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Electrophysiology and fluorescence 
to investigate cation channels and transporters 
in isolated plant vacuoles
Antonella Gradogna1 and Armando Carpaneto1,2*   

Abstract 

The plant vacuole plays a fundamental role in cell homeostasis. The successful application of patch-clamp tech-
nique on isolated vacuoles allows the determination of the functional characteristics of tonoplast ion channels and 
transporters. The parallel use of a sensor-based fluorescence approach capable of detecting changes in calcium 
and proton concentrations opens up new possibilities for investigation. In excised patch, the presence of fura-2 in 
the vacuolar solution reveals the direct permeation of calcium in plant TPC channels. In whole-vacuole, the activity 
of non-electrogenic NHX potassium proton antiporters can be measured by using the proton sensitive dye BCECF 
loaded in the vacuolar lumen by the patch pipette. Both vacuolar NHXs and CLCa (chloride/nitrate antiporter) are 
inhibited by the phosphoinositide PI(3,5)P2, suggesting a coordinated role of these proteins in salt accumulation. 
Increased knowledge in the molecular mechanisms of vacuolar ion channels and transporters has the potential to 
improve our understanding on how plants cope with a rapidly changing environment.
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Introduction
The vacuole is a peculiar compartment of plant cells, 
which in mature cells can occupy up to 90% of the cell 
volume, Fig.  1a. Despite it was originally considered to 
be the cell’s trash, we now know that it is a very versa-
tile organelle (Eisenach et al. 2015). For example, a fun-
damental function of the vacuole is the storage of ions 
and molecules that can be mobilized in case of metabolic 
needs, when the plant is subjected to biotic or abiotic 
stress. The vacuole can be easily isolated from the cell in 
essentially two ways: mechanical excision and enzymatic 
treatment.

When a razor blade cuts a homogeneous tissue of the 
plant in thin slices, vacuoles are directly extruded to the 

recording chamber. This procedure was successfully 
applied to various plants and tissues, from sugar beet 
(Carpaneto et al. 1999b) and radish (Gambale et al. 1993) 
taproots to roots from the sweet-water pond plant Eich-
hornia crassipes (Paganetto et  al. 2001) and leaves from 
the Mediterranean seagrass Posidonia oceanica (Car-
paneto et al. 1997). In alternative, the cell wall surrounding 
the plant cell can be digested by treatment with specific 
enzymes such as cellulase, pectolyase and macerozyme. 
The experimental protocol, which was applied practically 
to all plant tissues, see Bregante et al. (1997) as an example 
of protoplast isolation from the root cortical tissue of Zea 
mays, and even to suspension-cultured cells (Costa et al. 
2004), needs to be adapted to the selected plant prepa-
ration. The time needed for enzymatic treatment ranges 
from less than 1 h, as in the case of Arabidopsis thaliana 
mesophyll cells, up to more than 4 h for Posidonia ocean-
ica leaves (Carpaneto et al. 2004). Exposing protoplasts to 
an ionic solution containing the calcium buffer ethylene 
glycol-bis(2- aminoethylether)-N,N,N′,N′-tetraacetic acid 
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(EGTA) and having a reduced osmotic pressure usually 
induces a rupture of the plasma membrane and a conse-
quent release of the internal vacuole. We found that the 
following Vacuole Release Solution containing (in mM): 
100 malic acid, 155 Bis-tris-Propane (BTP), 5 EGTA, 3 
 MgCl2, 200 D-sorbitol, pH 7.33, is particularly effective in 
releasing vacuoles from protoplasts of Arabidopsis meso-
phyll cells, Fig. 1b (Costa et al. 2012); by filling a perfusion 
pipette with VRS and placing it in front of a intact pro-
toplast, it is possible to release a single vacuole at a time 
(Hedrich 1995).

The patch‑clamp technique applied on isolated 
vacuoles
Vacuoles isolated both mechanically and by enzymatic 
treatment (see above) are an excellent preparation for 
the application of the patch-clamp technique. The most 

used configuration is whole-vacuole, Fig. 2. After placing 
a glass pipette with a diameter of a few micrometers on 
the tonoplast and applying a light suction, a strong con-
tact is obtained between the tip of the pipette and the 
vacuolar membrane, with an electrical resistance which 
can exceed 5 GigaOhm. By simultaneously sucking and 
applying a fast (700–900 μs) high-voltage pulse (700–
900 mV), the membrane subtended by the pipette can be 
broken: the solution inside the pipette perfuses inside the 
vacuolar lumen and, vice versa, the luminal solution is 
diluted inside the patch pipette. The washing of the vacu-
olar lumen depends on various parameters (Pusch and 
Neher 1988) such as access resistance (linked to the size 
and shape of the pipette), volume of the vacuole (which 
can be deduced from the measurement of the membrane 
capacity, proportional to the vacuolar surface), size of the 
molecules involved. Generally, the ions are able to diffuse 
inside/outside the vacuole in less than a minute.

It is interesting to observe that the cytosolic side of 
the vacuole faces the outside (or the bath solution), a 
reversed situation compared to what happens for a pro-
toplast or an animal cell. To avoid confusion, the follow-
ing convention has been adopted for endomembrane 
recordings (Bertl et al. 1992): the voltage is  Vcyt -Vlumen; 
positive currents correspond to the movement of posi-
tive charges from the cytosol to the vacuolar lumen (or 
to anions moving in the opposite direction). Therefore, 
from the electrical point of view, the outside of a cell is 
equivalent to the inside of the vacuole (and is grounded). 
Since the vacuoles do not adhere firmly to the bottom of 
the recording chamber, a perfusion system is required 
that combines efficiency in the change of solutions with 
great mechanical stability (Festa et  al. 2016). Gener-
ally, by optimizing the recording chamber, by means of a 

Fig. 1 The plant vacuole can occupy most of the intracellular 
volume and is easy to isolate. a Confocal images showing an 
Arabidopsis thaliana mesophyll protoplast transiently expressing a 
tonoplast-localized AtTPC1-EGFP fusion protein (left, green signal) 
and stained with the plasma membrane marker FM4–64 (middle, red 
signal). The right panel displays merged signals. Scale bar 7 μm (see 
Supplemental material of Picco et al. 2015 for experimental details). 
b Protoplasts from Arabidopsis mesophyll cells were obtained by 
enzymatic treatment with cellulase and pectolyase (Scholz-Starke 
et al. 2006). Upon application of the vacuole release solution VRS (see 
text) they burst and release the vacuoles. Scale bar 10 μm

Fig. 2 Cartoon of the patch-clamp technique applied on plant 
vacuoles. The patch clamp technique is applied in the whole-vacuole 
(cytosolic side-out) configuration. Positive currents correspond to the 
movement of cations from the cytosolic to the luminal side of the 
vacuole (or to the opposite movement of anions)



Page 3 of 10Gradogna and Carpaneto  Stress Biology            (2022) 2:42  

gravity-driven system and using a peristaltic pump that 
withdraws the excess solution, it is possible to change 
the bath solution in about a minute and therefore study 
in detail the cytosolic factors capable of modulating the 
numerous channels or plant transporters present on the 
vacuolar membrane (Martinoia 2018).

It is also worth noting that the plant vacuole can be 
used to study the properties of toxins produced by plant 
pathogens (Carpaneto et  al. 2002) or as a heterologous 
system for the study of lysosomal animal channels and 
transporters including human TPC channels (Festa et al. 
2022), which share the same inhibitors (Benkerrou et al. 
2019; Filippini et  al. 2020) but not the same agonists 
(Boccaccio et al. 2014; Kirsch et al. 2018) with the plant 
homolog.

Concerning channels and transporters of the plasma 
membrane, in addition to the use of cell cultures, whose 
endogenous channels need to be studied (Carpaneto et al. 
1999a), the heterologous system of reference for carrying 
out structure-function correlation studies is represented 
by Xenopus oocytes (Porée et  al. 2005; Carpaneto et  al. 
2010; Derrer et  al. 2013). Plant channels of the plasma 
membrane have also been successfully expressed in 
tobacco cells (Bregante et al. 2008).

Potassium and calcium permeation in plant TPC 
channels
From the whole vacuole configuration, by pulling 
the pipette it is possible to obtain the so-called cyto-
solic side-out excised patch configuration. In this con-
figuration, only a small portion of the membrane is 
held by the pipette. If the density/conductance of the 
ion channels under investigation is sufficiently high, 
macroscopic currents can also be recorded in this 
mechanically more stable recording mode (Carpaneto 
and Gradogna 2018). In Fig.  3a the black trace corre-
sponds to a current recorded in the presence of 2 mM 
cytosolic calcium, nanomolar concentrations of vacu-
olar  Ca2+ and symmetrical concentrations of potassium 
(105 mM). A voltage pulse of + 80 mV, from a holding 
voltage of − 90 mV, activates the current, which reaches 
a steady state in about 100 ms. By applying a tail voltage 
of − 50 mV the current decays exponentially. If cyto-
solic calcium is decreased to 0.5 mM, current is only 
slightly affected, with a slowing down of both activation 
and deactivation time. However, the I-V relationship 
shifts of more than + 80 mV, Fig. 3b. The ion channels 
that mediate this type of currents have been named SV, 
namely Slow Vacuolar channels for their slow time of 
activation (Hedrich et al. 2018). It has been found that 
they are encoded by the tpc gene (Peiter et al. 2005). In 
addition to cytosolic calcium, these channels are modu-
lated by many parameters such as magnesium (Pei et al. 

1999; Carpaneto et  al. 2001), redox agents (Scholz-
Starke et  al. 2005) and polyunsaturated fatty acids 
(Gutla et al. 2012).

Since the physiological voltage of the vacuole ranges 
from − 30  to 0 mV (Hedrich 2012), from Fig. 3b it can 
be deduced that plant TPC channels are closed under 
physiological conditions. The factor that can move 
the channel activation curve towards more negative 
physiological voltages (Pottosin et  al. 1997) is not yet 
known, despite new insights gained from the recent 
cryoEM structures of the plant TPC1 channel (Ye et al. 
2021; Dickinson et al. 2022).

Currents of Fig. 3 are essentially due to the movement 
of potassium (Hedrich and Neher 1987). If the calcium 
sensitive dye fura-2 is added to the pipette solution, 
application of positive voltages induces fluorescence 
changes that are compatible with the movement of cal-
cium from the cytosol to the vacuolar lumen, Fig. 3c left 
panel. These signals are completely absent if the experi-
ments are carried out on vacuoles from Arabidopsis 
mutants lacking the endogenous TPC (Gradogna et  al. 
2009). These recordings therefore represents a direct 
demonstration of the calcium permeability of the plant 
TPC, validated by recent structure-function studies 
(Guo et al. 2017); however, the issue of calcium permea-
tion in plant TPC channels under physiological condi-
tions is still controversial (Navarro-Retamal et al. 2021). 
When cytosolic calcium is lowered, fluorescence signals 
are significantly reduced, Fig.  3c left panel. It should 
be noted that at high positive voltages no significant 
variation of the currents was noticeable upon cyto-
solic calcium reduction (Fig.  3a). The effects are com-
pletely reversible, right panel of Fig.  3c (recovery). By 
performing an appropriate calibration (Gradogna et al. 
2009; Carpaneto and Gradogna 2018), it was possible 
to estimate the relative contribution to the TPC cur-
rent of calcium and potassium; from voltages between 
+ 60 and + 80 mV the ratio between the total current 
and the calcium current increased from about 10 at 
 Ca2+ = 2 mM to about 20 at  Ca2+ = 0.5 mM (Carpaneto 
and Gradogna 2018). The use of a different approach, 
namely the MIFE technique, yielded similar results as 
demonstrated by Pérez et  al. (2008), see Pottosin and 
Dobrovinskaya (2022) for a comprehensive review on 
plant TPC channels.

When cytosolic potassium is removed, the effect on 
the currents elicited by positive voltages is dramatic as 
shown in Fig. 4a. At negative voltage, on the other hand, 
changes are not significant, Fig.  4b, an indication that 
cytosolic potassium does not modify the voltage depend-
ence of the channel. Interestingly, at positive voltages, 
the removal of potassium has a negligible effect on the 
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permeation of calcium as it is evident from the fluores-
cence signals presented in the left panel of Fig. 4c.

Overall, these experiments indicate that the fluores-
cence approach combined with the classic electrophysi-
ological recordings allows a more accurate functional 
characterization of the channel.

A novel approach for investigating the activity 
of NHX transporters
The left panel of Fig. 5a shows a vacuole, isolated from 
the mesophyll of Arabidopsis, together with a patch 
pipette, visible on the right, resting on the tonoplast 
membrane. The pipette ionic solution contains the pro-
ton sensitive dye 2′,7′-Bis(2-carboxyethyl)-5(6)-carbox-
yfluorescein (BCECF) at a concentration of 10 μM. The 
whole-vacuole configuration allows the fluorophore to 
enter the vacuolar lumen as observed in the image of 

Fig. 3 Plant TPC channels are modulated by cytosolic calcium. a Current recordings of carrot TPC channels in the presence of 2 mM (black trace) 
and 0.5 mM (green trace) cytosolic calcium. Main voltage pulse of + 80 mV; holding voltage was − 80 mV. b Stationary currents in 2 mM (black open 
circles) and 0.5 mM (green solid circles) cytosolic calcium were normalized to the value at + 80 mV in 2 mM  Ca2+ and displayed versus voltage. 
Voltage pulses were ranging from − 100 mV to + 100 mV in 10 mV increments. c Patch pipette was filled with 100 μM of the calcium-sensitive dye 
fura-2. Fluorescence signals (upper panel) were induced by excitation light at 380 nm (red trace) and 340 nm (blue trace), respectively. The lower 
panel displayed 10 s voltage pulses of 0, + 20, + 40, + 60, + 80 mV, which were applied starting in 2 mM  Ca2+ (control, left panel), at low calcium 
 (Ca2+ 0.5 mM, middle panel), and again in 2 mM  Ca2+ (recovery, left panel). Modification of Figs. 1 and 2, from Carpaneto and Gradogna (2018), 
Biophysical Chemistry, 236:1–7, reprinted by permission from Elsevier (license number 5333730921940)
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Fig. 5a right panel, obtained by collecting emission light 
at 515 nm after having excited the same vacuole in the 
left panel with light at 490 nm. The loading characteris-
tic of the fluorophore is shown in Fig. 5b. The signals at 
excitation light respectively of 440 and 490 nm increase 
after t=0 s, the time in which the break-in occurred, i.e. 
the piece of membrane subtended by the pipette after 
the seal is broken in order to reach the whole-vacuole 

configuration. In this experiment, about 20 minutes 
have elapsed before the ratio between the two wave-
lengths is stable, bottom panel of Fig. 5b. In general, the 
loading phase can last from 10 to 30 minutes depending 
on the size of the vacuole and the access resistance of 
the pipette. The access resistance in turn depends on 
the size and shape of the tip, the concentration of salts 

Fig. 4 Removal of cytosolic potassium strongly reduced TPC currents but did not change calcium permeation. a Currents of carrot TPC channels 
recorded in control condition  (Ca2+ = 2 mM –  K+ = 105 mM, black trace) and in the absence of cytosolic  K+  (Ca2+ = 2 mM – no  K+, violet trace). 
Main voltage pulse of + 80 mV lasting 100 ms. Holding and tail voltage of − 80 mV. b Stationary currents (normalized to the value at + 80 mV in 
control) in the presence (open black circles) and absence of cytosolic potassium (solid violet circles) were plotted versus applied voltage. c In the 
upper panel, fura-2 signals did not change significantly in control condition  (Ca2+ = 2 mM –  K+ = 105 mM, left panel) and upon removal of cytosolic 
potassium  (Ca2+ = 2 mM – no  K+, right panel). The lower panel displays the applied voltage (10 s voltage pulses from 0 mV to + 80 mV, in 20 mV 
steps, from a holding potential of − 80 mV). Modification of Figs. 4 and 5, from Carpaneto and Gradogna (2018), Biophysical Chemistry, 236:1–7, 
reprinted by permission from Elsevier (license number 5333730921940)
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in the pipette solution and the quality/stability of the 
break in.

If pyrophosphate is added to the cytosolic bath solu-
tion once the loading phase is complete, currents medi-
ated by vacuolar pyrophosphatase (V-PPiase) can be 
measured, Fig.  6a central panel. The presence of the 
BCECF inside the vacuole allows to detect the corre-
sponding passage of protons from the cytosol to the 
vacuolar lumen as shown in the lower panel of Fig.  6a. 
Changes in both current and vacuolar pH are dependent 
on the concentration of pyrophosphate. These experi-
ments allow us to evaluate the ability of the fluorophore 
to detect changes in protons: in our experimental system 
even very small currents result in particularly significant 
pH changes.

Pyrophosphate is not the only way to vary the pH 
inside the vacuole. If potassium is replaced in the cyto-
solic solution with an equivalent concentration of the 
cesium ion, Fig.  6b top panel, no current variation is 
observed, Fig. 6b central panel. However, BCECF detects 
a very significant increase in proton concentration. This 
increase is completely absent in vacuoles isolated from 
Arabidopsis knockout plants for NHX1/2 transporters 
(Gradogna et  al. 2021). Therefore, this approach is able 
to detect the activity of non-electrogenic transporters 
and to investigate their possible modulators. In Fig.  7a 
the addition of 200 nM phosphatidylinositol-3,5-bispho-
sphate (PI(3,5)P2) to the cytosolic bath solution reversibly 
inhibits NHX transporters. PI(3,5)P2 is a low-abundance 
signaling lipid associated with the tonoplast in plant cell 
and with endo-lysosomal membranes in eukaryotic cells 
(Balla 2013). It is very interesting to note that PI(3,5)P2 
is able to inhibit also another vacuolar transporter, CLCa 
(Carpaneto et al. 2017), as shown schematically in Fig. 7b. 
The vacuolar membrane has two proton pumps, the 
V-ATPase and the V-pyrophosphatase, which generate 

Fig. 5 The loading phase of the vacuole with the proton sensitive 
fluorophore BCECF. a The left panel shows a bright-field image of a 
micropipette placed on an isolated vacuole. Scale bar, 10 μm. The 
whole-vacuole configuration allows the loading of the fluorophore 
inside the vacuolar lumen. In the right panel the fluorescence image 
of the same vacuole was obtained with a 490 nm excitation light and 
detected using a 515-nm bandpass emission filter. The red circle is 
the region of interest (ROI) where fluorescence is evaluated. b After 
establishment of the whole-vacuole configuration it is possible 
to follow the time course of BCECF fluorescence emission signals, 
F490 (excitation at 490 nm, upper panel), F440 (excitation at 440 nm, 
middle panel) and fluorescence ratio (F490/F440 and pH, lower 
panel). Seal and break-in  are obtained in VRS, i.e. the solution able 
to blast the protoplast, which is changed to control bath solution 
after about 250 s. Modification of Fig. S2 and S4, from Gradogna et al. 
(2021), New Phytologist, 229:3026–3036, reprinted by permission 
from John Wiley and Sons (license number 5333730373195)
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a proton motive force with two components. The main 
component is the proton gradient between the cytosol 
and the vacuolar lumen with a concentration of protons 
inside the vacuole that is at least two orders of magnitude 
higher. The secondary component is the tonoplast volt-
age of about − 30 mV, as mentioned, which also favors 
the movement of protons from the inside of the vacuole 
to the outside. The proton motive force generated by the 
pumps is used by the two antiporters, NHX and CLCa, 
to move respectively potassium and anions (nitrate and 
chlorine) towards the vacuolar interior. The combined 

action of the two antiporters therefore tends to increase 
the concentration of salts within the vacuolar lumen. The 
fact that both proteins are inhibited by PI(3,5)P2 defines 
a Salt Accumulation Unit (SAU), whose activity needs 
to be minimized in case of release of salts. In support of 
this hypothesis, in the closing mechanism of the stomata 
the concentration of PI(3,5)P2 increases (Bak et al. 2013) 
and, through the inhibition of NHX and CLCa, favors the 
release of salts and the decrease of cellular turgor.

Fig. 6 Vacuolar acidification revealed by the proton-sensitive fluorescent dye BCECF. a Inorganic pyrophosphate (PPi) is added to the bath solution 
(top panel) at concentrations of 1, 3 and 10 μM (dotted lines indicate that the switching of the bath solution is irrespective to the real change due 
to the perfusion system, see Gradogna et al. 2021 for a discussion about the effects of the perfusion). Middle panel shows the correspondent time 
course of tonoplast membrane current due to vacuolar proton-pumping pyrophosphatase activation. Bis(2-carboxyethyl)-5(6)-carboxyfluorescein 
(BCECF) loaded inside the vacuole through the patch pipette allows the determination of luminal proton concentration changes (bottom panel). b 
Substitution of cytosolic bath solution potassium with an equimolar amount of caesium ions is schematically displayed in the top panel. The middle 
panel shows that there is no change in background current (holding voltage of 0 mV). However a significant acidification of the luminal solution is 
apparent (bottom panel). Modification of Fig. 1, from Gradogna et al. (2021), New Phytologist, 229:3026–3036, reprinted by permission from John 
Wiley and Sons (license number 5333730373195)



Page 8 of 10Gradogna and Carpaneto  Stress Biology            (2022) 2:42 

Conclusions
The application of the patch-clamp technique on iso-
lated vacuoles is very useful for the functional char-
acterization of vacuolar channels and transporters, 
which play a fundamental role in plant physiology. The 
extension of the technique with fluorescence meth-
ods opens up new possibilities such as the study of 
the activity of non-electrogenic transporters. Other 
approaches, based on advanced electrophysiological 
techniques combined with genetically encoded sensors, 
are recently emerging (Dindas et  al. 2021). This will 
increase our knowledge on how plants work and sug-
gest new strategies to improve crop productivity in case 
of biotic and abiotic stress.

Abbreviations
BCECF: 2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein; EGTA : 5 ethylene 
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pane; PI(3,5)P2: Phosphatidylinositol-(3,5)-bisphosphate; V-PPiase: Vacuolar 
pyrophosphatase.
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