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Abstract 

Heat stress (HS) can cause a series of stress responses, resulting in numerous negative effects on the body, such 
as the diminished food intake, carcass quality and reproductive capacity. In addition to the negative effects 
on the peripheral system, HS leads to central nervous system (CNS) disorders given its toll on neuroinflammation. 
This neuroinflammatory process is mainly mediated by microglia and astrocytes, which are involved in the activation 
of glial cells and the secretion of cytokines. While the regulation of inflammatory signaling has a close relationship 
with the expression of heat shock protein 70 (Hsp70), HS-induced neuroinflammation is closely related to the acti-
vation of the TLR4/NF-κB pathway. Moreover, oxidative stress and endoplasmic reticulum (ER) stress are key players 
in the development of neuroinflammation. Chromium (Cr) has been widely shown to have neuroprotective effects 
in both humans and animals, despite the lack of mechanistic evidence. Evidence has shown that Cr supplementa-
tion can increase the levels of insulin-like growth factor 1 (IGF-1), a major neurotrophic factor with anti-inflammatory 
and antioxidant effects. This review highlights recent advances in the attenuating effects and potential mechanisms 
of Cr-mediated IGF-1 actions on HS-induced neuroinflammation, providing presently existing evidence supporting 
the neuroprotective role of Cr.
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Introduction
In recent years, the rise in global temperature has posed 
great challenges to the health of humans and animals, 
with heat-related diseases gradually attracting the atten-
tion of researchers. Of note, high temperature environ-
ments cause great economic losses to animal husbandry 
production in many regions (Ebi et al. 2021; Goel 2021).

Heat stress (HS) represents the sum of systemic, non-
specific reactions in animals present in high-temperature 
and high-humidity environments caused by insufficient 
heat dissipation and uncontrolled thermoregulation 
(Roenfeldt 1998). Under HS conditions, a series of patho-
physiological responses, including high temperature, 
reduction of feed intake, dehydration, dyspnea, increased 
heart rate and gastrointestinal injuries, may emerge 
prominently (Vargas and Marino 2016; Chen et al. 2021a, 
b). Notably, due to the activation of the hypothalamic–
pituitary–adrenal (HPA) axis and increased production 
of glucocorticoids, HS causes an inhibitory effect on the 
immune system (Bagath et  al. 2019). In addition, HS is 
detrimental to the reproductive capacity and product 
quality of animals. In fact, it may cause bull lower semen 

Handling Editor: Takashi Bungo.

*Correspondence:
Xiaoyan Zhu
xyzhu0922@163.com
1 College of Veterinary Medicine, Northwest A&F University, 
Yangling 712100, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44154-023-00105-1&domain=pdf
http://orcid.org/0000-0001-5226-0582


Page 2 of 15Wang et al. Stress Biology            (2023) 3:23 

quality (Morrell 2020), decreased milk of dairy cows (Tao 
et  al. 2020) and egg production of laying hens (Li et  al. 
2020), and the development of pale, soft and exudative 
(PSE) meat in acute HS or dark, firm and dry (DFD) meat 
in chronic HS in pigs (Gonzalez-Rivas et al. 2020).

Moreover, in the central nervous system (CNS), HS 
can lead to many neurological disorders due to its highly 
inflammatory conditions. Neuroinflammation refers to 
the inflammation in the CNS (especially brain tissue), 
which can be triggered by noxious stimuli and conditions, 
including HS (Medzhitov 2008; Lee et al. 2015; Chauhan 
et al. 2017; Zhao et al. 2021a, b). Acute inflammation may 
have a protective effect on animals (e.g., providing pro-
tection against infections or promoting tissue repair and 
angiogenesis) (Aggarwal et  al. 2006; Varin and Gordon 
2009). However, when inflammation becomes chronic, it 
is highly detrimental to brain tissue, often causing syn-
aptic dysfunction, inhibition of neurogenesis, neuronal 
death and cognitive impairment (Lyman et al. 2014). 

Chromium (Cr) is a promising agent against the 
adverse effects of HS in animals (Bin-Jumah et al. 2020). 
Cr acts as a second messenger and amplifies insulin sig-
nals, which facilitates the role of insulin neuromodulation 
(Vincent 2015; Nakabeppu 2019). Evidence suggests that 
Cr has positive effects on the brain, namely improving 
cognitive function in the elderly and ameliorating depres-
sion (Krikorian et al. 2010; Andrieux et al. 2021). Impor-
tantly, the anti-inflammatory and antioxidant effects as 
well as the modulation of insulin-like growth factor 1 

(IGF-1) signaling of Cr supplements are well-recognized 
(Peng et al. 2010; Chen et al. 2014; Ullah Khan et al. 2014; 
Morvaridzadeh et al. 2022). Therefore, in this article, we 
addressed the mechanisms underlying HS-induced neu-
roinflammation and explored the link between Cr and 
IGF-1 signaling, further unraveling the potential role 
of Cr-mediated IGF-1 in inhibiting neuroinflammation 
induced by HS.

HS effects on the CNS and neuroinflammation
To the best of our knowledge, the brain is extremely sen-
sitive to high temperature, with both structure and func-
tion being damaged by HS (Walter and Carraretto 2016). 
Previous studies suggest that HS can induce brain perfu-
sion reduction and CNS fatigue, destroy the integrity of 
the blood–brain barrier (BBB) and cause brain edema, 
leading to modifications in neuronal circuits, neurologi-
cal defects, spasms and even brain atrophy (Sharma et al. 
1998; Nybo 2007). Moreover, a multitude of pathological 
processes can be observed by magnetic resonance imag-
ing (MRI) in the heat-stressed CNS, such as hemorrhage, 
edema, ischemia, and encephalitis (Zhang and Li 2014; 
Li et  al. 2015). Based on these pathological processes, 
animals under HS may suffer severe CNS dysfunction 
including combativeness, delirium, seizures, and coma 
(Fig. 1) (Bouchama and Knochel 2002).

In addition, neuroinflammation caused by HS is likely 
a key mechanism underlying the development of brain 
pathology. For example, Chauhan et  al. have previously 

Fig. 1  Negative effects of HS on the CNS. HS can destroy the integrity of the BBB and cause brain edema, and can induce brain hemorrhage, 
ischemia and neuroinflammation, which lead to CNS dysfunction. In addition, severe neuroinflammation contributes to the development of brain 
pathology, such as thermoregulatory dysfunction, neurogenesis impairment and neurodegeneration
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indicated that the main cause of thermoregulatory dys-
function under HS conditions is associated with abnor-
mal monoamine levels in the hypothalamus caused by 
neuroinflammation (Chauhan et  al. 2017). Moreover, 
inflammation in the heat-stressed hypothalamus was 
found to exacerbate neurodegeneration and brain dam-
age (Moon et  al. 2017). Similarly, in the inflammatory-
targeted hippocampus, HS was shown to display negative 
effects on adult neurogenesis and cognitive function (Lee 
et al. 2015; Zhu et al. 2023). More importantly, prolonged 
neuroinflammation can lead to various neurological 
disorders, including Parkinson’s disease (PD), Alzhei-
mer’s disease (AD), amyotrophic lateral sclerosis (ALS) 
and Huntington’s disease (HD) (Niranjan 2018). Hence, 
given the significance of preventing neuroinflammation-
induced neurodegeneration, one needs to further explore 
the actions of appropriate neuroprotective drugs in dif-
ferent conditions.

Chromium‑mediated neuroprotection
Minerals, and specifically Cr, are vital nutrients for 
humans and animals to maintain and facilitate physical 
health. Although Cr is not an essential element, accord-
ing to new evidence and a report released by the Euro-
pean Food Safety Authority, its pharmacological activity 
has been extensively studied (Vincent 2014, 2017). Cr 
exists mainly in two oxidized forms in nature: trivalent 
(Cr (III)) and hexavalent (Cr (VI)). While Cr (VI) is a 
recognized human carcinogen and has been shown to 
be neurotoxic (Wang et  al. 2011; Singh and Chowdhuri 
2017), accumulating evidence shows that Cr (III) can be 
used as a dietary supplement. Acting as a component of 
the glucose tolerance factor, Cr is important for enhanc-
ing the effect of insulin (Siddiqui et al. 2014). Therefore, 
given its relevance in improving carbohydrate and lipid 
metabolism, it is commonly used in research address-
ing treatments for diabetes and obesity in humans and 
animal models (Vincent 2001; Tian et  al. 2013; Maret 
2019; Wo et  al. 2023). Recently, dietary Cr supplemen-
tation is becoming widely used in livestock husbandry 
with the aim of improving growth performance, produc-
tion capacity, immune function, and antioxidative abil-
ity (Zheng et al. 2016; Sahin et al. 2017; Bin-Jumah et al. 
2020; Bompadre et al. 2020; Piray and Foroutanifar 2021). 
Moreover, several studies are emerging on the protec-
tive effect of Cr to the brain. Dietary supplementation 
of Cr was shown to alleviate post-stroke brain infarction 
and hyperglycemia in rats (Chen et  al. 2016). Oral Cr 
administration was found to increase concentrations of 
5-hydroxytryptamine and tryptophan in the serum and 
brain, improving neurological function in terms of learn-
ing and memory (Orhan et al. 2017). More importantly, 
in depression, a condition extremely harmful to people’s 

mental health, the administration of low-dose antide-
pressants supplemented with Cr was found to be an 
effective mitigation method (Młyniec et al. 2014; Khoda-
virdipour et al. 2020).

The study on the neuroprotective mechanisms of Cr 
has attracted the attention of many scientists because of 
its beneficial effects on CNS pathophysiology. Its main 
mechanisms of action include increased insulin sensitiv-
ity in the brain (Krikorian et  al. 2010) and anti-inflam-
matory and antioxidant effects (Sahin et al. 2010; Akhtar 
et al. 2020). As a second messenger, Cr is responsible for 
expanding insulin signal transduction, further enhanc-
ing its role in metabolism (Vincent 2015). Brain insulin 
plays a vital role in regulating both systemic metabolism 
and brain function, being involved in feeding, depression, 
cognitive behavior, and energy homeostasis (Agrawal 
et  al. 2021; Schell et  al. 2021). Moreover, insulin is also 
involved in the maintenance of protein homeostasis, 
affecting the clearance of amyloid β (Aβ) peptide and the 
phosphorylation of tau, both known AD protein markers 
(Kellar and Craft 2020). Hence, when insulin resistance 
— defined as a reduced efficiency of insulin in promoting 
glucose uptake and utilization — occurs, the brain and 
systemic energy metabolism is disrupted and neurode-
generation may be induced (Lebovitz 2001; Sędzikowska 
and Szablewski 2021). It is particularly essential to sup-
plement certain drugs in this period, namely with Cr, 
to increase insulin sensitivity. Additionally, Cr attenu-
ates neuroinflammation by reducing pro-inflammatory 
cytokines levels such as tumor necrosis factor α (TNF-
α) and interleukin (IL)-6 and enhances the ability of the 
antioxidant system to reduce oxidative stress (Sahin et al. 
2012; Akhtar et  al. 2020). However, the neuroprotective 
effects of Cr have not yet been fully covered. The insu-
lin-related peptide IGF-1 also plays a role in maintaining 
the internal homeostasis of the brain (Song et al. 2016). 
Recent experimental evidence has shown that, under HS 
conditions, Cr supplementation can significantly increase 
serum concentrations of IGF-1 (Zha et al. 2009). There-
fore, one may speculate that the neuroprotective effects 
of Cr may engage IGF-1 signaling.

Chromium and IGF‑1 
IGF-1 is an anabolic hormone that plays an important 
role in facilitating cell proliferation, dilating blood vessels 
and maintaining muscle mass and strength (Obradovic 
et al. 2019; Yoshida and Delafontaine 2020). IGF-1 is syn-
thesized in the liver and enters nerve tissues through the 
BBB or cerebrospinal fluid in the choroid plexus (Carro 
and Torres-Aleman 2006). Interestingly, Cr appears to 
be involved in the nutritional regulation of IGF-1 levels 
and bioactivity. In skeletal muscle cells, Cr improves pro-
tein deposition by up-regulating mRNA levels of IGF-1 
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and IGF-1 receptor (IGF-1R) (Peng et al. 2010). Similarly, 
in pigs, increased IGF-1 levels due to Cr-supplemented 
diets were shown to play a role in regulating protein and 
fat metabolism (Wang et al. 2014). Contrastingly, in rats, 
maternal Cr consumption leads to decreased fetal IGF-1 
concentrations, which may have negative effects on fetal 
protein levels and growth (Spicer et al. 1998). Moreover, 
Cheng et al. found that offspring of Cr-treated male mice 
display increased IGF-1 serum levels (Cheng et al. 2002). 
Despite the lack of mechanistic evidence, these results 
suggest a potential link between Cr and IGF-1 levels.

Given their role as growth factors, both IGF-1 and 
growth hormone (GH) exert neurotrophic and neurore-
generative actions (Bianchi et  al. 2017). Therefore, the 
regulation of Cr on the biological activity of the GH-
IGF-1 axis should also be noted. For instance, a Cr nano-
composite was found to enhance the mRNA expression 
and secretion of GH, facilitating the growth of finishing 
pigs (Wang et  al. 2009). In contrast, in another experi-
ment, finishing pigs treated with Cr methionine showed 
a decline in GH and IGF-1 levels (Tian et al. 2014). One 
possible explanation for these opposing differences may 
be the different forms of Cr supplementation. Hence, 
the potential link between Cr and IGF-1, supported by 
increased GH levels with Cr supplementation, is yet to be 
established and requires further research. Evidence sug-
gests that Cr may attenuate neuroinflammation through 
anti-inflammatory and antioxidant effects (Akhtar et  al. 
2020) and the regulation of glial cells activity (Sahin et al. 
2013), as does IGF-1 (Higashi et  al. 2010; Labandeira-
Garcia et al. 2017). Based on the effects of Cr on IGF-1 
levels and IGF-1 signaling, we further discussed the 
mechanism of IGF-1 in suppressing neuroinflammation 
to explain the potential anti-neuroinflammation of Cr.

Potential attenuating effects of IGF‑1 
on HS‑induced neuroinflammation 
As a bioactive hormone, the expression levels and func-
tion of IGF-1 are susceptible to the effects of HS. In this 
regard, serum insulin, IGF-1, and glucose levels were 
found to be decreased in summer compared to win-
ter in dairy cattle, possibly due to low dry matter intake 
and elevated negative energy balance (Hammond et  al. 
1990; Jonsson et  al. 1997; Shehab-El-Deen et  al. 2010). 
For animals suffering from HS, IGF-1 has protective 
effects on various tissues. Evidence indicates that, as the 
main targets of heat-stressed animals, oocytes supple-
mented with physiological concentrations of IGF-1 have 
been shown to have increased heat resistance, reduced 
reactive oxygen species (ROS) production and lowered 
rate of apoptosis (Rodrigues et  al. 2016; Ascari et  al. 
2017; Lima et al. 2017). In all types of cells in the CNS, 
microglia are the main source of IGF-1 expression, and 

IGF-1R are preponderantly expressed in neurons and 
astrocytes (Labandeira-Garcia et  al. 2017). When IGF-1 
binds to its receptor, two major signaling pathways are 
activated:  the mitogen-activated protein kinase (MAPK) 
pathway and the phosphatidyl inositol 3-kinase/pro-
tein kinase B (PI3K/AKT) pathway, both having critical 
effects on IGF-1-induced cell growth, survival, migration 
and proliferation (Yin et  al. 2017). Importantly, its role 
as a neurotrophic hormone enables brain development 
and maturation, neuroplasticity and peripheral neurore-
generation (Rabinovsky 2004; Dyer et  al. 2016; Zorina 
et  al. 2023). IGF-1 maintains the integrity of the BBB, 
which is known to decline gradually during aging (Bake 
et  al. 2016). In a rat model of ischemic stroke, systemic 
injection of IGF-1 promoted a 50% reduction in cerebral 
infarction size by binding to IGF-1R (De Geyter et  al. 
2016). In conditions of heat-stressed CNS, the disruption 
of IGF-1 signaling was shown to weaken the clearance 
of Aβ, which may mediate the development of neuroin-
flammation and neurodegeneration (Urban et  al. 2012). 
On the other hand, chronic inflammation, in turn, was 
found to exacerbate insulin/IGF-1 signaling defects in 
the brain (Spielman et  al. 2014). Hence, under HS con-
ditions, IGF-1 signaling plays a critical regulatory role in 
the innate immune response and brain pathophysiology.

IGF‑1 and microglia‑mediated neuroinflammation
Microglia, the resident immune cells in the CNS, are the 
first immune defense line of the CNS, being responsible 
for protecting CNS from damage and pathogen inva-
sion. In the homeostatic brain tissue, microglia are essen-
tial facilitators of neuronal development and promoters 
of brain health through the secretion of trophic factors 
(Nayak et  al. 2014). Microglia are also involved in syn-
aptic pruning, which is highly related to cognitive func-
tion and the establishment of functional neural networks 
(Paolicelli et  al. 2011). Contrarily, some evidence shows 
that overactivated microglia possess neurotoxic activity, 
causing neurodegeneration in the case of chronic neuro-
inflammation (Lindhout et  al. 2021). According to their 
morphology, microglia are classified in three main types: 
resting ramified, activated, and amoeboid phagocytic 
(Ling and Wong 1993). Regardless of their morphologi-
cal state, they perform monitoring functions by sensing 
changes in the microenvironment through their highly 
moving protrusions, a phenomenon more frequent in the 
resting ramified state (Nimmerjahn et al. 2005).

One of the most striking features of microglia is that 
when they receive internal signals (e.g., stress) or exter-
nal signals (e.g., pathogen), they will become activated 
and transform from resting ramified cells into amoeboid 
phagocytic cells (Aloisi 2001). This activation is of multi-
plicity, depending on the source of stress and the type of 
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pathology. According to the different phenotypic charac-
teristics and functions, activated microglia can be divided 
into M1 and M2 polarization types. M1 microglia can 
release pro-inflammatory cytokines under the stimula-
tion of lipopolysaccharide (LPS) or interferon-γ (IFN-γ), 
serving as the first line of defense of the innate immune 
system (Orihuela et  al. 2016). M2 microglia stimulated 
by IL-4 or IL-13 can be competent in anti-inflammation 
and neuroprotection (Orihuela et  al. 2016). Increasing 
evidence has been reported that, under HS conditions, 
the activity of M1 microglia is increased, promoting the 
production of pro-inflammatory mediators, including 
inducible nitric oxide synthase (iNOS), cyclooxygenase-2 
(COX-2), TNF-α and IL-6 (Vezzani and Ruegg 2011; 
Estes and McAllister 2014; Lyman et  al. 2014; Hsuan 
et al. 2016). Moreover, Weninger et al. found that, in hip-
pocampal slices treated with a heat shock, the number of 
microglia significantly increased, based on Iba-1 positive 
staining, when compared with the control group, with an 
abundant number of actively phagocytic microglia being 
observed (Weninger et  al. 2021). Similar results were 
reported in the hypothalamus during acute HS (Belity 
et al. 2022). Therefore, HS can induce the activation and 
proliferation of microglia, which may trigger neuroin-
flammation. Accordingly, an in-depth understanding of 
changes in the microglial state is of great significance for 
neuroinflammation.

Activation of microglia is the first and most criti-
cal step in neuroinflammation. IGF-1 is a mitogen for 
microglia that can also function as a regulator of micro-
glial polarization to modulate microglia-mediated neu-
roinflammation (Fig.  2) (Labandeira-Garcia et  al. 2017). 

In addition, IGF-1/IGF-1R signaling transduction is 
vital for regulating microglia morphology and tran-
scriptome, which reduces the severity of inflammatory 
response (Ivan et al. 2023). As a marker of the M2 phe-
notype, IGF-1 was shown to promote CD206 expression 
in mice with intracerebral hemorrhage, accompanied by 
elevated levels of anti-inflammation mediators such as 
IL-10 and transforming growth factor β (TGF-β) (Sun 
et al. 2020). The expression levels of arginase-1, another 
enzyme associated with an anti-inflammatory micro-
glia phenotype, were found to be increased after IGF-1 
overexpression (Falomir-Lockhart et  al. 2022). In addi-
tion, novel insights into the regulation of mitochondrial 
metabolism and autophagy on microglial polarization 
have emerged (Orihuela et  al. 2016; Jiang et  al. 2020). 
Indeed, Ji et al. confirmed that IGF-1 facilitated a M1-to-
M2 shift of microglia by enhancing autophagy (Ji et  al. 
2018). Ferger et al. suggested that mitochondrial dysfunc-
tion inhibited a M2 microglia phenotype induced by IL-4 
(Ferger et  al. 2010). Hence, according to these pieces of 
evidence, perhaps IGF-1 is promoting the transformation 
of microglia to a M2 phenotype to alleviate neuroinflam-
mation through the improvement of mitochondrial func-
tion (Sadaba et al. 2016; Yang et al. 2021). Furthermore, 
IGF-1 exhibited anti-inflammatory effects by reduc-
ing LPS-induced expression of brain inflammatory fac-
tors through the downregulation of microglia activation 
and production of endogenous growth factors (Sukh-
anov et al. 2007; Park et al. 2011a, b; Tien et al. 2017). In 
senile rats (Falomir-Lockhart et  al. 2019) and traumatic 
intracerebral hemorrhage models (Herrera et  al. 2021), 
IGF-1 gene therapy was also found to modulate the 

Fig. 2  IGF-1 attenuates microglial and astrocytes-mediated neuroinflammation
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proliferation of reactive microglia. Taken together, multi-
ple pieces of evidence indicates that a strict regulation of 
IGF-1 levels is essential for the modulation of microglial 
inflammatory responses in the CNS, which provides a 
reference for exploring the regulation of Cr on the activ-
ity of microglia.

IGF‑1 and astrocytes‑mediated neuroinflammation
Astrocytes are abundant glial cells in the brain tissue and 
perform complex and diverse functions, including nutri-
ent supply to neurons, synaptic integrity maintenance, 
and regulation of local CNS blood volume (Ransom 
et al. 2003). Astrocytes become activated in response to 
various adverse stimuli, a process defined by increased 
expression of glial fibrillary acidic protein (GFAP) 
(Sofroniew 2009). After activation, astrocytes release 
pro-inflammatory signaling molecules, particularly in 
the cortex and midbrain, in order to build up responses 
to innate immune triggers (Kipp et  al. 2008). In addi-
tion to their pro-inflammatory role, it has been demon-
strated that cytotoxic molecules secreted by astrocytes 
greatly contribute to neurodegenerative pathophysiology, 
especially in AD (Liddelow et  al. 2017; Li et  al. 2019a, 
b). Another way in which astrocytes respond to various 
forms of CNS damage is the double-edged sword pro-
cess of reactive astrogliosis. On the one hand, glial scars 
formed during severe reactive astrogliosis have neu-
roprotective effects that limit the spread of inflamma-
tion and pathogens (Sofroniew and Vinters 2010). On 
the other hand, loss of physiological function or gain of 
adverse effects of reactive astrocytes may be the patho-
logical basis of CNS dysfunction, such as trauma and 
stroke (Sofroniew 2009). Accumulating evidence indi-
cates that acute HS can induce increased expression of 
reactive astrocytes actively involved in different patho-
physiological processes in a short period of time (Sharma 
et al. 1992; Moon et al. 2017). In fact, frequent repetitive 
thermal stimulation to the hippocampus was shown to 
prolong the activation time of astrocytes concomitant 
with increased expression of GFAP (Yang et  al. 2009). 
In addition, Chauhan et  al. discovered that severe HS 
promotes an increased expression of GFAP in the hypo-
thalamus accompanied by inflammation (Chauhan et al. 
2017). In conclusion, astrocytes can also become acti-
vated and proliferate, contributing to the secretion of 
pro-inflammatory cytokines and chemokines that induce 
inflammation (Banjara and Ghosh 2017).

Evidence has shown that IGF-1 plays a vital role in 
regulating astrocytic activity (Fig.  2) (Labandeira-Gar-
cia et  al. 2017). According to Fernandez et  al., further 
investigation on the regulation of astrocyte function 
by IGF-1 is essential to fully understanding the biologi-
cal role of IGF-1 in the brain (Fernandez et  al. 2007). 

The modulation mediated by IGF-1 on mitochondrial 
dynamics and the redox state of astrocytes is important 
for astrocyte function (Logan et  al. 2018). IGF-1 regu-
lates the energy supply of the brain by promoting astro-
cytic glucose uptake (Hernandez-Garzón et  al. 2016). 
Severely, mice lacking IGF-1R in astrocytes show cog-
nitive impairment, which is related to the development 
of the AD-like pathology (Zegarra-Valdivia et  al. 2022). 
In addition, IGF-1 targeting astrocytes-mediated neu-
roinflammation is a crucial part of its neuroprotective 
effects. When astrocytes are exposed to IGF-1 for a long 
time, sustained activation of IGF-1R will inhibit astro-
cytic mitosis through the upregulation of phosphatase 
and tensin homolog deleted on chromosome ten (PTEN) 
activity (Fernandez et  al. 2007). Accumulating reports 
also show that IGF-1 is able to reduce the number of 
GFAP-positive astrocytes in aging and nerve injury mod-
els (Miltiadous et  al. 2011, Park et  al. 2011a, b, Arroba 
and Valverde Á 2015, Okoreeh et al. 2017), which is simi-
lar with a Cr-induced GFAP fall in hypoglycemic rats 
(Sahin et  al. 2013). In line with this, reactive astrocytes 
play an active anti-inflammatory role under the actions of 
IGF-1, suppressing the expression of pro-inflammatory 
cytokines and enhancing the secretion of neuroprotec-
tive factors (Fernandez et al. 2007). Recent experimental 
evidence indicates that an IGF-1 gene therapy effectively 
controlled reactive astrogliosis and attenuated astrocyte-
mediated neuroinflammation induced by LPS (Bellini 
et al. 2011; Pardo et al. 2016). Nonetheless, given the two 
opposing facets of reactive astrogliosis, further discus-
sion is needed on the role of IGF-1 in the regulation of 
astrocytic activity.

IGF‑1 inhibits signaling pathways involved 
in neuroinflammation
In the CNS, heat shock proteins (Hsps) are highly con-
served proteins synthesized by glial cells in response to 
HS (Taylor et al. 2007). Hsps act as molecular chaperones 
that promote the proper folding of nascent polypeptides 
and the repair of damaged proteins, playing a vital role in 
maintaining protein homeostasis. Oligodendrocytes are 
myelin-forming cells in the CNS that have been shown 
to provide nutrients to neurons (Kipp 2020). Neverthe-
less, under HS conditions, oligodendrocytes seem to 
play a neuroinflammatory role. Pavlik et  al. found that 
oligodendrocytes, but not microglia and astrocytes, are 
major producers of Hsp70, the most ubiquitous and con-
served Hsp, in rats subjected to heat-stressed conditions 
with circulating hot air (41.5℃) (Pavlik et al. 2003). Like-
wise, several reports have revealed that HS can induce 
increased expression of Hsp70 in the brain tissue (Moon 
et  al. 2017; Kim et  al. 2019). When extracellular Hsp70 
binds to its receptor, a specific inflammatory signaling 
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pathway is initiated (Dukay et al. 2019). Indeed, Hsp70 is 
an ideal damage-associated molecular pattern (DAMP) 
recognized by Toll-like receptor 4 (TLR4) that is highly 
conserved and significantly increased after HS (Dukay 
et al. 2019). TLR4 is mainly expressed on the membrane 
of microglia and astrocytes in nerve tissues, being a key 
receptor that contributes to the induction of inflamma-
tion and antiviral cytokines (Kumar 2019; Li et al. 2019a, 
b). After the binding of extracellular Hsp70 to TLR4, 
activated TLR4 induces the recruitment of downstream 
adaptors that lead to the activation of nuclear factor-
kappa B (NF-κB) (Kawai and Akira 2010). Next, a large 
number of pro-inflammatory mediators are produced 
that accelerate neuroinflammation development (Kagan 
and Medzhitov 2006; Kim and Yenari 2013; Banjara and 
Ghosh 2017). Hence, there is not only a close relationship 
between the regulation of inflammatory signaling with 
Hsp70 expression but also between HS-induced neu-
roinflammation and the activation of the TLR4/NF-κB 
pathway.

Elevated Hsp70 expression is thought to reflect the 
response of nerve cells to stress and injury, which can 
eventually lead to neuroinflammation (Lee et  al. 2000; 
Akbar et  al. 2001; Giuliano et  al. 2011). Kazanis et  al. 
found that IGF-1 suppresses Hsp70 expression in the 
brain injury area, contributing to the alleviation of neu-
ronal degeneration and death (Kazanis et  al. 2003). 
Similar results were reported in the neurotoxic sub-
stance-induced hippocampal degeneration model 
(Miltiadous et al. 2010). Therefore, IGF-1 attenuates tis-
sue overreaction to injury by reducing Hsp70 produc-
tion. Notably, the anti-inflammatory effect of IGF-1 is 
known to be related to the inhibition of the TLR4/NF-κB 
pathway. In pathological processes such as lung injury 
(Munoz et al. 2021), cirrhosis (Zhao et al. 2021a, b), and 
enteritis (Tian et al. 2017), it has been demonstrated that 
IGF-1 inhibits the activation of the TLR4/NF-κB path-
way, impeding cell damage and enhancing tissue repair. 
A study by Lee and colleagues indicated that the negative 
regulation of IGF-1 on TLR4 expression is highly asso-
ciated with the PI3K/AKT pathway and the decreased 
expression of many NF-κB-mediated pro-inflammatory 
factors (e.g., TNF-α, IL-6) (Lee 2011). Moreover, recent 
evidence confirmed that IGF-1 has the ability to down-
regulate the expression of TLR4 and to mediate the inac-
tivation of NF-κB by activating the PI3K/AKT pathway 
to reduce the astrocytic inflammatory response (Pinto-
Benito et  al. 2022). Moreover, IGF-1 can promote M2 
microglial polarization via the inhibition of TLR4/NF-κB 
signaling transduction and lead to the elevation of neu-
roprotection factors such as IL-10 and TGF-β to attenu-
ate microglia-mediated inflammation (Sun et  al. 2020). 
Importantly, the reduced Hsp70 production and the 

inhibition of TLR4/ NF-κB pathway can be achieve by 
Cr supplement (Zhang et  al. 2014; Kumar et  al. 2015). 
The inhibitory effects of Cr and IGF-1 on inflammatory 
signaling pathways greatly facilitate the control or resolu-
tion of inflammation, providing compelling perspectives 
on the neuroprotective role of IGF-1 and the potential 
between Cr and IGF-1.

IGF‑1 and oxidative stress
Mitochondria are not only the energy production center 
of cells but also the center of pro-inflammatory responses 
(Andrieux et  al. 2021). HS is a known inducer of mito-
chondrial dysfunction in rat CNS neurons and can lead 
to a decreased ability to neutralize or to the overproduc-
tion of ROS (White et  al. 2012). Additionally, NADPH 
oxidases (NOX) like NOX-1 and NOX-4 are involved 
in ROS production under HS conditions (Moon et  al. 
2010; Kikusato et al. 2015). To prevent cells from oxida-
tive damage, mitochondria have an antioxidative defense 
capability. However, HS inhibits the total antioxidant 
capacity (T-AOC), which is characterized by the pres-
ence of glutathione and enzymatic antioxidants such as 
superoxide dismutase (SOD), catalase (CAT), glutathione 
peroxidase (GPx) and hemeoxygenase-1 (HO-1) (Liu 
et al. 2016; Wang et al. 2019; Chauhan et al. 2021; Ogh-
baei et al. 2021). Moreover, the concentration of malon-
dialdehyde (MDA), an indicator of lipid peroxidation, has 
been shown to be increased in the diencephalon of chicks 
exposed to heat (Chowdhury et al. 2014). Collectively, HS 
induces the excessive production of ROS and reduces the 
antioxidative capacity of the system, resulting in oxida-
tive damage. Oxidative stress is a crucial potential factor 
of inflammatory responses. ROS accelerate the recruit-
ment of inflammatory cells and increase the expression 
of cytokines and chemokines by activating different tran-
scription factors, including NF-κB (Guzik et  al. 2003; 
Kim et  al. 2013; Ding et  al. 2020; Eckert et  al. 2021). In 
the brain tissue, ROS induce inflammation and neuron 
death, which in turn mediates neurodegeneration and 
memory loss (Popa-Wagner et al. 2013).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a 
sensor and transcriptional mediator of antioxidants and 
oxidative signals, being a great preventor of oxidative 
damage (Ma et al. 2006). After the activation of Nrf2, it 
can be transferred into the nucleus, where it binds to the 
antioxidative response element (ARE), initiating a down-
stream pathway for signal transduction that promotes 
the synthesis of enzymatic antioxidants, including SOD, 
CAT, and HO-1 (Jung and Kwak 2010). Recent experi-
mental evidence has shown that increased levels of IGF-1 
prevent renal cells against oxidative damage induced by 
cisplatin (Mahran 2020). In addition, IGF-1/IGF-1R sign-
aling in the brain was found to activate the Nrf2/HO-1 
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pathway, an important antioxidant and anti-inflamma-
tory pathway (Kim et al. 2012; Luo et al. 2017; Ma et al. 
2020; Niu et al. 2020), and Cr plays an antioxidative role 
through enhancing the Nrf2 activity and the antioxidants 
expression levels (Sahin et  al. 2017; Chen et  al. 2021a, 
b). According to Wang et  al., IGF-1 protects SH-SY5Y 
cells against Aβ-induced cell injury by reducing ROS 

through the PI3K/Akt-Nrf2 signaling pathway in an AD 
model (Wang et  al. 2017). Similarly, Sui et  al. reported 
that IGF-1 improved tau pathology induced by high-fat 
diet via the activation of the Nrf2/HO-1 signaling path-
way (Sui et  al. 2021). Moreover, knockdown of IGF-1 
was shown to reduce antioxidant defenses by impairing 
the Nrf2-dependent antioxidant response (Bailey-Downs 

Fig. 3  Cr attenuates HS-induced neuroinflammation via the neuroprotective effects of IGF-1. HS induces the proliferation of microglia 
and astrocytes, which can be inhibited by Cr-induced IGF-1. Under HS conditions, when Hsp70 binds to TLR4, the NF-κB is activated to facilitate 
the expression of pro-inflammatory factors. This can also happen after oxidative stress and ER stress, leading to neuroinflammation. Cr 
supplementation can increase IGF-1 levels which, in turn, suppress the expression of Hsp70. After the binding of IGF-1 to IGF-1R, the PI3K/Akt 
pathway is activated, which inhibits the activation of the TLR4/NF-κB signaling transduction to reduce the expression of pro-inflammatory factors. 
Moreover, IGF-1 enhances antioxidative defense via the PI3K/Akt-Nrf2/HO-1 pathway to clear the excessive production of ROS. Additionally, 
through PI3K/Akt pathway, IGF-1 ameliorates ER stress to prevent the apoptosis of neuronal cells
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et al. 2012). Collectively, Nrf2/HO-1 is an important anti-
oxidative pathway that mediates Cr and IGF-1 actions. 
Furthermore, increasing evidence now suggests that low 
doses of IGF-1’s can effectively ameliorate mitochondrial 
dysfunction, resulting in reduced ROS production, oxi-
dative damage and apoptosis, and in an elevation of ATP 
production (Puche et  al. 2008; Sadaba et  al. 2016; Yang 
et al. 2021; Lv et al. 2022). These conclusions suggest that 
IGF-1 can ameliorate mitochondrial dysfunction and 
enhance the function of the antioxidant defense system 
to neutralize or scavenge the excessive production of 
ROS induced by HS.

IGF‑1 and endoplasmic reticulum stress
Endoplasmic reticulum (ER) is an important organelle 
responsible for protein synthesis in cells and plays a 
critical role in assisting protein modification and fold-
ing (Gong et al. 2017). Aggregation of unfolded or mis-
folded proteins in ER under adverse conditions leads 
to ER stress. Signal transduction of unfolded proteins 
depends on three resident transmembrane proteins on 
the endoplasmic reticulum membrane: inositol-requir-
ing enzyme 1α (IRE1α), pancreatic endoplasmic reticu-
lum kinase (PERK), and activating transcription factor 6 
(ATF6) (Chandrika et al. 2015; Oakes and Papa 2015). As 
classical markers of ER stress, glucose-regulated protein 
78 (GRP78) and C/EBP-homologous protein (CHOP) 
expression levels are increased under HS conditions 
(Dong et  al. 2017). Furthermore, excessive production 
of ROS may disrupt ER homeostasis by aggravating oxi-
dative damage (Zhang et al. 2016). Compelling evidence 
now demonstrates that ER stress can induce the activa-
tion of microglia, astrocytes and NF-κB, representing 
a key step in the development of neuroinflammation 
(Meares et  al. 2014; Harvey et  al. 2015; Sprenkle et  al. 
2017). Other lines of evidence indicate that HS increases 
the levels of misfolded proteins, resulting in ER-triggered 
apoptosis (Chen et al. 2008; Nasrolahi et al. 2020). More-
over, ER stress was found to inhibit the transcription of 
the IGF-1 gene, resulting in decreased IGF-1 sera and 
brain tissue levels (Marwarha et al. 2016; Xia et al. 2020). 
However, IGF-1 seems to be a new target for reducing ER 
stress in the CNS. Recent experimental results showed 
that in fibroblasts the increased expression levels of 
IGF-1 inhibited the expression of ER stress-related genes 
(Di Patria et  al. 2022). According to Fang et  al., under 
high glucose conditions, IGF-1 alleviates ER stress and 
ER stress-induced apoptosis in rat gastric smooth muscle 
cells (Fang et al. 2019). Furthermore, IGF-1 was found to 
enhance the expression of CHOP and to inhibit the phos-
phorylation of eIF2α, thus attenuating 6-OHDA-induced 
ER stress-mediated apoptosis in PC-12 neuronal cells 
(Kim et  al. 2012). Before that, Zou et  al. reported that 

IGF-1 effectively protected PC-12 neuronal cells against 
ER stress-induced apoptosis through the PI3K/Akt and 
p38 MAPK pathways(Zou et al. 2009). In addition, gesta-
tional diabetes rats with Cr supplement showed that the 
reduced GRP78 level and IRE1α activity can prevent liver 
from ER stress (Yao et  al. 2021). Hence, the abovemen-
tioned evidence suggests that Cr and IGF-1 play positive 
roles in inhibiting HS-induced ER stress, which provides 
prospective about Cr promoting IGF-1 actions.

Conclusion
With global warming, the frequency of HS increases, 
and its adverse effects on the CNS cannot be ignored. 
As demonstrated in this present review, HS can acti-
vate glial cells and the NF-κB pathway to facilitate the 
production of pro-inflammatory cytokines that lead to 
neuroinflammation. Moreover, HS-induced oxidative 
stress and ER stress further contribute to the develop-
ment of neuroinflammation, cell death and tissue dam-
age. If inflammation becomes unmanageable, it may lead 
to several neurological diseases that greatly threaten and 
harm the normal lives of animals. Cr, an important min-
eral present in nature, has been shown to play an impor-
tant anti-inflammatory and antioxidant role in the brain. 
Interestingly, elevated production of IGF-1 is induced by 
the supplementation with Cr. As a neuroprotective factor, 
IGF-1 mediates the anti-inflammatory effects of micro-
glia and astrocytes. In addition, IGF-1 decreases Hsp70 
levels and inhibits the activation of the TLR4/NF-κB 
pathway to suppress the expression of pro-inflammatory 
cytokines. Moreover, IGF-1 attenuates oxidative stress 
and ER stress via the PI3K/Akt pathway to ameliorate cell 
damage. Therefore, one can conclude that Cr efficiently 
ameliorates neuroinflammation evoked by HS through 
the mediation of IGF-1 signaling (Fig. 3). Considering the 
putative pro-inflammatory effects of IGF-1 in other back-
grounds, further experiments focused on HS are needed 
to verify this hypothesis. The findings of these upcoming 
studies will create the rationale for an effective approach 
in the prevention and treatment of neurological diseases 
associated with HS.
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