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Abstract 

Wheat is one of the most important cereal crops, and it is essential for worldwide food security. However, wheat 
production is threatened by various diseases, including wheat stripe rust caused by the fungus Puccinia striiformis f. 
sp. tritici (Pst). The development of plant resistance against disease is usually challenged by potential reduction in crop 
yield due to the enhancement of plant immunity. In a recent article, Wang et al. found that TaPsIPK1 is a susceptibil‑
ity gene targeted by rust effectors. Editing of TaPsIPK1 increases resistance to stripe rust without any developmental 
effects or yield penalty, providing an exceptional resource for developing disease resistance in wheat.
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This brief article highlights the recent results of Wang 
et  al. (2022), who found that knockout of a susceptibil-
ity gene increases resistance to stripe rust of wheat with-
out yield penalty. Wheat, one of the most important and 
widely cultivated cereal crops, provides approximately 
20% of the dietary calories and protein for humans world-
wide (Shiferaw et  al., 2013). Because the global human 
population is estimated to increase to nearly nine billion 
in 2 to 3 decades, ensuring food security will require an 
annual increase of 2% in wheat production (Rahmatov, 
2013). The limited availability of suitable land means that 
increases in wheat production will require increases in 
yield/ha. Such increases will be difficult to achieve given 
the substantial challenges to wheat production repre-
sented by various diseases, including wheat stripe rust.

Wheat stripe rust, also known as yellow rust, is caused 
by the fungus Puccinia striiformis f. sp. tritici (Pst) and 
severely threatens wheat yield, grain quality, and forage 
value (McIntosh et  al., 1995; Carmona et  al., 2019; Liu 

et al., 2017). Most wheat producing regions in nearly 60 
countries are vulnerable to this disease, which can cause 
5–25% yield losses (Chen 2005; Wellings 2011). In Asia, 
up to 46% yield losses are due to stripe rust epidemics 
(Singh et  al., 2004). Stripe rust caused more than 40% 
losses of China’s total wheat production in the 1950s 
(Chen et  al., 2014), and the four destructive epidemics 
that occurred between 1950 and 2002 caused yield loss 
up to 12.3 million tons (Wan et al., 2007). From 1958 to 
2016, stripe rust caused yield losses of over 31.7 million 
tons in the USA (Chen and Kang, 2017). Therefore, wheat 
stripe rust is a significant constraint for wheat produc-
tion and a threat to global food security.

The most effective way to control rust diseases is by 
planting and breeding durably resistant wheat culti-
vars. Conventional breeding for disease resistant crops 
takes advantage of disease resistance genes (R genes), 
which confer strong resistance when the plant detects 
effector proteins secreted by the pathogen. Substan-
tial research has been carried out to identify and clone 
stripe rust resistance genes, commonly referred to as 
wheat yellow rust resistance genes (Yr). To date, over 80 
Yr genes have been identified (Wu et  al., 2018), among 
which Yr1, Yr9, and Yr26 have made great contributions 
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to the prevention and control of wheat stripe rust (Wan 
et  al., 2007). However, R gene-dependent disease resist-
ance frequently loses effectiveness when pathogen muta-
tions allow the pathogen to evade detection by host plant 
immune receptors. As a result, many of the identified Yr 
genes have become less effective and are no longer used 
in China or elsewhere. Unlike R genes, host susceptibility 
genes (S genes) are exploited by the pathogen to promote 
the infection, and therefore, disruption of host suscepti-
bility by inactivating S genes can result in disease resist-
ance. Hence, mutating S genes has become an emerging 
and powerful approach for breeding durable resistance 
(Pavan et  al., 2010). However, relative to the extensive 
research on wheat R genes, research on wheat S genes 
has been quite limited.

As a typical obligate biotrophic fungus, Pst relies on liv-
ing wheat plants to survive; it absorbs nutrients from host 
cells through haustoria, and releases effectors into host 
cells, which promote disease development by suppressing 
the plant immune system and manipulating host S genes. 
Rather than identifying R genes, a group of researchers from 
Northwest A&F University (Xianyang, Shaanxi, China) has 
been investigating the interaction between wheat and Pst 
with the aim of exploiting key S genes for wheat breeding. 
This group recently identified a novel wheat S gene, TaP-
sIPK1, and reported that the loss of function of TaPsIPK1 
confers broad resistance of wheat to stripe rust (Wang et al., 
2022). TaPsIPK1 is a cytoplasmic receptor-like kinase gene, 
which was first identified among the differentially expressed 
genes during the compatible interaction between wheat 
and Pst; transient silencing of this kinase gene decreased 
wheat susceptibility to Pst. TaPsIPK1 has three homeologs 
in hexaploid bread wheat (TaPsIPK1-6A, TaPsIPK1-6B, and 
TaPsIPK1-6D), all of which are induced upon infection by 
virulent Pst. Their simultaneous silencing by RNA interfer-
ence resulted in increased resistance to Pst. Importantly, 
Wang and colleagues used CRISPR/Cas9 gene editing to 
generate a stable knockout line in wheat that lacks all three 
TaPsIPK1 genes. These triple TaPsIPK1KO mutations con-
ferred resistance to all of the main races of Pst that cause 
epidemics in China, as well as to the leaf rust fungus P. trit-
icina. During the stripe rust pandemics of 2020 and 2021 in 
China, TaPsIPK1KO plants maintained effective resistance 
to Pst, producing relatively higher yields in the field. In con-
trast to the race-specific resistance mediated by dominant R 
genes, resistance mediated by the disruption of TaPsIPK1 is 
not race-specific, and thus provides excellent wheat germ-
plasm for breeding durable resistance in wheat. The study 
of Wang et al. (2022) is the first report on the identification 
of a novel susceptibility gene that can be modified for con-
ferring broad spectrum resistance against rust diseases that 
threaten wheat production and global food security.

Because S genes usually have important physiologi-
cal roles, mutation of S genes often leads to unexpected 
consequences, such as yield penalties that are commonly 
observed in wheat and other crops. It is interesting that 
inactivation of TaPsIPK1 enhances wheat resistance but 
does not cause any apparent developmental defects. Wang 
and colleagues characterized the immune responses 
mediated by deletion of this S gene and showed the criti-
cal role of TaPsIPK1 in negatively regulating PTI (PAMP-
triggered immunity) as well as ETI (effector-triggered 
immunity). Inactivation of TaPsIPK1 increased constitu-
tive resistance, showing higher levels of TaPR1 expres-
sion and SA accumulation compared to those in wild type 
(WT) plants, yet these changes are subtle enough not to 
trigger cell death. Moreover, these plants showed faster 
and stronger defense induction than WT plants upon Pst 
infection, indicating augmented activation of SA-medi-
ated defense signaling. Interestingly, TaPsIPK1 knockout 
plants exhibited comparable PTI defense gene expression 
and MAPK activation as WT plants in the absence of chi-
tin treatment, while treatment of TaPsIPK1KO with chitin 
also resulted in accelerated PTI defense gene expression 
and MAPK activation. These results suggest that knock-
out of TaPsIPK1 leads to the priming of immune defenses, 
which is rapidly amplified upon infection. This may 
explain why the TaPsIPK1 mutation resulted in a stronger 
defense response without fitness penalty.

Although S genes are known to be used by pathogen 
effectors for pathogen penetration, proliferation, nutri-
ent uptake, or inhibition of host immune response, the 
pathogen effectors manipulating S genes remain largely 
unknown. For example, Mlo (Mildew resistance locus O) is 
a well-known S gene that controls resistance to powdery 
mildew in barley and wheat (Wolter et al., 1993; Li et al., 
2022), but pathogen effectors that manipulate its func-
tion have not yet been identified. Using a yeast two-hybrid 
(Y2H) assay, Wang et al. (2022) identified PsSpg1, an effec-
tor protein that is secreted by Pst and targets TaPsIPK1. 
TaPsIPK is located at the plasma membrane (PM) and 
has auto-phosphorylation activity. The interaction with 
PsSpg1 increases the phosphorylation activity of TaPsIPK1 
and promotes the translocation of TaPsIPK1 from the PM 
into the nucleus. Intriguingly, translocation to the nucleus 
is essential for TaPsIPK1 to function as a susceptibility 
factor. As an important effector for Pst virulence, PsSpg1 
requires the presence of TaPsIPK1 to promote Pst patho-
genicity. TaPsIPK1 also interacts with Spg1 proteins from 
P. triticina but not from P. graminis, which correlated with 
the reduced susceptibility of the TaPsIPK1KO mutant to 
P. triticina but not to P. graminis. These data showed that 
TaPsIPK1 is an important S gene specifically targeted by 
the Spg1 of Pst and P. triticina. TaPsIPK1 is the first wheat 
S gene known to be hijacked by rust fungal effectors.
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Having found that wheat susceptibility to Pst depends 
on the movement of TaPsIPK1 into the nucleus, Wang 
et al. (2022) then investigated the function of TaPsIPK1 
in the nucleus of wheat cells. In Y2H screens, two wheat 
nuclear wheat proteins were also identified, includ-
ing one transcription factor, i.e., TaCBF1d, which was 
further verified to interact with TaPsIPK1. In vitro bio-
chemical assays showed that TaPsIPK1 phosphorylates 
TaCBF1d, and that the presence of PsSpg1 enhances the 
phosphorylation of TaCBF1d. Furthermore, the authors 
found that the phosphorylation level of TaCBF1d affects 
its role in transcriptional regulation. Increased phospho-
rylation of TaCBF1d results in decreased transcription 
of defense-related genes and increased transcription of 
the S gene TaPsIPK1, thereby increasing wheat suscep-
tibility to the rust disease. These results illustrate the 
phosphorylation and transcriptional regulatory role of 
PsSpg1-TaPsIPK1-TaCBF1d in mediating wheat suscep-
tibility to the rust fungi.

In summary, Wang et al. (2022) provide the first report 
of an S gene in wheat that can be used for resistance 
improvement. To their credit, the authors carried out 
extensive mechanistic studies on wheat susceptibility to 
rust despite the lack of genetic transformation of Pst and 
despite the complexity of the wheat genome. By inactivat-
ing the S gene TaPsIPK1, the authors establish an effective 
strategy for enhancing broad-spectrum resistance against 
Pst and Ptt with no adverse effects on wheat growth and 
yield. The results of this study suggest that high yielding 
wheat varieties that have lost their resistance because of 
pathogen adaptation can be improved through the modi-
fication of S genes. The study by Wang et al. (2022) there-
fore represents a major advancement in understanding 
plant–pathogen interactions and in applying that under-
standing for breeding disease-resistant crops.
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