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Abstract 

The majority of native cattle are taurine × indicine cattle of diverse phenotypes in the central region of China. Sanji-
ang cattle, a typical breed in the central region, play a central role in human livelihood and have good adaptability, 
including resistance to dampness, heat, roughage, and disease, and are thus regarded as an important genetic 
resource. However, the genetic history of the successful breed remains unknown. Here, we sequenced 10 Sanjiang 
cattle genomes and compared them to the 70 genomes of 5 representative populations worldwide. We characterized 
the genomic diversity and breed formation process of Sanjiang cattle and found that Sanjiang cattle have a mixed 
ancestry of indicine (55.6%) and taurine (33.2%) dating to approximately 30 generations ago, which has shaped 
the genome of Sanjiang cattle. Through ancestral fragment inference, selective sweep and transcriptomic analysis, 
we identified several genes linked to lipid metabolism, immune regulation, and stress reactions across the mosaic 
genome of Sanjiang cattle showing an excess of taurine or indicine ancestry. Taurine ancestry might contribute 
to meat quality, and indicine ancestry is more conducive to adaptation to hot climate conditions, making Sanjiang 
cattle a valuable genetic resource for the central region of China. Our results will help us understand the evolution-
ary history and ancestry components of Sanjiang cattle, which will provide a reference for resource conservation 
and selective breeding of Chinese native cattle.
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Introduction
Domesticated cattle are the main livestock acting as a 
driving force in agriculture and transportation, playing a 
significant role in agricultural society. Domestic cattle are 

mainly divided into humpless taurine cattle (Bos taurus 
taurus) and humped indicine cattle (Bos taurus indicus) 
(Decker et  al. 2014). The geographical distribution pat-
tern of domestic cattle in the world is very regular and 
closely related to the climate background. Taurine cat-
tle can adapt to temperate and cold climates, mainly 
in the Northern Hemisphere (Buggiotti et  al. 2021; 
Xia et  al. 2023). Indicine cattle are heat-resistant and 
drought-resistant and adapted to tropical and subtropi-
cal climates. They are mainly distributed in the equatorial 
region and the Southern Hemisphere, mostly in South 
Asia, Southeast Asia, southern East Asia, and Africa 
(Utsunomiya et al. 2019; Zhang et al. 2020).

China is rich in bovine species resources, and there 
are 55 native cattle breeds with distinct phenotypes 
(MacHugh et al. 1997). Native cattle in the central region 
of China, also called yellow cattle, have undergone long-
term artificial selection and natural selection, often 
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leaving unique regions in the genome, which are con-
sidered important genetic resources due to their distinct 
characteristics. Recently, native Chinese cattle have been 
shown to have three types of ancestry: Eurasian taurine 
and East Asian taurine in northern China and Chinese 
indicine in southern China (Chen et  al. 2018), which 
are inseparable from the complex genetic background 
and domestication history of Chinese cattle. Following 
their contact, a north-to-south taurine-to-indicine cline 
of cattle was established. Intermediate taurine-indicine 
breeds in the central region of China exhibit differ-
ent combinations of taurine and indicine ancestries at 
both phenotypic and genomic levels, which serve as a 
major labor force in agricultural production and are well 
known for their endurance and adaptation. Different tau-
rine × indicine admixture proportions increase diversity 
and provide new genetic resources for human and natu-
ral selection. However, the history formation processes 
of different hybrid breeds in the central region of China 
warrant further investigation.

Sanjiang cattle, distributed in Wenchuan County, 
Sichuan Province (Fig. 1A), is one of the local well-known 
cattle breeds (Fig. S1) and a typical native cattle breed in 
the hybrid region of China. This cattle breed has a rela-
tively large body size and displays a long service life, good 
adaptability, low disease susceptibility and high endur-
ance under unfavorable feeding conditions. It is urgent 

for animal husbandry workers to study the genetic diver-
sity and protect resources of Sanjiang cattle. However, 
the origin and genomic background of Sanjiang cattle, 
the timing of taurine × indicine admixture event(s) and 
their impacts on the economic traits and adaptation of 
local cattle remain unknown. With the development of 
sequencing technology and the reduction of sequencing 
costs, whole genome sequencing (WGS) technology has 
been responsible for several milestones in understand-
ing the origin and evolution of cattle and identifying their 
population structure and genomic regions associated 
with important economic and environmental adaptation 
traits (Lee et al. 2013; Tsuda et al. 2013; Xia et al. 2021). 
Downstream WGS analysis and differentially expressed 
genes can provide a basis for designing genetic breeding 
strategies to improve the adaptability and productivity of 
cattle.

In the present study, we identified the genome diversity, 
population structure, and global and local ancestry pro-
portions of Sanjiang cattle. We date a main taurine × indi-
cine admixture event and assess the present genome 
ancestry of Sanjiang cattle and present selected regions 
with excessive segments showing an excess of taurine or 
indicine ancestry in Sanjiang cattle. Moreover, we com-
bined transcriptome data to further confirm the reliabil-
ity of the putatively selected genes. These data provide 
valuable genomic resources for promoting molecular 

Fig. 1 Population structure and relationships of Sanjiang cattle in comparison to several possible ancestral breeds. A The distribution map 
of the Sanjiang cattle. B Functional classification of the detected SNPs. C Principal component analysis. D Neighbor-joining tree of the relationships 
between Sanjiang cattle and possible ancestors. E. Model-based clustering of cattle breeds using ADMIXTURE with K = 2 and K = 4. Breeds are 
colored according to their geographic region and labeled with breed names
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breeding and genetic improvement of Sanjiang cattle and 
support that a combination of these two ancestries is at 
the root of the success of breed formation in the central 
region of China.

Results
Sequencing and identification of single nucleotide 
polymorphism (SNP)
Individual genomes of 10 Sanjiang cattle were jointly 
genotyped with publicly available genomes for genetic 
background analysis. A total of 70 cattle genomes were 
added as a control group, including samples of European 
taurine, East Asian taurine, Indian indicine and Chinese 
indicine  groups. A total of 80 samples were therefore 
used in this study, with an average sequence coverage 
of ~ 11.5 × and an average mapping rate of 99.39% (Table 
S1). A total of ~ 38.7 million biallelic SNPs were anno-
tated through ANNOVAR (Wang et  al. 2010) in 80 
samples. Most of the SNPs were located in intergenic 
(58.42%) and intronic regions (38.37%), while the rest 
were located in the regions upstream and downstream 
(1.29%) of open reading frames and untranslated regions 
(1.04%). In addition, exons contained 0.79% of the total 
SNPs, with 112,452 nonsynonymous SNPs and 185,231 
synonymous SNPs (Fig. 1B and Table S2).

Patterns of genomic variation
The nucleotide diversity analysis showed that indicine 
origin cattle, including Chinese indicine cattle, Sanji-
ang cattle and Indian indicine cattle, had significantly 
higher nucleotide diversity than taurine cattle (Fig. S2). 
The largest number of SNPs was found in Chinese indi-
cine cattle, followed by Sanjiang cattle and Indian indi-
cine cattle, which showed much greater numbers of SNPs 
than the taurine groups. Similar results were obtained 
when considering the numbers of breed-specific SNPs 
(Fig. S3). In contrast, genome-wide linkage disequilib-
rium (LD) decreased with increasing physical distance 
between markers. When the  r2 value decayed to half of 
the maximum value, the decay distance in Sanjiang cattle 
(3.2 kb) was longer than those in Indian indicine (1.5 kb) 
and Chinese indicine (1.6  kb) cattle but shorter than 
those in Hanwoo (4.8  kb), Tibetan (9.8  kb), Simmental 
(10.4 kb), and Angus (11.7 kb) cattle (Fig. S4). The kinship 
was estimated using the method of inferring IBD frag-
ments in KING software, and there were no individuals 
with recent genetic relationships (≤ 2nd degree relatives) 
among the 10 Sanjiang cattle (Table S3). In addition, runs 
of homozygosity (ROH) analysis was performed on each 
individual. The results showed that these settings get the 
expected number (maximum number is 1,925) and total 
length (maximum length is 774,586  Mb) of ROHs (Fig. 
S5, Table S4). The Angus and Simmental cattle tended 

to have more and longer ROHs than Sanjiang cattle (Fig. 
S5, Table S4), which also reflects the relatively short-term 
artificial breeding of Sanjiang cattle.

Population structure and relationships
Principal component analysis (PCA), ADMIXTURE analy-
sis, and neighbor-joining (NJ) tree analysis were performed 
to explore the genetic relationships among Sanjiang cattle 
and other cattle groups. The first PC explained 8.15% of the 
total variation and was driven by variation between B. tau-
rus and B. indicus. The second PC, explaining 3.09% of the 
total variation, geographically separated the different indi-
cine and taurine groups. Sanjiang cattle were at an inter-
mediate position between Chinese indicine and East Asian 
taurine cattle (Fig. 1C). Similar results were observed in the 
NJ tree and ADMIXTURE analysis (Fig.  1D and E). The 
cattle breeds were divided into taurine or indicine ancestry 
at K = 2, while at K = 3, East Asian taurine cattle were sepa-
rated from European taurine cattle, and Indian indicine 
cattle were further separated at K = 4. Consequently, San-
jiang cattle showed a proportion of four types of ancestry: 
Chinese indicine (0.556), East Asian taurine (0.332), Euro-
pean taurine (0.068) and Indian indicine (0.044).

Local ancestry inference of Sanjiang cattle
Having established the level of taurine × indicine admix-
ture of Sanjiang cattle, we then estimated the timing of its 
generation using admixture LD decay. We first employed 
a single-pulse admixture model using ALDER (Loh et al. 
2013). In Sanjiang cattle, the admixture time was dated 
to 38.27 ± 10.56 generations ago, which supports a recent 
admixture signal. And we performed fastGLOBETROT-
TER to determine the admixture dating of Sanjiang 
cattle, and inferred the mixed signal was about 30.72 gen-
erations ago, which was within the date range estimated 
by ALDER. We then inferred local taurine and indi-
cine ancestries across Sanjiang genomes using LOTER 
(Dias-Alves et  al. 2018). Chinese indicine, East Asian 
taurine, European taurine, and Indian indicine cattle 
were selected as reference panels. Their autosomes were 
expurgated into 30,059 segments. The segments with fre-
quencies of at least 0.75 and lengths of at least 1,000 bp 
were regarded as high-frequency ancestral fragments 
by filtering at a P value < 0.01. Ultimately, 2,629 Chinese 
indicine segments, 399 East Asian taurine segments, two 
European taurine segments and five Indian indicine seg-
ments were retained (Fig.  2A and Table S5). The maxi-
mum lengths of segments in the Chinese indicine, East 
Asian taurine, European taurine and Indian indicine 
groups were 1,191,774  bp, 942,233  bp, 448,738  bp and 
123,757 bp, respectively (Table S5). For excessive Chinese 
indicine segments in Sanjiang cattle, 3,561 genes were 
annotated (Table S5). These genes were enriched in Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) pathways 
(P value < 0.05) of insulin secretion, inflammatory media-
tor regulation of TRP channels, platelet activation, T-cell 
receptor signaling pathway, and thyroid hormone sign-
aling pathway (Fig. 2B and Table S6). For excessive East 
Asian taurine segments in Sanjiang cattle, 405 genes were 
annotated (Table S5). The enrichment analysis revealed 
that these genes were associated with some KEGG path-
ways (P value < 0.05), such as regulation of the MAPK 
signaling pathway, phospholipase D signaling pathway, 
fatty acid degradation, and tyrosine metabolism (Fig. 2C 
and Table S7).

Selection signatures with an excess of indicine or taurine 
ancestry in Sanjiang cattle
Sanjiang cattle, considered to have a hybrid origin involv-
ing indicine and taurine cattle, haplotypes of indicine or 
taurine ancestry may confer a relative adaptive advan-
tage under selection pressures. Accordingly, we applied 
four methods (composite likelihood ratio  (CLR), the 

integrated haplotypes score (iHS), FST, and θπ-ratio) to 
detect haplotypes related to selection in Sanjiang. The 
overlapping regions of two or more methods (top 1%) 
were considered candidate selective regions.

For indicine ancestry, we used East Asian taurine cat-
tle (Hanwoo) as a reference group to detect selection 
signatures with an excess indicine ancestry in Sanjiang 
cattle, and a total of 175 candidate regions under selec-
tion containing 173 genes were identified (Tables S8, S9, 
S10  and S11). These candidate genes were significantly 
overrepresented (P value < 0.05) in the cAMP signal-
ing pathway, thyroid hormone signaling pathway, and 
Rap1 signaling pathway (Table S12). The cAMP signal-
ing pathway plays an important role in neuromodula-
tion and the immune response (Zhou et  al. 2019). The 
thyroid hormone signaling pathway plays a critical role 
in heat stress and metabolic homeostasis in animals 
(Maloyan and Horowitz 2022; Matesanz et  al. 2017). 
Moreover, 70 genes were identified in the excessive indi-
cine segments (Table S5). Among them, six genes played 
a role in the immune response (PALB2, DCTN5, FCRL4, 

Fig. 2 Identification of the local segments in which proportions of a certain ancestry were significantly higher than the proportion in the whole 
genome in Sanjiang cattle. A Distribution of the local segments with proportions of Chinese indicine and East Asian taurine ancestries. B The KEGG 
pathways from the enrichment analysis of genes with excessive Chinese indicine proportions. C The KEGG pathways from the enrichment analysis 
of genes with excessive East Asian taurine proportions



Page 5 of 13Lyu et al. Stress Biology            (2023) 3:30  

FCRL5, PTGER3, and C1QTNF4), and five genes were 
related to stress reactions (EMC4, NDUFAB1, NOD1, 
GARS, and PSMD2). We found a region on Bos taurus 
autosome (BTA) 25:21.25–21.35  Mb containing three 
genes (NDUFAB1, PALB2, and DCTN5) that showed a 
significantly high FST value, low Tajima’s D, high indicine 
ancestry, and long haplotype pattern in Sanjiang cattle 
(Fig.  3A-D). The haplotypes of the three genes (NDU-
FAB1, PALB2, and DCTN5) in Sanjiang cattle originated 
from Chinese indicine (Fig. 3E). Japanese black cattle are 
classic East Asian cattle. Transcriptome analysis of the 

lung tissues of Japanese black cattle and Sanjiang cattle 
could shed light on how the genes retained by the indic-
ien ancestors are expressed in different environments. 
The results showed that these genes were differentially 
expressed in the lung tissues of Japanese black cattle and 
Sanjiang cattle (Fig. 3F-H), further illustrating their con-
tribution to the evolution of Sanjiang cattle. Of these, 
27 Sanjiang cattle high-frequency derived alleles were 
detected (minor allele frequency (MAF) > 0.7), most 
of which were high frequencies in the indicine cattle 

Fig. 3 Example of candidate selective loci on Bos taurus autosome (BTA) 25 with an excess of indicine ancestry. A Pairwise FST values for each 
5-kb window with a 2-kb step around the candidate loci (BTA25: 21.15–21.40 Mb). The red line indicates the pairwise FST values between Sanjiang 
and Hanwoo cattle. The black line indicates the pairwise FST values between Sanjiang and the Chinese indicine cattle. B Tajima’s D in each 
nonoverlapping 2-kb window around the candidate loci (BTA25: 21.15–21.40 Mb). C Average indicine ancestry (%) around the candidate loci 
(BTA25: 21.15–21.40 Mb). D SNPs were used to construct haplotype patterns. The major allele at each SNP position in Sanjiang cattle is colored 
orange, and the minor allele is colored blue. E The haplotypes of the relationships among Sanjiang cattle, Chinese indicine, Indian indicine, East 
Asian taurine, and European taurine cattle around the candidate loci (BTA25: 21.15–21.40 Mb). F–H Comparison of transcripts per million (TPM) 
in lung tissue of Japanese black cattle and Sanjiang cattle. I Twenty-seven missense SNPs with high frequency alleles present in Sanjiang cattle 
(> 70%) with an excess of indicine ancestry but low frequency of taurine ancestry (MAF < 0.2)
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but with a low frequency in taurine cattle  (MAF < 0.2) 
(Fig. 3I and Table S13).

For taurine ancestry, we used Chinese indicine cattle as 
a reference group to detect selection signatures with an 
excess of taurine ancestry in Sanjiang cattle (Fig. 4A-H). 
A total of 303 candidate regions under selection contain-
ing 324 genes were detected (Tables S8, S9, S14 and S15). 
These candidate genes were significantly overrepresented 
(P value < 0.05) in fatty acid degradation, the NF-kappa 
B signaling pathway and the MAPK signaling pathway 
(Table S16). More specifically, we also found that the 

95 genes of 80 regions were retained from the exces-
sive segments of East Asian taurine ancestry  (Table S5). 
Among the excessive segments, many genes associated 
with shaping particular characteristics of the populations 
are present within these regions. CNTFR, ADAMTS9, 
SIGMAR1, TSEN2, ADRB1, SLC35F3, EPRS, CCL21, 
LPIN3, and PPARG  were found to be potentially associ-
ated with lipid metabolism and meat quality, and LEKR1, 
LMBR1, and FANCA were found to be potentially associ-
ated with growth traits. For example, we found that the 
regions of the CNTFR and ADAMTS9 genes in Sanjiang 

Fig. 4 Examples of candidate selective regions with excess taurine ancestry. A, B Pairwise FST values for each 5-kb window with a 2-kb step 
around the candidate regions. The red line indicates the pairwise FST values between the Sanjiang and Chinese indicine cattle. The black line 
indicates the pairwise FST values between Sanjiang and Hanwoo cattle. C, D Tajima’s D in each nonoverlapping 2-kb window around the candidate 
regions. E, F Average taurine ancestry (%) around the candidate regions. G, H SNPs with MAF > 0.05 were used to construct haplotype patterns. 
The major allele at each SNP position in Sanjiang cattle is colored orange, and the minor allele is colored blue. I Haplotypes of the relationships 
among Sanjiang cattle, East Asian taurine, European taurine, Chinese indicine, and Indian indicine cattle on the CNTFR gene. J Distribution of reads 
mapped to the CNTFR gene. K Haplotypes of the relationships among Sanjiang cattle, East Asian taurine, European taurine, Chinese indicine, 
and Indian indicine cattle on the ADAMTS9 gene. L Distribution of reads mapped to the ADAMTS9 gene
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cattle showed a significantly high FST value, low Tajima’s 
D value, and high taurine ancestry (Fig. 4A-F). The hap-
lotypes of the CNTFR and ADAMTS9 genes in Sanji-
ang cattle originated from East Asian taurine  ancestry 
(Fig. 4G-I, and K). Transcriptome analysis of the muscle 
tissue of Longlin cattle, a type Chinese indicine breed, 
and Sanjiang cattle will help further identify the functions 
of genes derived from the taurine ancestor. The results 
showed that the genes were differentially expressed in 
the muscle tissues of Longlin cattle and Sanjiang cattle 
(Fig.  4J and L), further illustrating their contribution to 
the evolution of Sanjiang cattle.

Discussion
Autosomal genome-wide analyses show that cattle breeds 
in hybrid regions of China contain different backgrounds 
with different levels of genetic contributions across pop-
ulations, and selection played a role in shaping the tau-
rine × indicine admixture proportion in hybrid cattle 
(Zhang et al. 2018). In this study, we first highlighted the 
taurine × indicine admixture characteristics of Sanjiang 
cattle. We also dated the main taurine × indicine admix-
ture event, which has shaped today’s genome of Sanjiang 
cattle. In addition, we combined ancestry analysis and 
selective scanning to determine whether Sanjiang cattle 
inherited adaptive advantages of ancestral populations 
under selection pressure. As expected, a series of can-
didate regions were identified in Sanjiang cattle, includ-
ing genes related to meat quality from taurine cattle and 
immune-response- and heat-tolerance-related genes 
in haplotypes of indicine origins. These genomic frag-
ments contributed to the formation of the Sanjiang cattle 
genome. However, some individuals contain components 
of European taurine  cattle and Indian indicine  cattle, 
which are inseparable from the blind introduction of 
local people, which will seriously lead to the loss of local 
cattle characteristics.

The eastward migration of taurine cattle from the 
domestic center, West Asia, reached the northern part 
of China between 5,000 and 4,000 years ago. Three thou-
sand years ago, indicine cattle migrated to China. This 
has led to the emergence of hybrid breeds. Hybridization 
of taurine and indicine cattle improves economic traits 
and adaptation in taurine–indicine transition zones. Our 
results presented two main types of ancestry of Sanjiang 
cattle with Chinese indicine (56%) and East Asian tau-
rine (33%) ancestries. The nucleotide diversity of Sanjiang 
cattle is lower only than that of Chinese indicine, which 
reflects that the cross between taurine and indicine cattle 
is the main contributor to the increasing genomic diver-
sity of Sanjiang populations. The analysis of the number 
of SNPs and LD decay positioned Sanjiang cattle between 

the B. taurus and B. indicus, showing generally consistent 
results of nucleotide diversity. In addition, Sanjiang cat-
tle exhibit larger amounts of short/medium ROH in com-
parison to other breeds analyzed in this study. We also 
identified admixture in Sanjiang cattle as a more recent 
event approximately 30 generations ago, which showed 
that Sanjiang cattle are a recent breed and indicate that 
the higher breeding potential of Sanjiang cattle remains 
to be exploited. Our results now provide a time-scale ref-
erence for recent admixture events in native cattle.

Admixture between populations provides an opportu-
nity to study biological adaptation and phenotypic vari-
ation. Admixture studies rely on local ancestry inference 
for hybrid individuals. In our study, we applied LOTER 
to infer local ancestry combined with selection analysis 
to obtain the ancestry of selection signatures in Sanji-
ang cattle. These excessive fragments annotated genes 
involved in important biological processes, such as 
immune regulation, stress reaction, and lipid metabolism, 
which may reflect adaptation to the local environment 
and artificial breeding during the formation of Sanjiang 
cattle, providing more accessible genomic information 
for local ancestral inference about admixture processes.

Sanjiang cattle are an excellent indigenous breed for 
both labor and meat, which was historically important 
to local beef production in Sichuan and still exhibits bet-
ter meat quality today. Among excessive segments inher-
ited from East Asian taurine, some genes associated with 
lipid metabolism and skeletal muscle development were 
also under positive selection, such as SIGMAR1, CCL21, 
PPARG , ADAMTS9, and CNTFR. SIGMAR1 is a ubiqui-
tously expressed multifunctional interorganelle signal-
ing chaperone protein that plays a diverse role in cellular 
survival, including lipid metabolism, which regulates the 
compartmentalization of ER-synthesized neutral lipids 
(triglycerides and cholesteryl esters) (Aishwarya et  al. 
2022; Yang et  al. 2020). CCL21 is considered an adi-
pokine (Namya et al. 2019) associated with fat expansion 
and metabolic parameters in juvenile rats (Lizarraga-
Mollinedo et al. 2022). PPARG  plays a significant role in 
lipid metabolism, adipocyte differentiation and fatty acid 
storage (Argmann et  al. 2005; Auwerx 1999). Report-
edly, PPARG  affects not only backfat thickness but also 
meat quality by affecting fat content and composition in 
cattle (Fan et  al. 2011; Goszczynski et  al. 2016; Sevane 
et  al. 2013). In addition, ADAMTS9 can regulate insu-
lin sensitivity and the levels of mitochondrial complexes 
in skeletal muscles (Graae et  al. 2019), which is a func-
tional molecular marker for improving growth traits in 
goats (Jungers et  al. 2005; Tang et  al. 2019). CNTFR is 
expressed in skeletal muscle, with upregulated expression 
in response to muscle damage and hindlimb unweighting, 



Page 8 of 13Lyu et al. Stress Biology            (2023) 3:30 

and negatively regulates fat deposition in rats (Guillet 
et  al. 1998; Kami et  al. 2000; Weis et  al. 1998). In addi-
tion, CNTFR is associated with the average daily gain 
and feed efficiency in beef cattle (Abo-Ismail et al. 2018; 
Serão et al. 2013). These results implied that the ancestral 
segments inherited from East Asian taurine cattle could 
contribute to meat quality traits of Sanjiang cattle.

Compared to commercial northern breeds, indigenous 
cattle, such as Sanjiang cattle, exhibit genetic advantages 
in terms of disease resistance, heat tolerance, and adap-
tation to local environmental conditions. In addition to 
selection pressures for meat quality traits, Sanjiang cattle 
had to cope with hot and humid weather, which is why 
they are assumed to have developed thermotolerance and 
robustness. Regarding the immune response to infections 
and reproduction, heat tolerance is one of the main indi-
cators of adaptability to harsh environments. Generally, 
indicine cattle have stronger adaptability and resistance 
than taurine cattle to heat, parasites, and infectious dis-
eases (Fernandes Júnior et al. 2020). Indicine cattle found 
across southern China have been better adapted to local 
environments. These adaptations would have facilitated 
indicine introgression into central taurine populations 
and the dispersion of crossbred animals. Ancestry frag-
ments of Chinese indicine origin may reflect adaptive 
functions. As in our results, a set of important genes 
associated with the immune response and stress reac-
tion were putatively positively selected. For example, the 
PALB2 tumor suppressor plays key roles in DNA repair 
and has been implicated in redox homeostasis, thereby 
promoting antioxidant gene expression (Guo et  al. 
2015; Xia et al. 2006). Another gene, DCTN5, may have 
immune-related functions in sheep (Habermann et  al. 
2001; Salavati et  al. 2019). Fc receptor–like (FcRL) pro-
teins are an ancient multigene family of transmembrane 
proteins that share ancestors with classic FcRs and are 
preferentially expressed in the B-cell lineage (Davis 2007). 
The FCRL4 and FCRL5 genes are involved in immune 
responses (Cancro and Tomayko 2021; Kim et al. 2019). 
Long-term exposure to hot and humid environments 
will increase the animal’s respiratory rate and metabo-
lism, affecting the development of the heart and lungs. 
Among excessive segments inherited from Chinese indi-
cine cattle, three genes related to adaptation to hot and 
humid environments were annotated. For example, the 
ECE2 gene, as a potential candidate autoantigen (Smith-
Anttila et al. 2017), is known to act in human brain and 
heart development, along with other processes crucial 
to cattle embryonic development (Heather et  al. 2011; 
Yanagisawa et al. 2000). NDUFAB1, known as mitochon-
drial acyl carrier protein, acts as a powerful cardio-pro-
tector by conferring greater capacity and efficiency of 

mitochondrial energy metabolism in response to stressful 
conditions (Hou et al. 2018). NOD1 is widely expressed in 
the heart and lung and is an important mediator of endo-
plasmic reticulum-induced inflammation in mouse and 
human cells (Berrington et  al. 2010; Keestra-Gounder 
et  al. 2016), acting during heat stress in cattle (Bhanu-
prakash et al. 2017). As discussed previously, these genes 
act on immune system activation and hot adaptation in 
response to environmental stress and are important can-
didate genes that affect tropical adaptation. Therefore, we 
concluded that redundant segments from Chinese indi-
cine could contribute to heat and humidity adaptation in 
Sanjiang cattle.

Conclusions
By analyzing the whole-genome data of Sanjiang cattle, 
we generally understood the genetic diversity of Sanji-
ang cattle and multidimensionally explored the popula-
tion structure of Sanjiang cattle. In addition, we found 
the mosaic genome of indigenous Chinese cattle to be a 
unique genetic resource related to important economic 
traits and climatic adaptation traits within Sanjiang cat-
tle. Importantly, animal adaptation to the tropics is 
directly related to the ability to survive and grow in the 
presence of local environmental stressors. Therefore, our 
results will provide new information to understand the 
complex history of breed formation of indigenous Chi-
nese cattle and provide a basis for genetic breeding and 
resource protection in Sanjiang cattle.

Methods
Samples and sequencing
We collected ear tissue samples from 10 Sanjiang cat-
tle (Table S1) and used a standard phenol–chloroform 
method to extract the genomic DNA (Reid 1991). Paired-
end libraries with an average insert size of 350  bp were 
built for each individual, with an average read length of 
150  bp. WGS was performed using Illumina NovaSeq 
instruments at Novogene Bioinformatics Institute, Bei-
jing, China. To explore possible ancestral components 
and further understand the genetic diversity of Sanjiang 
cattle, according to the report of Chen et  al. (2018), 70 
samples from five continental groups worldwide were 
added as control groups, including European taurine 
(Angus and Simmental cattle), East Asian taurine (Han-
woo and Tibetan cattle), Indian indicine (Brahman, Gir, 
Hariana, Nelore, Sahiwal, and Tharparkar cattle) and 
Chinese indicine (Wenshan, Wannan, Guangfeng, Ji’an, 
and Jinjiang cattle) (Table S1). Finally, a total of 80 sam-
ples were used in this study.
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Read mapping and SNP calling
BWA-MEM (v0.7.13-r1126) (Li and Durbin 2009) was 
used to align the clean reads to the B. taurus reference 
assembly ARS-UCD1.2 with default parameters. Picard 
tools (http:// broad insti tute. github. io/ picard) were used 
to identify and filter duplicate reads (REMOVE_DUPLI-
CATES = true). Genome Analysis Toolkit 3.8 (GATK) 
(Nekrutenko and Taylor 2012) was used to detect SNPs. 
The “BaseRecalibrator” module of GATK was used for 
base quality score recalibration. The modules “Haplo-
typeCaller”, “GenotypeGVCFs” and “SelectVariants” of 
GATK were used to call the raw SNPs. Moreover, “Var-
iantFiltration” was used to filter the raw SNPs based 
on the hard filtering parameters “QD < 2.0, FS > 60.0, 
MQ < 40.0, MQRankSum < -12.5, ReadPosRankSum < -8.0 
and SOR > 3.0” and the mean sequencing depth of vari-
ants (all individuals) “ < 1/3 × and > 3 × ”. Afterward, a 
transcript FASTA file for the database was built using 
the retrieve_seq_from_fasta.pl module of ANNOVAR 
based on the annotation file (GCF_002263795.1_ARS-
UCD1.2_genomic.gff) of the B. taurus reference genome. 
Functional annotation for each SNP was performed using 
ANNOWAR (Wang et al. 2010).

Detection of genetic diversity
VCFtools (Danecek et  al. 2011) was used to estimate 
the nucleotide diversity (θπ) of each breed, keeping a 
window size of 50 kb and a step size of 20 kb. PopLD-
decay software (Zhang et  al. 2019) was used to calcu-
late and visualize the LD decay with physical distance 
between SNPs, and the same number of individuals 
were randomly selected for each breed/population 
using a Python script. ROHs were identified using the 
“–homozyg” option in PLINK (Purcell et al. 2007). The 
parameters were as follows: (1) –homozyg-window-snp 
100; (2) –homozyg-density 200; (3) –homozyg-window-
het 1; (4) –homozyg-kb 100; (5) –homozyg-window-
threshold 0.05.

Population structure and phylogenetic analysis
PLINK (Purcell et al. 2007) was used to prune the SNPs 
in high levels of pairwise LD with the parameter (–indep-
pairwise 50 5 0.2) for PCA and ADMIXTURE analysis 
(Chen et  al. 2020). Relatedness among each individual 
of Sanjiang cattle was calculated using the kinship coef-
ficient estimator implemented in KING (Manichaikul 
et  al. 2010). We used smartPCA of the EIGENSOFT 
v5.0 package to estimate the eigenvectors for PCA (Shen 
et al. 2021). Population structure analysis was performed 
by ADMIXTURE v1.3 (Alexander & Lange 2011) with 
the kinship (K) parameter set from 2 to 4. For phyloge-
netic analysis, we used PLINK to calculate the matrix of 

Hamming distances between pairs of individuals, MEGA 
v10.0 (Kumar et  al. 2018) to construct the NJ tree and 
iTOL (Letunic & Bork 2019) for visualization.

Local ancestry inference
Beagle v4.1 (Browning and Browning 2007) was used to 
conduct haplotype-phase inference and missing allele 
imputation with default parameters. The time of admix-
ture of Sanjiang cattle was estimated by ALDER (Loh 
et  al. 2013) and fastGLOBETROTTER (Wangkumhang 
et al. 2022) using the default parameters. LOTER (Dias-
Alves et  al. 2018) was used to infer taurine  and indi-
cine ancestry along the genomes of Sanjiang cattle. We 
selected Chinese indicine, East Asian taurine, European 
taurine, and Indian indicine groups  as reference panels 
based on the population structure. Then, the length and 
frequency of ancestral segments in each reference group 
were calculated. To detect a high proportion of frag-
ments with an ancestry, the ancestry-specific haplotypes 
for each fragment were compared to the total number 
of ancestry-specific haplotypes for all fragments, with 
regions of significance having a P value < 0.01 (Z test). 
The ideogram package (Hao et al. 2020) in R was used to 
draw chromosome maps to visualize excessive segments 
of Chinese indicine and East Asian taurine cattle  based 
on the B. taurus reference genome. Functional enrich-
ment analysis was performed on the list of genes within 
the detected excessive segments by KOBAS v3.0 (http:// 
kobas. cbi. pku. edu. cn/) (Bu et al. 2021).

Selective sweep identification
We detected the selection signatures within Sanjiang 
cattle by calculating two different statistics, the CLR 
(Nielsen et al. 2005) and iHS. Then, the CLR test was car-
ried out by using SweepFinder2 (DeGiorgio et  al. 2016) 
in nonoverlapping 50  kb windows. Genotype files were 
phased and imputed using Beagle (Browning & Browning 
2007), and iHS was calculated using Selscan v2.0 (Szpiech 
and Hernandez 2014) with the same window size used 
for the CLR. We calculated the empirical P values for the 
CLR and iHS windows. The windows whose empirical 
P values were in the top 1% of values for both methods 
were considered candidate regions of selection.

In addition, the fixation index (FST) and large differences 
in genetic diversity (θπ- ratio) were calculated to iden-
tify the potential selection regions between Sanjiang cat-
tle and the reference groups, Hanwoo cattle and Chinese 
indicine cattle. We estimated the genome-wide distribu-
tion of FST values using VCFtools (Danecek et al. 2011) in 
50  kb windows with a 20  kb step size to investigate pair-
wise genetic differentiation. The θπ-ratio was calculated 

http://broadinstitute.github.io/picard
http://kobas.cbi.pku.edu.cn/
http://kobas.cbi.pku.edu.cn/
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as ln(π Sanjiang) − ln(π Reference), where πSanjiang and 
πReference are the nucleotide diversity values for the San-
jiang cattle and reference groups, respectively. The θπ-ratio 
was calculated in the same parameters as FST. Significant 
genomic regions were identified by a P value < 0.01. The 
genomic regions identified by at least two methods were 
considered candidates for positive selection. Tajima’s D 
was calculated through VCFtools for each candidate gene. 
KEGG pathways and GO terms were analyzed using 
KOBAS v3.0 (http:// kobas. cbi. pku. edu. cn/) (Bu et al. 2021) 
to better understand the gene functions. When the cor-
rected P value was less than 0.05, the results were consid-
ered significantly enriched.

RNA‑Seq and differentially expressed gene analysis
To further confirm the candidate genes under positive 
selection in Sanjiang cattle, we downloaded transcrip-
tomic data of lung and muscle in adult Sanjiang cattle 
from NCBI (PRJNA512958) and extracted total RNA 
from lung of three Longlin cattle (Chinese indicine cattle) 
for sequencing using Illumina HiSeq X Ten system to gen-
erate 150 bp paired-end reads. We used HISAT2.1.0 (Kim 
et al. 2015) and StringTie (Pertea et al. 2015)  software to 
map and assemble the reads based on the taurine refer-
ence genome assembly (ARS-UCD1.2). The differentially 
expressed genes (DEGs) of the lung were compared in 
transcripts per kilobase million (TPM) between Sanjiang 
and Japanese black cattle (East Asian taurine cattle). Data 
for Japanese black cattle were obtained from the Wagyu 
Genome Database (WGDB; https:// wagyu. hgc. jp/ open/ 
downl oad/ rnaseq/). In addition, a Python script was uti-
lized to convert the StringTie result into DEseq2 (Love 
et al. 2014). Finally, DEGs of muscle between Sanjiang and 
Longlin cattle were analyzed by the DEseq2 package in 
R. The adjusted P value < 0.01 and |log2(Fold Change)|> 1 
were used as the cutoff value to determine the DEGs.
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