL was 
selected for this study. Generally, all our designated con-
centrations stayed within the stimulation phase, and the 

inhibitory effect of maleic acid was better than that of 
malonic acid (Fig. S1). The two acids significantly inhib-
ited the mycelial growth of S. sclerotiorum and reduced 
the lesion diameters on the detached leaves (Table 1). The 
inhibitory effect of the combined application of two acids 
surpassed that of a single acid treatment. Therefore, it is 
recommended to utilize a combination of the two acids 
for the control S. sclerotiorum.

Possible inhibitory evidence regarding the two acids on S. 
sclerotiorum
Further possible inhibitory evidence of maleic acid and 
malonic acid on S. sclerotiorum was also investigated, it 
might involve the following several processes:

(1) The two acids inhibited the sclerotia formation

The sclerotial numbers were significantly reduced at 
the presence of acombination of two acids, whereas the 
presence of maleic acid alone resulted in only a slight 
reduction or no change (Fig.  1). The reduced  number 
of S. sclerotiorum suggested that sclerotia were inhib-
ited, corroborating the findings reported by Cheng et al. 
(2019) and Zhang et  al. (2022a, b). Reducing the num-
ber of pathogens can effectively mitigate the prevalence 
of soil-borne diseases (Chen et  al. 2011a, b). It is note-
worthy that while maleic acid increased both the weight 
and number of sclerotia (Fig. 1), it significantly inhibited 
the mycelial growth and the incidence of disease (Table. 
1), which may be attributed to the reduction of virulence 
(Fig.  4). Host-induced gene silencing (HIGS) enhances 

Fig. 3 Effect of maleic acid and malonic acid on OA secretion of S. sclerotiorum. Data were analyzed by one‑way ANOVA and shown as mean 
value ± standard error (SE). The values with the same letter were not significantly different at p < 0.05 according to Duncan’s tests
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plant tolerance to pathogens by silencing genes essential 
for pathogenicity. Zhu et al. found that silencing CsGPA1 
and CsGPA2 had no impact on the mycelial growth of S. 
sclerotiorum, but it did decrease the quantity of sclerotia 
and increase the weight of individual sclerotia. Interest-
ingly, only the strain with  CsGPA1-silenced exhibited 
reduced virulence (Zhu et  al. 2021). Additionally, a 

study showed a positive correlation between sclerotinia 
virulence and colony diameter, but no correlation was 
found between virulence and the number, size, or weight 
of sclerotia. (Rather et al. 2022). Consequently, the rela-
tionship between the sclerotia formation and virulence of 
S. sclerotiorum needs to be further investigated.

Fig. 4 Relative expression levels of six target genes of S. sclerotiorum. S. sclerotiorum was incubated for 48 h in PDA medium containing different 
treatments, and mycelia was collected for qRT‑PCR analysis. The concentrations of maleic acid, as well as malonic acid, were 2 mg/mL. Data were 
analyzed by one‑way ANOVA and shown as mean value ± standard error (SE). Bars with different letters are significantly different (p < 0.05)
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(2) Maleic acid reduced OA production of S. sclerotio-
rum

The  synthesis and secretion  of OA at high concentra-
tions by S. sclerotiorum is a primary determinant for suc-
cessful plant  infection (Hou et  al. 2019). In this study, 
maleic acid significantly curtailed OA secretion, while 
malonic acid and the combined  treatment  of two acids 
enhanced OA secretion (Fig. 3). OA is a key pathogenic 
factor of S. sclerotiorum, which secretes a large amount 
of OA during early plant infection to suppress the pro-
duction of plant reactive oxygen species and promote 
the colonization and expansion of pathogenic bacteria 
(Cessna et  al. 2000). Decreasing OA production in S. 
sclerotiorum could elevate the pH of surrounding  envi-
ronment, thereby diminishing its pathogenicity (Der-
byshire et  al. 2021). Interestingly, despite the  increased 
OA secretion by S. sclerotiorum, malonic acid alone and 
the combined treatment of  two  acids exhibited a posi-
tive inhibitory  effect. One study found that an activat-
ing mutation of the S. sclerotiorum pac1 gene increased 
oxalic acid production at low pH but decreased virulence 
(Kim et al., 2007). Therefore, the reduction of virulence of 
S. sclerotiorum induced by maleic acid and malonic acid 
might be related not only to OA content but also to the 
pH change caused by it. Another study showed that the 

growth of S. sclerotiorum was affected by pH. Oxalic acid, 
citric acid, glutaric acid and tartaric acid inhibited scle-
rotia formation at pH 1.72, 2, 2.43 and 1.96 respectively, 
and mycelial growth at pH 1.56, 1.88, 2.3 and 1.9 respec-
tively (Atallah et  al. 2020). The pH of 2  mg/mL maleic 
acid, malonic acid and their combination in PDB were 
2.53, 2.24 and 2.12 respectively. Therefore, the addition of 
maleic acid and malonic acid subjected S. sclerotiorum to 
a highly acidic environment, which inhibited its growth.

(3) The two acids regulated pathogenic gene expressions 
of S. sclerotiorum

To better understand the potential mechanisms,  we 
evaluated the molecular level associated with OA pro-
duction, activities of cell wall degradation enzymes 
(CWDEs) and virulence of S. sclerotiorum. Ss-Odc1 and 
Ss-Odc2 are two putative oxalate decarboxylase (OxDC) 
genes.  The transcript of Ss-Odc1 exhibited significant 
accumulation in different stages of compound appres-
sorium development and plant colonization. In contrast, 
the Ss-odc2 transcript was only significantly accumulated 
only during the middle and late stages of the compound. 
Evidence indicates that the expressions of Odc1 and 
Odc2 reduced the accumulation of OA, which was not 
induced by the  low pH of the hyphae or exogenous OA 

Fig. 5 The evidence of inhibition of in vitro growth of S. sclerotiorum by maleic acid and malonic acid
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(Liang et al. 2015). In this study, maleic acid upregulated 
the gene expression of Odc2, while malonic acid showed 
no positive effects on the expression of Odc1, Odc2 
(Fig. 4A, B), aligning with the determination of OA secre-
tion (Fig.  3). During the fungal infection in plants, an 
increased level of cell wall degrading enzymes (CWDEs) 
enhances the fungal pathogens to colonize plants and 
cause infection (Kubicek et  al. 2014, Sun et  al. 2023). S. 
sclerotiorum can produce multiple CWDEs that facilitate 
host penetration, enhance host tissue maceration, and 
degrade host cell walls (Oliveira et al. 2013a, b). CWDE2 
(cellulase family protein) and CWDE10 (pectinesterase 
A) are two kinds of cell wall-degrading enzyme genes (Xu 
et  al. 2015). In this study,  maleic acid and malonic acid 
reduced the virulence of S. sclerotiorum by down-regulat-
ing CWDE10 and CWDE2 respectively (Fig. 4C, D). Inter-
estingly, some studies reported no relations between the 
gene expression of CWDEs and the pathogenicity of S. 
sclerotiorum (Anees et al. 2010). It may be that increased 
CWDE transcripts do not necessarily lead to increased 
virulence in unfavorable environments, such as high 
pH, where enzyme activity may not be optimal (Favaron 
et  al 2004). Ss-Ggt1,  a γ-glutamyl transpeptidase, regu-
lates the ROS antioxidant system (Li et al. 2012). As for 
Ss-Bi1, it encodes a putative Bax-inhibitor protein that is 
vital in the hyphal stress response and full virulence of S. 
sclerotiorum, influencing the pathogenicity in an oxalic 
acid-independent manner (Yu et  al. 2015). The declin-
ing gene expression might indicate gene silencing so that 
Bax expression is inhibited and PCD (Programmed Cell 

Death) could not be activated to enhance plant resistance 
to pathogens (Shlezinger et  al. 2011). However, results 
of this study showed that only maleic acid facilitate 
plant  resistance against S. sclerotiorum through down-
regulating Ggt1 and Bi1 (Fig. 4E, F).

(4) Role of Maleic Acid in the TCA Cycle Enhances Plant 
Resistance

In our previous study, we found the application of 
 RSDOMSe exhibited a significant antifungal effect on 
S. sclerotiorum. According to the analysis of differential 
metabolites and up-regulated KEGG  (Kyoto Encyclo-
pedia of Genes and Genomes) metabolic pathways, the 
inhibitory effect of RSDOMSe might be associated with 
the upregulation of  not only maleic acid and malonic 
acid but also metabolic pathways related to maleic acid 
(Jia et al. 2019). Succinic acid and fumaric acid, two main 
components of the tricarboxylic acid (TCA) cycle,  were 
identified as two key metabolites that were up-regulated 
with RSDOMSe treatment (Fig.  6). Some studies have 
shown that succinic acid had the potential to partici-
pate in the host’s immune regulation as a signal molecule 
(Jiang et al. 2023; Wei et al. 2023). Meanwhile, the TCA 
cycle not only contributes to the maintenance of energy 
metabolism homeostasis but also promotes the synthesis 
of non-essential amino acids such as aspartic acid, which 
can help plants absorb nutrients and maintain metabolic 
stability (Yang et al. 2021).

Fig. 6 Role of Maleic Acid in the TCA Cycle Enhances Plant Resistance. As revealed by the up‑regulated KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathway, several metabolic pathways contribute to enhancing plant resistance, with maleic acid participating in some of them such 
as the TCA cycle
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Conclusions
The combination of maleic acid and malonic acid, 
derived from oilseed rape straw, could effectively con-
trol S. sclerotiorum. This control is achieved  by inhibit-
ing mycelial growth, damaging the subcellular structure 
of  sclerotial, reducing oxalic acid secretion and regulat-
ing the expression of pathogenic genes. Malonic acid was 
effective in  inhibiting  the mycelial growth and sclerotia 
formation of S. sclerotiorum. Maleic acid, on the other 
hand, reduced the pathogenicity of S. sclerotiorum by 
decreasing OA secretion and reducing the expression of 
virulence-related genes  such as Ss-Bi1 and Ss-Ggt1. In 
addition, the detached leaf experiments showed that the 
combination of the two acids could effectively reduce the 
infection of S. sclerotiorum in oilseed rape. This study 
suggested that maleic acid and malonic acid had poten-
tial as safe ecological inhibitors for S. sclerotiorum, which 
provided a theoretical reference for the subsequent devel-
opment of green and environmentally friendly pesticides.

Material and methods
Pathogen and chemicals
S. sclerotiorum (JZJL-13) used in this study was obtained 
from the Key Laboratory of Crop Disease Monitoring 
and Safety Control, Huazhong Agricultural University. 
Fungal strains were cultured on potato–dextrose–agar 
(PDA) medium (200  g potato, 20  g dextrose, and 15  g 
agar in 1 L water), and the corresponding liquid medium 
was potato-dextrose-broth (PDB) medium. Sclerotia 
were activated at first, and mycelial plugs cut with the 
same radius were placed into a new PDA and incubated 
at 23 °C for 48 h to obtain new mycelia of S. sclerotiorum. 
Maleic acid (ID: 392248) and malonic acid (ID:844) used 
in this study were purchased from Aladdin Reagent lim-
ited-liability company in Shanghai.

Antifungal activity assay
To estimate the activity of S. sclerotiorum responding to 
the two acids, the half-maximal effective concentrations 
 (EC50) were determined according to Jia et  al. (2019). 
Different gradient concentrations of maleic acid (2, 4, 6, 
8, 10 mg/mL) and malonic acid (0.8, 1, 1.6, 2.4, 3.2 mg/
mL) were set to measure the mycelial growth of S. sclero-
tiorum. The prepared mycelial plugs (6 mm in diameter) 
of 2-day-old colonies in PDA media were transferred to 
PDA media with thegradient concentrations of maleic 
acid and malonic acid. Culturing S. sclerotiorum on PDA 
with no acid addition was the control treatment. The 
colony diameters of mycelial agar in the petri dish were 
determined after incubation in darkness at 23 °C for 48 h. 
According to Cheng et al. (2019), the inhibition ratio was 

defined as follows: “dcontrol” was the mycelial colony diam-
eter of S. sclerotiorum in the PDA medium, and “dtreated” 
was the colony diameter of S. sclerotiorum in the PDA 
medium with maleic acid or malonic acid. Each treat-
ment was repeated four times.

The “logit” method was utilized to proceed with non-
linear data fitting. The values in the X-axis refer to the 
gradient concentrations of the acid, and the values in 
the Y-axis refer inhibition ratios of the acid (Sebaugh 
2011). Based on the results of  EC50 and low phytotoxic-
ity, an equal concentration of 2 mg/mL was selected for 
the following study. The fresh mycelial agar was placed 
on the center of the PDA medium with four treatments: 
the control, 2 mg/mL of maleic acid, 2 mg/mL of malonic 
acid, 2 mg/mL of maleic acid + 2 mg/mL of malonic acid 
(the same as below). Each treatment was preformed with 
four replicates.

Estimation of pathogenicity on detached leaves of oilseed 
rape
The oilseed rape selected in this experiment was Brassica 
napus L. cultivar Zhongshuang No.9 from the Oil Crops 
Research Institute, Chinese Academy of Agricultural 
Sciences. Detached leaves of oilseed rape were picked 
from the eco-agriculture base (30°28′26’’N, 114°2′15’’E), 
Huazhong Agricultural University, Wuhan, China. Myce-
lial plugs (6  mm in diameter) with different treatments 
were inoculated onto the detached oilseed leaves with 
wounds pretreated with a sterile knife, and the diam-
eters of wounds on the leaves were the same size as the 
prepared mycelial plugs. The colony diameters of the 
detached leaves were measured by cross method 36  h 
later to examine the pathogenicity. Each treatment was 
repeated four times.

Sclerotial formation determination
To estimate the effect of maleic acid and malonic acid on 
sclerotial formation, the numbers and weight of S. sclero-
tiorum in treatments of the two acids were determined. 
Similarly, mycelial plugs were transferred to fresh PDA 
media with different treatments. Each petri dish was 
incubated at 23 °C in darkness for 15 d. Then, the num-
ber of sclerotia on each PDA plate was recorded, and the 
sclerotia were collected and weighed. Each treatment was 
repeated four times.

Inhibition ratio(%) =
dcontrol − dtreated

dcontrol
× 100%
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Transmission electron microscopy (TEM) analysis
To study the subcellular effect that maleic acid and 
malonic acid exerted on S. sclerotiorum, TEM observa-
tion was considered a priority to observe the ultrastruc-
ture of sclerotia, and the operational process was based 
on Cheng et al. (2019). After collecting sclerotia from the 
PDA medium with different treatments, sclerotia were 
fixed in a solution of 2.5% glutaraldehyde in 100  mM 
phosphate buffer (pH = 7.2) at 4  °C for 4  h. After that, 
phosphate buffer was used to rinse samples for 4 h. Next, 
two-hour required for the rinsed samples immersed in 
1% osmium tetroxide with the same buffer at 4 °C. Then, 
the samples were dehydrated in graded acetone series 
for 4 h, completely immersing them in a mixed solution 
with graded acetone and resin for 4 d. Ultimately, a Leica 
Ultracut UCT ultramicrotome with a diamond knife was 
utilized to obtain ultra-thin Sects.  (50  nm) of the sam-
ples. The samples were finally observed by an electron 
microscope (TEM, H-7650, Hitachi, Japan).

Oxalic acid secretion and acid production determination
The OA secretion of S. sclerotiorum in the PDB media 
was determined according to Jia et al. (2019). The 2-day-
old mycelial agars were transferred to PDB media with 
different treatments and were cultured in the dark at 23℃ 
for 72 h. Each PDB medium had 5 mycelial agars. After-
wards, the PDB solution was centrifuged (10,000 × g, 
15  min) to obtain the supernatant. Subsequently, the 
determination of OA content followed the colorimetric 
method. 0.4 mL supernatant was moved to a colorimet-
ric tube with 0.1 mL 0.5 mg/mL  Fe3+ standard solutions 
 (FeCl3), 1 mL KCl–HCl solution (3.7 g/L KCl and 5.4 g/L 
HCl, pH 2.0) and 0.06 mL 0.5% sulfosalicylic acid (w/v). 
After 20  min, the absorbance at 510  nm was read from 
a UV-5200 ultraviolet spectrophotometer. The acid of 
the liquid was determined by the Seven2Go pH meter 
S2-Std-Kit (Cheng et  al. 2019). The pH in the PDB 
medium was measured to investigate the change in acid 
production in mycelium due to treatments. Each treat-
ment was repeated four times.

RNA isolation and quantitative real‑time PCR (qRT‑PCR) 
analysis
The determination of the relevant gene expression levels 
was based on Xu et al. (2020). This experiment included 
two main steps: acquisition of mycelial samples and spe-
cific determination of the gene expression process. To 
obtain mycelium samples, mycelial plugs were inocu-
lated onto sterilized cellophane disks on PDA plates for 
48 h at 23  °C. After that, the mycelia on the cellophane 
were collected and ground with high-throughput tis-
sue grinding machines (Jingxin Corporation, Shanghai). 

The determination process was mainly divided into three 
parts, including extraction of RNA, reverse transcription 
of RNA, and quantitative PCR detection. Mycelial RNA 
was extracted according to NI-Sclerotinia sclerotiorum 
RNA Reagent (Newbio Industry, Tianjin, China), and 
RNA samples were reversely transcribed by EasyScript 
One-Step gDNA Removal and cDNA Synthesis Super-
Mix (TransGen Biotech, Beijing) to obtain cDNA. Quan-
titative PCR detection was performed using the ABI Q6 
Flex system (Applied Biosystems, USA). Target primer 
sequences were listed in Table S1 (Supplementary). The 
reference gene, β-tublin, was used to normalize the tran-
script levels of target genes. Each qRT-PCR was repeated 
three times and each biological replicate had two techni-
cal replicates. The  2− ΔΔCT method was applied for deter-
mining the expression of target genes.

Statistical analysis
All data analyses were performed with SPSS software 
version 22.0. Data preprocessing included the test of 
Normality test and homogeneity of variance. After that, 
one-way analysis of variance (ANOVA) was adopted for 
a series of experiments including antifungal sensitiv-
ity assay, estimation of pathogenicity on detached leaves 
of oilseed rape, sclerotial formation determination, OA 
secretion determination, RNA isolation, and quantitative 
real-time PCR (qRT-PCR) analysis. Duncan’s test was to 
compare the means of the treatments. When p < 0.05, the 
result was considered significant.
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