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Regulatory network established 
by transcription factors transmits drought stress 
signals in plant
Yongfeng Hu*, Xiaoliang Chen and Xiangling Shen* 

Abstract 

Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to 
environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially 
growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive 
from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most 
important step for the establishment of the network. In this review, we summarized almost all the TFs that have been 
reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 
11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of 
plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive 
upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct 
binding to their promoters to regulate gene expression.

Keywords:  Plant, Drought tolerance, Transcription factor, Regulatory network, Direct target

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Sessile plants constantly deal with adverse environmen-
tal changes in their entire lifetime through a dynamic 
responsive system. Perceiving various stresses by spe-
cific sensors immediately triggers intracellular signals, 
which are transmitted into the nucleus to induce tran-
scriptional reprogramming for cellular and physiological 
reactions. Drought is one of the most detrimental abiotic 
stresses for plant growth. A few review papers focusing 
on general mechanism of drought resistance, drought-
responding long-distance signaling, ABA-dependent and 
-independent phosphorylation networks in cellular signal 
transduction have been published (Fang and Xiong 2015; 
Gong et  al. 2020b; Takahashi et  al. 2018; Yoshida et  al. 
2014). Transcriptional regulators including transcription 

factors (TFs), Mediators and chromatin regulators that 
are involved in drought tolerance (DT) have also been 
summarized (Chang et al. 2020; Chong et al. 2020; Han 
and Wagner 2014; Kim et al. 2010; Takahashi et al. 2018). 
However, only a small proportion of reported TFs that 
are related to DT were mentioned in the reviews. Dec-
ades of research has revealed hundreds of DT-related TFs 
in different plant species, which will be discussed in this 
paper.

TFs, binding specific DNA elements, regulate gene 
expression by directly affecting binding affinity of 
RNA polymerase II (Pol II) to core promoters or recruit-
ing chromatin regulators to change local chromatin 
accessibility (Spitz and Furlong 2012). There are at least 
56 families of TFs in plants (Jin et  al. 2017b), many of 
which are plant-specific, implying that the distinctive 
regulatory networks have been established in plants 
to transmit cellular signal for development and stress 
response. Some of plant TF families are large families 
containing more than one hundred members such as, 
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MYB, bZIP, ERF, WRKY, bZIP, ZnF and NAC (Jin et al. 
2017b). However, it is not clear whether all of plant TF 
families are involved in stress response. In other words, 
is there a possibility that only some specific TF families 
or subfamilies are responsible? To address this question, 
we collected nearly all the reported TFs (466 TFs from 86 
plant species), whose roles in DT have been functionally 
studied (Table S1) by forward or reverse genetic meth-
ods. We found that these TFs mainly fell into 11 families 
including NAC, ERF, WRKY, bZIP, MYB, HD-ZIP, ZnF, 
bHLH, ASR, NF-Y and HSF. They act as either positive 
or negative regulators of DT. Overexpression of positive 
regulators enhances drought resistance, and mutation 
or silencing of these genes decreases drought resist-
ance. By contrast, negative regulators influence DT in an 
opposite way. It is worth noting that a number of genes 
from some species were functionally analyzed by ectopic 
expression in the model organisms like Arabidopsis, rice, 
tobacco, etc. This may not truly reflect the intrinsic DT 
mechanism in these species. The post-transcriptional 
regulations of TFs, which could possibly serve as  the 
approaches to receive upstream signals, and the  direct 
downstream target genes of TFs are also reviewed in this 
paper.

DT‑related TFs
Most TF families are divided into several classes or 
groups based on phylogenetic analysis. In order to see 
if specific classes of each family TFs would be responsi-
ble for drought response, we sorted out the DT-related 
TFs and found that more TFs in some classes have been 
reported to be involved in DT than the others, which is 
exemplified by ATAF subgroup of NAC family and group 
A of bZIP family (Table S1).

NAC family
Typical NAC [No apical meristem (NAM), Arabidopsis 
transcription activation factor (ATAF), Cup-shaped coty-
ledon (CUC)] family TFs contain a conserved N-terminal 
NAC domain that is involved in DNA binding and dimer-
ization, and a potential C-terminal transcriptional regula-
tory (TR) domain which has either activator or repressor 
function (Puranik et  al. 2012). NAC proteins bind to 
various stress responsive and non-responsive NACRS 
(NAC recognition sequence) to regulate downstream 
gene expression. NAC TFs can be classified into two 
large groups which are further divided into 18 subgroups 
(Ooka et al. 2003). Members in subgroups NAP, AtNAC3, 
ATAF, and OsNAC3 are designated as Stress-associated 
NAC (SNAC). Indeed, we found that the reported NAC 
TFs related to DT are more enriched in these four sub-
groups than the others (Fig.  1). One hundred five NAC 
genes belonging to 14 subgroups (including unclassified) 

were collected in this paper and 64 of them fall into four 
SNAC subgroups (Fig. 1, Table S1). Specifically, 27 NAC 
genes from 22 plant species are included in the  ATAF 
subgroup (Table S1), suggesting functional conservation 
of this subgroup genes in drought response across the 
plant kingdom. Seventeen of the one hundred four NAC 
genes negatively regulate DT while the others are positive 
regulators. In addition, NAC genes in group II containing 
four subgroups are unlikely to regulate DT as few of them 
have been characterized to exert the function.

ERF family
ERF family TFs belong to AP2/ERF (APETALA2/eth-
ylene-responsive element binding factors) superfam-
ily which contain an AP2/ERF domain (Nakano et  al. 
2006). The ERF family is classified into two groups: 
group A (CBF/DREB proteins) and group B (ERF pro-
teins) (Sakuma et  al. 2002). Each group can be divided 
into six subgroups (A-1 to A-6 and B-1 to B-6). Group 
A proteins recognize A/GCC​GAC​ (DRE/CRT; Dehydra-
tion-Responsive or C-Repeat element) whereas Group 
B proteins bind to the GCC-Box. 67 ERF genes assigned 
to all the subgroups except B-5 were discovered to play 
important roles in DT (Fig. 2, Table S1). It has long been 
considered that subgroup A-1 (CBF/DREB1) and sub-
group A-2 (DREB2) ERF proteins are conserved regula-
tors for improving abiotic stress tolerance (Agarwal et al. 
2006). The sole member of subgroup A-3 ABI4 is an 
ABA-dependent transcriptional regulator which is asso-
ciated with the specific CE1 element [CACC(G)], acting 
as either an activator or a repressor of gene expression 
(Wind et  al. 2013). However, mutation of ABI4 reduces 
plant resistance to drought (Khan et al. 2020). In addition 
to these prominent DT genes, the other ERF TFs includ-
ing group B proteins could equally contribute to DT 
(Fig. 2). Interestingly, overexpression of the homologs of 
SHN1 from seven plant species could confer DT in these 
plants, suggesting this gene to be a common potential DT 
regulator in plants (Table S1). Besides, only 1 of 67 ERF 
proteins, OsEBP89 in rice, has been proved to be a neg-
ative regulator of DT, as mutation of OsEBP89 leads to 
enhanced plant resistance to drought (Table S1) (Zhang 
et al. 2020b).

WRKY family
WRKY family TFs possess one or two WRKY domains, 
about 60 amino acid residues with the WRKYGQK 
sequence followed by a C2H2 or C2HC zinc finger motif 
(Wu et  al. 2005). The cognate binding site of WRKY 
domain is the W box (TTG​ACC​/T) which could be rec-
ognized by many WRKY TFs. However, a few studies 
reported that some WRKY proteins also bound to non-W 
box cis-elements (Rushton et al. 2010). Sixty-five WRKY 
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genes covering all the seven WRKY subfamilies have 
been revealed to participate in DT, and relatively more 
genes in subgroup I, IIc and III have been characterized 
(Fig.  3, Table S1). Thirteen WRKY genes in subgroup I, 
IIc, IId and II are negatively related to DT.

bZIP family
bZIP (the basic leucine zipper) TFs are defined by a basic 
region for DNA-binding and a leucine zipper motif for 
dimerization (Jakoby et  al. 2002). They preferentially 
bind to DNA sequences with an ACGT core such as the 
A-box (TAC​GTA​), C-box (GAC​GTC​) and G-box (CAC​
GTG​) (Jakoby et al. 2002). According to the basic region 
and additional conserved motifs, 13 groups of bZIP pro-
teins were defined (Droge-Laser et  al. 2018). The ABA 
signaling-engaged ABI5, ABF1, ABF2/AREB1, ABF3, 

ABF4/AREB2 and AREB3 belong to group A. Notably, 37 
out of 58 bZIP proteins that have been identified to play 
important roles in DT fall in this group (Fig. 4, Table S1). 
Overexpression of AtABF3 in Arabidopsis, Medicago and 
cotton increases plant DT (Kerr et al. 2018; Wang et al. 
2016b; Yoshida et  al. 2010), demonstrating conserved 
function of this group genes in plant response to drought. 
However, the homologs of ABI5 seem to function dis-
tinctly in different plant species for DT. Both overexpres-
sion of wheat Wabi5 in tobacco and ectopic expression of 
Arabidopsis AtABI5 in cotton could enhance plant resist-
ance to drought (Kobayashi et al. 2008; Mittal et al. 2014), 
whereas drought-tolerant phenotype was observed in 
barley hvabi5.d mutant carrying G1751A transition (Col-
lin et  al. 2020). The negative role of HvABI5 in barley 
DT was explained by the proposal issued by authors that 

Fig. 1  NAC family TFs involved in drought tolerance. The phylogenetic tree was drawn according to (Ooka et al. 2003). 105 NAC genes belonging to 
14 subgroups (including unclassified) have been studied to regulate drought tolerance
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it might be involved in the feedback regulation of ABA 
biosynthesis. Additional six bZIP genes were testified to 
be negative regulators of DT, as plants with overexpres-
sion of these genes is more sensitive to drought treatment 
(Table S1).

MYB family
MYB (myeloblastosis) proteins are identified through 
a highly conserved DNA-binding domain: the MYB 
domain, which consists of up to four imperfect amino 
acid sequence repeats (R) of about 52 amino acids (Dubos 
et al. 2010). They can be divided into four classes based 
on the number of adjacent repeats: 4R-MYB, R1R2R3-
type MYB (3R-MYB), R2R3-MYB and MYB-related. 
Plant MYB genes mostly encode R2R3-MYB, which bind 

to MYB-core [C/T]NGTT[G/T] and AC-rich elements 
(Millard et  al. 2019). Plant R2R3-MYB can be divided 
into 25 subgroups according to MYB domain and C-ter-
minal motifs (Millard et  al. 2019). To date, functional 
studies on 54 R2R3-MYBs assigned to 13 subgroups as 
well as unidentified group have been performed for DT 
(Fig.  5, Table S1). These studies unraveled that seven 
R2R3-MYB genes were negatively engaged in plant toler-
ance to drought.

HD‑zip
HD-Zip (homeodomain-leucine zipper) protein is com-
posed of a homeodomain (HD) and an immediately 
downstream leucine zipper motif (LZ), and classified 
into four subfamilies on the basis of HD-Zip domain 

Fig. 2  ERF family TFs involved in drought tolerance. The phylogenetic tree was drawn according to (Sakuma et al. 2002). 67 ERF genes assigned to 
all the subgroups except B-5 were discovered to play important roles in drought tolerance

Fig. 3  WRKY family TFs involved in drought tolerance. The phylogenetic tree was drawn according to (Rushton et al. 2010). 65 WRKY genes covering 
all the seven WRKY subfamilies have been revealed to participate in drought tolerance
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conservation and additional conserved motifs (Ariel 
et al. 2007). It seems that HD-Zip TFs in each subfamily 
have distinct DNA-binding specificity (Ariel et al. 2007). 
HD-Zip I and HD-Zip II proteins forming dimers recog-
nize CAAT(A/T)ATTG and CAAT(C/G)ATTG respec-
tively. The binding sites of HD-Zip IV proteins are more 
divergent despite TAAA core is present in their target 
sequences. HD-Zip III protein binding site is less char-
acterized than the other subfamilies. Eighteen HD-Zip 

genes encoding 11 HD-Zip I, four HD-Zip II and three 
HD-Zip IV proteins are implicated in plant DT (Table 
S1), echoing the importance of HD-Zip I ZFs in the reg-
ulation of plant drought stress response. Among these 
genes, rice Oshox22 and Arabidopsis ABIG1, HAT1 and 
HAT3 negatively regulate drought response (Zhang et al. 
2012; Tan et al. 2018; Liu et al. 2016). Furthermore, HAT1 
and HTA3 function redundantly since plant DT is not 

Fig. 4  bZIP family TFs involved in drought tolerance. The phylogenetic tree was drawn according to (Droge-Laser et al. 2018). 58 bZIP proteins 
identified to play roles in drought tolerance fall in nine groups

Fig. 5  MYB family TFs involved in drought tolerance. The phylogenetic tree was drawn according to (Dubos et al. 2010). Functional studies on 54 
R2R3-MYBs assigned to 13 subgroups as well as unidentified group have been performed for drought tolerance
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affected by single mutation of them while dramatically 
increased by double mutation (Tan et al. 2018).

ZnF family
ZnF (zinc finger) proteins are classified into several dif-
ferent types based on the number and order of the Cys 
and His residues that bind the Zinc ion in the secondary 
structure of the finger (Ciftci-Yilmaz and Mittler 2008). 
C2H2-type is one of the most abundant ZnF proteins in 
eukaryotes, which is mainly classified into three sets (A, 
B and C) (Ciftci-Yilmaz and Mittler 2008). Plant-specific 
Set C can be further divided into three subsets (C1, C2 
and C3). We found 15 C2H2 zinc finger proteins involved 
in DT, all of which belong to C1 subset and most are con-
centrated in subclass C1–2i (Table S1). Two genes, Rice 
DST and soybean GmZFP3, are negative regulators of DT 
(Cui et al. 2015; Huang et al. 2009; Zhang et al. 2016). In 
addition to C2H2 zinc finger proteins, seven C3H type 
zinc finger proteins, three Di-19 family zinc finger pro-
teins, two BBX family proteins and four others are also 
implicated in the regulation of DT (Table S1).

bHLH family
bHLH (basic/helix-loop-helix) family proteins con-
tain the conserved bHLH domain, which consists of 
N-terminal basic region (15 to 20 residues rich in basic 
amino acids) for DNA-binding and HLH region (two 
amphipathic a-helices linked by a loop region) for 
protein-protein interaction (Toledo-Ortiz et  al. 2003). 
The so-called core E-box hexanucleotide consensus 
sequence 5′-CANNTG-3′ is recognized by the bHLH 
proteins (Toledo-Ortiz et  al. 2003). Based on phyloge-
netic analysis the plant bHLH proteins could be clas-
sified into 32 subfamilies (Carretero-Paulet et  al. 2010).  
Twenty-four  bHLH genes belonging to 13 subfamilies 
have been functionally characterized for DT (Table S1). 
Only three BEE genes in Arabidopsis play negative roles 
in DT, mutation of which simultaneously (triple mutant) 
enhanced drought resistance.

ASR family
The ASR (abscisic acid, stress, ripening induced) pro-
tein, albeit absent in Arabidopsis, was initially screened 
from tomato leaves under water-stress conditions (Gon-
zalez and Iusem 2014). It might have either chaperone-
like function or transcription factor activity (Gonzalez 
and Iusem 2014). The latter has been proved by its ability 
to bind DNA directly. Several downstream target genes 
regulated by ASR proteins in some species have also been 
identified in vivo, further supporting its regulatory role in 
gene transcription. The ASR-binding DNA motif identi-
fied in rice and tomato is conserved with consensus core 
sequence GCCCA (Arenhart et  al. 2014; Ricardi et  al. 

2014). Seventeen ASR proteins have been reported to be 
involved in DT regulation, all of which are positive regu-
lators (Table S1).

NF‑Y family
Nuclear factor Y (NF-Y) TF is formed by three subunits: 
NF-YA, NF-YB and NF-YC (Chaves-Sanjuan et al. 2021). 
The histone fold domain (HFD) of NF-YB and NF-YC 
mediates their heterodimerization, which produces a 
molecular scaffold for NF-YA interaction. The NF-Y DNA 
target is the CCAAT box, recognized by NF-YA. The het-
erodimer of NF-YB and NF-YC can also bind DNA but in 
a non-sequence-specific manner (Chaves-Sanjuan et  al. 
2021). All of the studied NF-Y TFs including seven NF-
YAs, four NF-YBs and one NF-YC are positive regulators 
of DT (Table S1).

HSF family
HSF (Heat shock factor) proteins, which bind the con-
served cis-acting (5′-nGAAn-3′) heat shock elements 
(HSE), transcriptionally regulate heat shock protein 
(Hsp) genes to play a central role in the heat stress 
response (Nagaraju et  al. 2015). Numerous publications 
document that HSP also affects other abiotic stresses as 
well as biotic stress. HSF genes can be grouped into three 
classes: A, B and C. Nine class A HSF proteins participate 
in the regulation of DT (Table S1). Simultaneous muta-
tion of Arabidopsis HSFA6a and HSFA6b leads to the 
enhancement of drought resistance while single mutation 
does not, suggesting cooperative and negative effect of 
these two genes on DT regulation (Wenjing et al. 2020).

Others
Genes in some families, whose members are always 
considered as important developmental regulators like 
WOX, KNOX, GT2, BES/BZR and GRAS, also function as 
DT regulators (Table S1). Some of them directly regulate 
the expression of genes involved in drought response or 
genes encoding enzymes for scavenging reactive oxygen 
species (ROS). And the others developmentally control 
plant architecture to influence DT. For example, repres-
sion of SDD1 by Arabidopsis GTL1 contributes to high 
abaxial stomatal density resulting in lower water use effi-
ciency (Yoo et al. 2010). Overexpression of PagKNAT2/6b 
causes shorter internode length and smaller leaf size 
by inhibiting GA biosynthesis (Song et  al. 2021) but 
improves drought resistance.

Regulatory network established by TFs
In response to drought, the regulatory network could 
be built by direct interaction of TFs to regulate com-
mon targets and mutual regulation of TFs to amplify or 
compromise drought signal. The direct interaction or 
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mutual regulation summarized here has been experi-
mentally evidenced by protein-protein interaction assays 
or protein-DNA binding assays in  vitro or in  vivo. The 
NAC family proteins are the most reported TFs to asso-
ciate with other factors, involving both hetero-dimeriza-
tion within family and interaction with other family TFs 
such as ERF family (LlDREB1, PbeDREB1, PbeDREB2A 
and DREB2A in Picea (P.) wilsonii), bZIP family (ABF2, 
ABF3 and ABF4), ZnF family (GmDi19–3), ZFHD family 
(TsHD1 and ZFHD4) (Table 1). Interestingly, by binding 
to each other GmNAC81 and GmNAC30 synergistically 
either activate or repress common target genes expres-
sion, which would depend on the conformational assem-
bly of the two TFs at their binding site (Mendes et  al. 
2013). Majority of TFs interaction mediate their coopera-
tive regulation of target genes except TINY and BES1 in 
Arabidopsis. Although interacting with each other, TINY 
and BES1 oppositely regulate a significant set of drought-
induced and growth-related genes by inhibiting each oth-
er’s activities under different conditions (Xie et al. 2019). 
Under normal condition, BES1 promotes growth-related 
genes and represses drought responsive genes while 
TINY’s activity is inhibited. Under drought condition, 
TINY is induced to activate drought response and inhibit 
plant growth by counteracting BES1 functions. Three 
WRKY proteins (WRKY46, WRKY54 and WRKY70) also 
interact with BES1 but in a cooperative way to regulate 
BR-mediated plant growth and drought response (Chen 
et al. 2017).

Although DREB proteins including DREB1 and DREB2 
are considered as master regulators of both drought and 
cold response, their direct downstream genes proved 
experimentally have seldom been reported. By con-
trast, DREB proteins are likely to serve as common 
targets regulated by multiple family TFs like NAC (JUN-
GBRUNNEN1 and ONAC066), WRKY (TaWRKY19 and 
GhWRKY59), bZIP (AREB1, AREB2 and AtABF3), ZnF 
(Os12g38960， Os03g32230 and Os11g47630), MYB 
(AtMYB32), bHLH (ZjICE2, ZmbHLH124 and ZmPTF1), 
NF-Y (GmNFYA5) and WOX (OsWOX13) (Table  2). 
Among these TFs, only three ZnF family proteins and 
AtMYB32 are negative regulators of DREB genes (Figue-
iredo et al. 2012; Li et al. 2021b). The activation of DREB 
genes by AREB1, AREB2 and AtABF3 couples ABA-
dependent and ABA-independent pathways in response 
to drought (Kim et al. 2011). In addition, ABA-dependent 
bZIP family regulators could be regulated by various TFs. 
For example, AREB1 is activated by AtWRKY63 while 
repressed by drought-responsive NAC016 to form a 
feed-forward loop (Ren et al. 2010; Sakuraba et al. 2015). 
AtMYB32 is responsible for the activation of ABI5 while 
AtWRKY40 and AtRAV1 are the negative regulators of 
ABI5 (Li et al. 2021b; Liu et al. 2012; Feng et al. 2014).

Post‑transcriptional regulation of TFs
In addition to transcriptional regulation by each other, 
TFs could subject post-transcriptional regulation includ-
ing phosphorylation carried out by different kinds of 
kinases, degradation of TFs by ubiquitin-proteasome sys-
tem (UPS) (Table 1), translocation of TFs from the cyto-
plasm to the nucleus, and post-transcriptional regulation 
by miRNA.

Phosphorylation of TFs
In ABA-dependent pathway ABA signal is transmitted 
to TFs like AREB1, AREB2 and ABF3 through phospho-
rylation of them by SNF1-Related Protein Kinase (SnRK)2 
Protein Kinases (Yoshida et  al. 2015). The phosphoryla-
tion of TFs contributes to full activation of their tran-
scriptional activities. Calcium dependent protein kinases, 
CPK4 and CPK11 or CPK6, were also reported to medi-
ate ABA responsive phosphorylation of ABFs and/or 
ABI5 to enhance transcriptional activities (Zhang et  al. 
2020a; Zhu et al. 2007). The phosphorylation of bZIP TFs 
by SnRK2 kinases has been observed in rice (OsbZIP23
，OsbZIP46CA1，OsbZIP62) (Chang et  al. 2017; Yang 
et al. 2019; Zong et al. 2016), Cryophyte (CbABF1) (Yue 
et al. 2019) and buckwheat (FtbZIP5) (Li et al. 2020). Most 
of these bZIP proteins belong to the same group as ABFs, 
suggesting the conserved mechanism for signal transmis-
sion in plants. Besides, some TFs in other families could 
also be substrates of the SnRK2 kinases although the 
effect of phosphorylation of these TFs seems to be differ-
ent. The NAC TF NTL6 in Arabidopsis is phosphorylated 
by SnRK2.8, which however is required for the entrance 
of NTL6 into the nucleus (Kim et al. 2012). Phosphoryla-
tion of the Arabidopsis HD-Zip TF HAT1 by SnRK2.3 
both destabilize and repress promoter-binding activity 
of HAT1 for negatively regulating HAT1 in response to 
drought (Tan et al. 2018). In rice, the fact that OsSnRK1α 
interacts and phosphorylates ERF family TF OsEBP89 has 
also been observed, despite that the effect of phospho-
rylation remains to be determined (Zhang et  al. 2020b). 
Recently, it was demonstrated that phosphorylation of 
SlVOZ1 by SlOST1 promoted both stability and nuclear 
translocation of SlVOZ1 in tomato (Chong et al. 2022). In 
addition to SnRK2 and CPK, other kinases such as MAK 
kinases, GSK3-like kinases (BIN2), could be responsible 
for phosphorylation of TFs to affect their stability and 
transcriptional activity (Table 1).

Degradation of TFs
UPS is an important pathway for post-transcriptional 
regulation of gene expression and involved in several 
hormone signal transductions like GA, auxin, Brassinos-
teroids, strigolactone by degrading transcriptional repres-
sors that are also negative regulators of signaling. The 
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Table 1  The interaction proteins of drought-responsive transcription factors

Function of 
interaction 
protein

TF name Species Interaction protein References

TFs ANAC096 Arabidopsis ABF2 and ABF4 (Xu et al. 2013)

GmNAC81 Soybean GmNAC30 (Mendes et al. 2013)

PeSNAC-1 Moso bamboo PeSNAC-2/4 and PeNAP-1/4/5 (Hou et al. 2020)

GmNAC8 Soybean GmDi19–3 (Yang et al. 2020a)

PwNAC11 Picea wilsonii ABF3, DREB2A (Yu et al. 2021)

HaNAC1 Haloxylon ammodendron AtNAC32 (Gong et al. 2020a)

PbeNAC1 Pyrus PbeDREB1, PbeDREB2A (Jin et al. 2017a)

LlNAC2 Lily LlDREB1, ZFHD4 (Yong et al. 2019b)

TsNAC1 Thellungiella halophile TsHD1 (Liu et al. 2019a)

TINY Arabidopsis BES1 (Xie et al. 2019)

GmWRKY27 Soybean GmMYB174 (Wang et al. 2015)

WRKY46 Arabidopsis BES1 (Chen et al. 2017)

WRKY54 Arabidopsis BES1 (Chen et al. 2017)

WRKY70 Arabidopsis BES1 (Chen et al. 2017)

TaHDZipI-5 Wheat TaHDZipI-3 (Yang et al. 2018)

DST Rice DCA1 (Cui et al. 2015)

CmBBX19 Chrysanthemum CmABF3 (Xu et al. 2020)

PdNF-YB21 Poplar PdFUS3 (Zhou et al. 2020)

Kinases NTL6 Arabidopsis SnRK2.8 (Kim et al. 2012)

ZmNAC84 Maize ZmCCaMK (Zhu et al. 2016)

AtERF7 Arabidopsis PKS3, AtSin3 (Song et al. 2005)

OsEBP89 Rice SnRK1alph (Zhang et al. 2020b)

RAP2.6 Arabidopsis CDK8 and SnRK2.6 (Zhu et al. 2020b)

OsWRKY30 Rice OsMPK3, OsMPK4, OsMPK7, OsMPK14, 
OsMPK20–4, and OsMPK20–5,

(Shen et al. 2012)

GhWRKY59 Cotton GhMAP3K15-GhMKK4-GhMPK6 (Li et al. 2017a)

OsWRKY55 Rice OsMPK7, OsMPK9, OsMPK20–1, and 
OsMPK20–4

(Huang et al. 2021)

ABF1 Arabidopsis AtCPK4, AtCPK11 (Zhu et al. 2007)

AREB1 Arabidopsis SRK2D/SnRK2.2 (Yoshida et al. 2015)

AREB2 Arabidopsis SRK2D/SnRK2.2, AtCPK4, AtCPK11 (Yoshida et al. 2015; Zhu et al. 2007)

ABF3 Arabidopsis SRK2D/SnRK2.2, AtCPK6 (Yoshida et al. 2015; Zhang et al. 2020a)

ABI5 Arabidopsis AtCPK6 (Zhang et al. 2020a)

OsbZIP23 Rice SAPK2 (Zong et al. 2016)

OsbZIP46CA1 Rice SAPK6 (Chang et al. 2017)

CbABF1 Cryophyte CbSnRK2.6 (Yue et al. 2019)

OsbZIP62 Rice SAPKs (Yang et al. 2019)

FtbZIP5 Buckwheat FtSnRK2.6 (Li et al. 2020)

MYB44 Arabidopsis MPK3 (Persak and Pitzschke 2014)

HAT1 Arabidopsis SnRK2.3 (Tan et al. 2018)

Di19 Arabidopsis CPK11 (Liu et al. 2013)

TINY Arabidopsis BIN2 (Xie et al. 2019)

WRKY46 Arabidopsis BIN2 (Chen et al. 2017)

WRKY54 Arabidopsis BIN2 (Chen et al. 2017)

WRKY70 Arabidopsis BIN2 (Chen et al. 2017)

SlVOZ1 Tomato SlOST1 (Chong et al. 2022)
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specificity of UPS is determined by E3 ligases which inter-
act with and attach ubiquitins to target proteins. We found 
that most TFs regulated by UPS are positive regulators 
of DT and accordingly the corresponding E3 ligases are 
negatively engaged in DT (Table 1, Table S1). One excep-
tion is that a DT repressor CaAIBZ1 that is a bZIP TF is 
ubiquitinated by the E3 ligase CaASRF1 (Joo et al. 2019a). 
CaASRF1 is induced by drought and targets CaAIBZ1 for 
ubiquitination, thus it positively modulates ABA signaling 
and drought response. However, two genes encoding E3 
ligases, MdBT2 and CaDSR1, are also induced by drought 
although acting as negative regulators of DT (Ji et al. 2020; 
Lim et  al. 2018). The induction of these genes might be 
dedicated for attenuating drought response by destabiliz-
ing TFs to generate a feedback loop. A feed-forward loop 
could also be established by translocation of E3 ligase, 
represented by RGLG2, from the plasma membrane to 
the nucleus induced by stress (Cheng et al. 2012).

Translocation
Translocation of TFs from the plasma membrane to 
the nucleus in response to drought also occurs. Under 

unstressed conditions, MfNACsa is targeted to the 
plasma membrane through S-palmitoylation at Cys26 
in the endoplasmic reticulum/Golgi (Duan et  al. 2017). 
Under drought stress, MfNACsa translocates to the 
nucleus through de-S-palmitoylation mediated by the 
thioesterase MtAPT1, whose encoding gene is rapidly 
induced by dehydration stress. NTL6 contain strong 
α-helical transmembrane motifs (TMs) in their C-termi-
nal regions and are predicted to be membrane-associated 
(Kim et al. 2007). ABA and cold treatment induce NTL6 
release from membrane, suggesting that both cleavage 
and phosphorylation of NTL6 are prerequisite for NTL6 
to enter the nucleus to exert its regulatory function (Kim 
et  al. 2007). Indeed, in Arabidopsis more than 190 TFs 
are predicted to be membrane-bound transcription fac-
tors (MTFs) (Seo et al. 2008). They are dormant by asso-
ciated with the intracellular membranes and activated by 
proteolytic cleavage that might be stress responsive. This 
strategy could potentially transmitted stress signals from 
outside into the nucleus, but more evidences are required 
to explain how stress triggers proteolytic cleavage.

Table 1  (continued)

Function of 
interaction 
protein

TF name Species Interaction protein References

UPS ABI5 Arabidopsis DWA1/DWA2, KEG, ABD1 (Chen et al. 2013; Lee et al. 2010; Seo et al. 
2014)

ABF1 Arabidopsis KEG (Chen et al. 2013)

ABF3 Arabidopsis KEG (Chen et al. 2013)

DREB2A Arabidopsis DRIP1 (Qin et al. 2008)

MdNAC143 Apple MdBT2 (Ji et al. 2020)

AtERF53 Arabidopsis RGLG2 (Cheng et al. 2012)

OsWRKY11 Rice ubiquitin-proteasome (Lee et al. 2018)

CaATBZ1 Capsicum Annuum CaASRF1 (Joo et al. 2019b)

CaDILZ1 Capsicum Annuum CaDSR1 (Lim et al. 2018)

ROC4 Rice DHS (Wang et al. 2018)

Others CcNAC1 Jute KCS (Zhang et al. 2021)

PwNAC2 Picea wilsonii PwRFCP1 (Zhang et al. 2018)

ABI4 Arabidopsis PWR, HDA9 (Khan et al. 2020; Baek et al. 2020)

OsDRAP1 Rice OsCBSX3 (Huang et al. 2018)

MeWRKY20 Cassava MeHSP90s (Wei et al. 2020)

PtrAREB1–2 Poplar ADA2b-GCN5 (Li et al. 2019a)

GmMYB81 Soybean GmSGF14l (Bian et al. 2020)

ZFP182 Rice ZIURP1 (Huang et al. 2012)

IbC3H18 Sweetpotato IbPR5 (Zhang et al. 2019)

MfNACsa Medicago APT1 (Duan et al. 2017)
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Table 2  The direct downstream genes of drought-responsive transcription factors

Function of downstream 
genes

Protein name Species Direct target genes Transcriptional 
activity

References

TFs JUNGBRUNNEN1 Tomato DREB1, DREB2 Activation (Thirumalaikumar et al. 2018)

ONAC066 Rice OsDREB2A Activation (Yuan et al. 2019)

NAC016 Arabidopsis AREB1 Repression (Sakuraba et al. 2015)

TaWRKY2 Wheat STZ Activation (Niu et al. 2012)

TaWRKY19 Wheat DREB2A Activation (Niu et al. 2012)

GmWRKY27 Soybean GmNAC29 Repression (Wang et al. 2015)

MdWRKY31 Apple MdRAV1 Repression (Zhao et al. 2019)

GhWRKY91 Cotton GhWRKY17 Activation (Gu et al. 2019)

AtWRKY63 Arabidopsis ABF2 Activation (Ren et al. 2010)

GhWRKY59 Cotton GhDREB2 Activation (Li et al. 2017a)

OsWRKY55 Rice OsAP2–39 Activation (Huang et al. 2021)

CaWRKY70 Chickpea CaHDZ12 Repression (Sen et al. 2017)

AREB1 Arabidopsis DREB2A Activation (Kim et al. 2011)

AREB2 Arabidopsis DREB2A Activation (Kim et al. 2011)

AtABF3 Arabidopsis DREB2A Activation (Kim et al. 2011)

PtrAREB1–2 Poplar PtrNAC006, PtrNAC007, 
PtrNAC120

Activation (Li et al. 2019a)

OsABF1 Rice OsbZIP23, OsbZIP46, OsbZIP72 Activation (Zhang et al. 2017)

AtMYB32 Arabidopsis ABI3, ABI4, ABI5, CBF4 Activation/
Repression

(Li et al. 2021b)

AtWRKY40 Arabidopsis ABI5 Repression (Liu et al. 2012)

AtHB13 Arabidopsis JUNGBRUNNEN1 Activation (Ebrahimian-Motlagh et al. 
2017)

Os12g38960 Rice OsDREB1B Repression (Figueiredo et al. 2012)

Os03g32230 Rice OsDREB1B Repression (Figueiredo et al. 2012)

Os11g47630 Rice OsDREB1B Repression (Figueiredo et al. 2012)

ZjICE2 Zoysia Japonica ZjDREB1 Activation (Zuo et al. 2020)

ZmbHLH124 Maize ZmDREB2A Activation (Wei et al. 2021)

ThMYC6 Tamarix Hispida ThbZIP1 Activation (Ji et al. 2013)

ZmPTF1 Maize CBF4, ATAF2/NAC081, NAC30 Activation (Li et al. 2019b)

ZmNF-YA3 Maize bHLH92 Repression (Su et al. 2018)

GmNFYA5 Soybean GmDREB2, GmbZIP1 Activation (Ma et al. 2020)

SiARDP Foxtail Millet SiASR4 Activation (Li et al. 2016)

OsWOX13 Rice OsDREB1A, OsDREB1F Activation (Minh-Thu et al. 2018)

ABA metabolism and signal-
ing

ATAF1 Arabidopsis NCED3 Activation (Jensen et al. 2013)

GhirNAC2 Cotton GhNCED3a/3c Activation (Shang et al. 2020)

WRKY57 Arabidopsis NCED3 Activation (Jiang et al. 2012)

MeWRKY20 Cassava MeNCED5 Activation (Wei et al. 2020)

MaWRKY80 Banana MaNCED Activation (Liu et al. 2020a)
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Table 2  (continued)

Function of downstream 
genes

Protein name Species Direct target genes Transcriptional 
activity

References

PbrWRKY53 Pyrus PbrNCED1 Activation (Liu et al. 2019b)

OsbZIP23 Rice OsPP2C49, OsNCED4 Activation (Zong et al. 2016)

MdMYB88 Apple NCED3 Activation (Xie et al. 2021)

HAT1 Arabidopsis ABA3 and NCED3 Repression (Tan et al. 2018)

ZmPTF1 Maize NCED Activation (Li et al. 2019b)

PdNF-YB21 Poplar PdNCED3 Activation (Zhou et al. 2020)

GmWRKY54 Soybean PYL8, SRK2A Activation (Wei et al. 2019)

GhWRKY21 Cotton GhHAB Activation (Wang et al. 2020)

ATHB7 Arabidopsis PP2C, PYL5, PYL8 Activation (Valdes et al. 2012)

ATHB12 Arabidopsis PP2C, PYL5, PYL8 Activation (Valdes et al. 2012)

OsABF1 Rice OsPP48, OsPP108 Activation (Zhang et al. 2017)

bHLH122 Arabidopsis CYP707A3 Repression (Liu et al. 2014b)

OsNAC2 Rice OsSAPK1 Repression (Shen et al. 2017)

ROS-related NTL4 Arabidopsis AtrbohC, AtrbohE Activation (Lee et al. 2012)

ZmNAC84 Maize SOD2 Activation (Han et al. 2021)

NtERF172 tobacco NtCAT​ Activation (Zhao et al. 2020)

TaBZR2 Wheat TaGST1 Activation (Cui et al. 2019)

GmMYB84 Soybean GmRBOHB-1 and GmRBOHB-2 Activation (Wang et al. 2017)

Aquaporins TG Arabidopsis AtTIP1;1, AtTIP2;3, AtPIP2;2 Activation (Zhu et al. 2014)

ASR1 Tomato Solyc10g054820 Activation (Ricardi et al. 2014)

LEA proteins OsNAC2 Rice OsLEA3 Repression (Shen et al. 2017)

OsWRKY11 Rice RAB21 Activation (Lee et al. 2018)

TabHLH49 Wheat WZY2 Activation (Liu et al. 2020b)

Wax biosynthesis OsWR1 Rice OsLACS2, OsFAE1’-L Activation (Wang et al. 2012)

PeSHN1 Poplar LACS2 Activation (Meng et al. 2019)

MYB94 Arabidopsis wax biosynthetic genes Activation (Lee et al. 2016b)

MYB96 Arabidopsis wax biosynthetic genes Activation (Lee et al. 2016b; Seo et al. 
2011)

Polyamine biosynthesis PtrNAC72 Poncirus trifoliata PtADC Repression (Wu et al. 2016)

FcWRKY70 Fortunella Crassifolia FcADC Activation (Gong et al. 2015)

PbrMYB21 Pyrus PbrADC Activation (Li et al. 2017b)

OsHSFA3 Rice OsADC Activation (Zhu et al. 2020a)

Others TaNAC69 Wheat chitinase, ZIM, glyoxalase I Activation (Xue et al. 2011)

ANAC019 Arabidopsis ERD1 Activation (Tran et al. 2004)

ANAC055 Arabidopsis ERD1 Activation (Tran et al. 2004)

ANAC072 Arabidopsis ERD1 Activation (Tran et al. 2004)

PwNAC11 Picea wilsonii ERD1 Activation (Yu et al. 2021)

OsNAC6 Rice NICOTIANAMINE SYNTHASE Activation (Lee et al. 2017)

ZmNAC49 Maize ZmMUTE Repression (Xiang et al. 2021)

RhNAC2 Rose RhEXPA4 Activation (Dai et al. 2012)

OsERF48 Rice OsCML16 Activation (Jung et al. 2017)
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Post‑transcriptional regulation by microRNAs
MicroRNAs (miRNAs) are encoded by endogenous 
genes, whose initial products are designated primary 
miRNAs (pri-miRNAs) (Yu et al. 2017). Pri-miRNAs are 
then cleaved to generate precursor-miRNAs (pre-miR-
NAs), which are finally processed to mature miRNAs. 
miRNAs repress gene expression by cleavage of RNAs or 
inhibition of translation, playing important roles in plant 
development and stress response. Genome-wide identi-
fication of differentially expressed miRNAs in response 
to drought has been performed in various plant species 
(Ren et  al. 2021; Yu et  al. 2020; Fan et  al. 2020; Pegler 
et  al. 2019; Liu et  al. 2018; Ferdous et  al. 2017; Hamza 
et al. 2016; Xie et al. 2015; Yin et al. 2014; Xie et al. 2014; 
Wang et al. 2014; Zhou et al. 2010), which would not be 
discussed here. Functional analysis of miRNAs targeting 
TFs involved in DT mainly focus on miR164 and miR169. 
The targets of miR164 are NAC family TFs belonging 

to NAC1 and NAM subgroup (Fang et  al. 2014). Their 
targets seem to play similar roles in drought resistance. 
Overexpression of OMTN2, OMTN3, OMTN4, and 
OMTN6 in rice leads to enhanced drought sensitivity at 
the reproductive stage, suggesting their negative effects 
on drought resistance. The contradicting conclusion 
concerning the function of OsNAC2 were drawn by two 
groups. One group showed that OsNAC2-overexpress-
ing transgenic plants exhibited drought sensitive phe-
notype while silencing of OsNAC2 enhanced tolerance 
to drought (Shen et  al. 2017). The other group revealed 
that overexpression of a miR164b-resistant OsNAC2 
mutant gene improved DT (Jiang et al. 2019). The nega-
tive effect on DT has also been observed for PeNAC070, 
a miR164 target in Populus euphratica (Lu et  al. 2017). 
The miR169 or its targets, NF-YA genes, have been char-
acterized in Arabidopsis, tomato, rapeseed and soybean 
(Ni et al. 2013; Li et al. 2008; Li et al. 2021a; Zhang et al. 

Table 2  (continued)

Function of downstream 
genes

Protein name Species Direct target genes Transcriptional 
activity

References

OsERF71 Rice OsCINNAMOYL-COENZYME A 
REDUCTASE1

Activation (Lee et al. 2016a)

RAP2.6 Arabidopsis RD29A, COR15A Activation (Zhu et al. 2020b)

AtWRKY53 Arabidopsis QQS Activation (Sun and Yu 2015)

SbWRKY30 Sorghum SbRD19 Activation (Yang et al. 2020b)

TaAREB3 Wheat RD29A, RD29B, COR15A, 
COR47

Activation (Wang et al. 2016a)

OsbZIP71 Rice OsNHX1, COR413-TM1 Activation (Liu et al. 2014a)

GmMYB14 Soybean GmBEN1 Activation (Chen et al. 2021)

LlMYB3 Lily LlCHS2 Activation (Yong et al. 2019a)

OsTF1L Rice poxN/PRX38, Nodulin protein, 
DHHC4, CASPL5B1, AAA-type 
ATPase.

Activation (Bang et al. 2019)

Di19 Arabidopsis PR1, PR2, PR5 Activation (Liu et al. 2013)

PagKNAT2/6b Poplar PagGA20ox1 Repression (Song et al. 2021)

GTL1 Arabidopsis SDD1 Repression (Yoo et al. 2010)

ANAC096 Arabidopsis RD29A Activation (Xu et al. 2013)

TaWRKY2 Wheat RD29B Activation (Niu et al. 2012)

TaWRKY19 Wheat Cor6.6 Activation (Niu et al. 2012)

AREB1 Arabidopsis RD29B Activation (Uno et al. 2000)

AREB2 Arabidopsis RD29B Activation (Uno et al. 2000)

GmWRKY54 Soybean CIPK11, CPK3 Activation (Wei et al. 2019)

SlVOZ1 Tomato SFT Activation (Chong et al. 2022)
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2011). Arabidopsis NFYA5, soybean GmNFYA3 and 
rapeseed NF-YA8 are positive regulators of plant tol-
erance to drought stress. However, overexpression of 
tomato miR169 and soybean miR169c also enhanced DT 
(Yu et al. 2019; Zhang et al. 2011), demonstrating compli-
cated roles of miR169 in the regulation of drought stress 
response.

Downstream targets of TFs
Regulatory hub established by TFs receive input signals 
triggered by drought from outside of the nucleus and 
transmit output signals by regulating downstream gene 
expression for reaction. Here we summarized the direct 
downstream genes of TFs, whose promoter could be 
bound by drought-induced TFs in  vitro or in  vivo, and 
the genes which were only examined to transcription-
ally change responding to mutation or altered expres-
sion of TF genes are not included. The function of the 
direct downstream genes entails ABA biosynthesis and 
signaling, ROS-related, aquaporin, LEA proteins, wax 
biosynthesis and others (Table 2). In particular, osmotic 
adjustment (OA) is an important biochemical mecha-
nism helping plants to acclimate to drought conditions. 
Several organic compounds like sugars, proline, betaines 
and inorganic ions contributes to OA (Turner 2018). 
However, the TFs that have been experimentally proved 
to direct regulate the genes related to accumulation of 
these solutes in response to drought cannot be found out. 
The direct regulators of P5CS1, encoding a rate-limiting 
enzyme in proline biosynthesis, have been reported for 
their roles in salt tolerance (Dai et al. 2018; Verma et al. 
2020).

ABA metabolism and signaling
The biosynthesis of ABA is rapidly induced by drought 
stress to elicit series of responses such as stomatal clo-
sure. It is generally accepted that in higher plants ABA 
is synthesized through carotenoids pathway by multi-
step enzymatic reactions, in which NCEDs function as 
the key rate-limiting enzymes. ABA can be degraded 
by hydroxylation which is mediated by CYP707A sub-
family monooxygenases (Ma et  al. 2018). Until now 
various families TFs in different plant species have been 
reported to directly activate expression of NCED genes 
to increase ABA level, which are represented by NAC 
(ATAF1, GhirNAC2), WRKY (WRKY57, MeWRKY20, 
MaWRKY80, PbrWRKY53), MYB (MdMYB88), bZIP 
(OsbZIP23), bHLH (ZmPTF1) and NF-Y (PdNF-YB21) 
(Table  2). The bZIP TF, HAT1, was identified to be the 
repressor of NCED3 in Arabidopsis (Tan et al. 2018). The 
fact that mutation or over-expression of HAT1 affects 
plant sensitivity to ABA indicates that it also negatively 
regulates ABA signaling although the target gene is not 

clear. Induction of elevated ABA level by stresses could 
also be achieved via repressing expression of CYP707A. 
bHLH122, strongly induced by drought, NaCl and 
osmotic stresses but not ABA treatment, directly binds to 
the promoter of CYP707A3 to repress its expression (Liu 
et al. 2014b).

ABA signaling is transmitted by ABA receptors 
RCARs/PYR1/PYLs, PP2Cs, SnRK2s and specific TFs 
(Zhu 2016). In the absence of ABA, PP2Cs interact with 
SnRK2s to inhibit their activity by dephosphorylation of 
multiple Ser/Thr residues in the activation loop. ABA 
perception by the RCAR/PYR1/PYL proteins releases the 
PP2C-mediated inhibition of SnRKs’ activity The released 
SnRK2s are activated through autophosphorylation and 
subsequently phosphorylate downstream substrates 
including TFs as described above. GmWRKY54, AtHB7 
and AtHB12 are directly involved in the activation of 
PYL genes. The SnRK2 gene is activated by GmWRKY54 
in soybean and repressed by OsNAC2 in rice. Although 
PP2C genes are negative regulators of ABA signaling, 
they can be transcriptionally stimulated by multiple TFs 
induced by drought or ABA such as OsbZIP23, OsABF1, 
GhWRKY21, AtHB7 and AtHB12 (Table 2). The stimula-
tion of PP2C genes was proposed to form a feedback loop 
for mitigating the intensity of ABA signal.

ROS‑related
Under normal conditions, the basal level of Reactive 
oxygen species (ROS), which induces redox signals 
that regulates numerous cellular processes, is balanced 
by generation in various subcellular organelles such 
as chloroplasts, mitochondria, peroxisomes and apo-
plast and scavenging by antioxidative systems involving 
enzymes like SOD, CAT, APX and non-enzymatic anti-
oxidants such as ascorbate (ASC), glutathione (GSH) 
and carotenoids (Farooq et  al. 2019; Waszczak et  al. 
2018). Under stress conditions, increased ROS con-
centrations incurs cellular damage by oxidizing mac-
romolecular such as proteins, DNA and lipids (Farooq 
et  al. 2019). The plasma membrane-localized NADPH 
oxidases termed respiratory burst oxidase homologs 
(RBOHs) are the major ROS producers in apoplast 
(Waszczak et  al. 2018). In Arabidopsis, NTL4, a NAC 
TFs, is responsible for coupling ROS production to 
drought-induced leaf senescence via facilitating expres-
sion of AtrbohC and AtrbohE directly (Lee et al. 2012). 
However, in soybean a hypothesis was issued that 
up-regulation of GmRBOHB-1 and GmRBOHB-2 by 
GmMYB84 improves DT by inducing SOD/POD/CAT 
activity due to the increased H2O2 contents (Wang 
et  al. 2017). The elevated production of ROS scaveng-
ing enzymes SOD and CAT can be induced by drought 
stress through transcriptional activation of TFs. For 
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example, ZmNAC84 directly promotes ZmSOD2 
expression to enhance maize DT (Han et  al. 2021). 
NtERF172 positively regulates NtCAT​ expression to 
confer tobacco drought resistance (Zhao et  al. 2020). 
In addition, T. aestivum glutathione s-transferase-1 
(TaGST1), which functions positively in scavenging 
drought-induced ROS, is activated by TaBZR2, a posi-
tive regulator of BR signaling (Cui et al. 2019).

Aquaporins
Aquaporins (AQPs) are transmembrane channels for 
water and some solutes transportation. Based on their 
intracellular locations and sequence similarities, AQPs 
can be divided into seven subfamilies, among which the 
plasma membrane intrinsic proteins (PIPs) and tono-
plast intrinsic proteins (TIPs) are considered to be the 
major AQPs mediated water uptake in roots (Afzal et al. 
2016). However, the role of PIPs and TIPs in DT is intri-
cate. Although most of PIP genes are down-regulated 
in response to drought, silencing of PIP genes in differ-
ent plant species decreased drought resistance possi-
bly resulted from decreased root hydraulic conductivity 
(Lpr) or transpiration rates (Afzal et  al. 2016). This is 
supported by the evidence that overexpression of AQP 
genes enhances drought resistance. Three Aquaporin 
Genes: AtTIP1;1, AtTIP2;3, and AtPIP2;2 are directly 
activated by a ERF gene, TG (Zhu et  al. 2014). The vit-
rified leaf phenotype was observed in both 35S:TG and 
35S:AtTIP1;1 plants possibly as a result of excess water 
accumulated in the intercellular spaces. Whether the vit-
rified leaf phenotype is related to enhanced DT is yet to 
be clarified. The aquaporin gene, Solyc10g054820.1, was 
screened as a direct target of tomato ASR1 by ChIP-seq 
experiment. Expression of this gene in ASR1-silenced 
lines is reduced (Ricardi et al. 2014).

LEA proteins
Late embryogenesis abundant (LEA) proteins were first 
identified in cotton (Gossypium hirsutum) seeds and were 
also found to be accumulated under stress conditions. 
Their precise roles in DT remain unknown, but they 
could serve as chaperones to protect macromolecules 
or as hydrophilic proteins to retain water (Bies-Etheve 
et al. 2008). LEA proteins were classified into nine groups 
based on the phylogenetic analysis in Arabidopsis (Hun-
dertmark and Hincha 2008). Two dehydrin group genes, 
RAB21 and WZY2, are directly activated by OsWRKY11 
and TabHLH49 in rice and wheat respectively (Table 2). 
OsNAC5 and OsNAC2 antagonistically regulate 
expression of OsLEA3, which belongs to LEA_4 group 
(Table 2). Overexpression of OsLEA3–1 and OsLEA3–2, 
also LEA_4 members, improved drought resistance, 

suggesting the functional importance of these proteins in 
plant DT (Duan and Cai 2012; Xiao et al. 2007).

Wax biosynthesis
The cuticle on the surface of plant, an extracellular hydro-
phobic layer, mainly contains cutin and cuticular wax 
(Lewandowska et al. 2020). Under drought conditions, it 
becomes thicker to reduce water loss accompanied with 
greater wax deposition. Cuticular wax is composed of 
very-long-chain fatty acids (VLCFAs), their esters, alco-
hols, aldehydes, alkanes and ketones. Wax biosynthesis 
consists of de novo biosynthesis of C16 and C18 fatty 
acids, fatty acid elongation (FAE) and wax production 
including alcohol-forming pathway and alkane-forming 
pathway (Yeats and Rose 2013; Lewandowska et al. 2020). 
In Arabidopsis, MYB96 and MYB94 redundantly regu-
late wax biosynthesis by targeting multiple wax biosyn-
thetic genes such as KCS1, KCS2, CER2, CER6, CER10, 
KCR1 for FAE, CER3 and WSD1 in alcohol-forming 
pathway and CER4 in alkane-forming pathway (Lee et al. 
2016b). LACS2, catalyzing formation of long-chain-acyl-
CoA, is conservatively activated by SHN1 homologs in 
rice (OsWR1) and Populus x euramericana (PeSHN1) 
(Table 2).

Polyamine biosynthesis
Polyamines, including putrescine (Put), spermidine 
(Spd), and spermine (Spm), play important roles in plant 
development and stress tolerance (Shi and Chan 2014). 
The function of polyamines in abiotic stress tolerance 
may involve ion homeostasis, keeping water status, ROS 
homeostasis, Osmotic balance and other responses. The 
genes encoding enzymes involved in polyamine bio-
synthetic pathway are induced by various stresses. The 
arginine decarboxylase (ADC) catalyzes the first step 
of polyamine biosynthesis. Expression of ADC genes 
in Fortunella Crassifolia，Pyrus Betulaefolia and rice 
is promoted by FcWRKY70，PbrMYB21，OsHSFA3 
respectively (Table 2). PtrNAC72 acts as a transcriptional 
repressor of PtADC to negatively regulate polyamine 
level in response to drought (Table 2).

Others
The other direct targets of drought-induced TFs are listed 
in Table  2, mainly including genes encoding lignin bio-
synthetic enzymes, proteases, GA biosynthetic enzyme, 
BR catabolic enzyme, expansin, stomatal development 
regulator, RD29A, RD29B and so on. Most of these regu-
lations are found only in one species although how they 
are related to DT are elucidated. More evidences are 
required to prove whether they are common targets reg-
ulated by drought in different plant species. Interestingly, 
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recent studies revealed that direct activation of SIN-
GLE FLOWER TRUSS (SFT) by SlVOZ1 is essential for 
drought-accelerated flowering, known as a drought 
escape (DE) response (Chong et al. 2022).

Concluding remarks
In this review, we summarized the reported TFs that 
have been functionally analyzed for their roles in DT in 
multiple higher plants. These TFs are mainly distrib-
uted in 11 families, which form the regulatory network 
to receive signals possibly via post-transcriptional reg-
ulation and trigger cellular and physiological reactions 
by direct regulating expression of downstream genes 
(Fig. 6). There is still a long way to go for completing 
the interactive map of TFs. For the role of TFs in the 

transmission of drought signal, the key question is how 
they receive the signal from outside the nucleus. The 
phosphorylation of TFs could serve as one way but 
definitely not the only way. Besides, whether or not the 
drought-responsive pioneer TFs, which have the abil-
ity to recognize DNA sequence motifs exposed on the 
surface of a nucleosome (Zaret 2020), exist in plant is 
yet to be determined. As a matter of fact, the drought-
responsive TF has been reported to interact with his-
tone acetyltransferase (HAT) to regulate chromatin 
state of target genes for activation of these genes (Li 
et  al. 2019a). The priming chromatin state is crucial 
for reactivation of genes during repeated stress, thus 
serving as epigenetic stress memory (Baurle and Trin-
dade 2020). It is of great importance to understand 

Fig. 6  The diagram of drought signaling transmitted by regulatory network. Drought-induced post-transcriptional regulation of transcription 
factors (TFs) may function to transmit the signal to TFs by activating TFs such as phosphorylation and translocation of TFs, or to mitigate intensity of 
the signal by compromising TFs such as ubiquitin-proteasome system (UPS) mediated protein degradation and microRNA (miRNA). The regulatory 
network is built by mutual regulation of TFs (activation or repression) and interaction of TFs that is not shown in the figure to trigger cellular and 
physiological responses by directly regulating related genes. The regulation of TFs and downstream genes here refers to direct binding of TFs to 
promoters of target genes which has been experimentally proved to regulate their expression. How TFs and epigenetic regulation that mediates 
stress memory cooperate for fine tuning of drought-responsive genes will be of great interest in the future
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how TFs and epigenetic regulators cooperated to 
mediate drought stress memory. Finally, identifica-
tion and characterization of the TF genes that spe-
cifically induced by drought and could confer DT but 
do not affect plant development would provide theo-
retical basis for genetic improvement of crop drought 
resistance.
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