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Abstract

As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon
perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate
and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases
(RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes.
Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence
indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As
a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we
summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
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Introduction
Both plant and animal cells can perceive internal signals,
such as growth hormones or peptides, to regulate
growth and developmental processes. Unlike animals,
plants, as sessile organisms, have to cope with environ-
mental change and stress. Plants have evolved a set of
receptor proteins to sense and respond to internal and
environmental signals. Among these, receptor-like ki-
nases (RLKs) and receptor-like proteins (RLPs) are the
major cell-surface receptors in terrestrial plants. Arabi-
dopsis and rice genomes contain ~ 600 and ~ 1100 RLK
members, respectively (Shiu et al., 2004). Plant RLKs
possess a highly variable ectodomain (ECD), a trans-
membrane domain, and a cytoplasmic kinase domain.
ECD is potentially involved in ligand perception and the
cytoplasmic kinase domain is responsible for signal
transduction (Shiu et al., 2004; Tang et al., 2017). There

are ~ 170 and ~ 90 RLPs in Arabidopsis and rice, re-
spectively, which are analogous to RLKs except for the
lack of the intracellular kinase domain. Thus, RLPs relay
signals through interactions with other signaling compo-
nents. Plant RLKs and RLPs recognize a variety of li-
gands, including hormones, peptides and other signaling
molecules from plant cells or the environment, thereby
regulating plant growth, development, adaption to abi-
otic stress, and plant-microbe interactions (Couto and
Zipfel, 2016; Tang et al., 2017; Yu et al., 2017). To date,
a number of RLKs and RLPs, and their corresponding li-
gands have been identified. For instances, the RLK pro-
tein BRASSINOSTEROID INSENSITIVE 1 (BRI1)
recognizes the steroid hormone brassinosteroid (BR) in
Arabidopsis (Wang et al., 2001). Arabidopsis RLK pro-
tein FLAGELLIN SENSING 2 (FLS2) sense bacterial fla-
gellin (or the epitope flg22) (Go’mez-Go’mez and Boller,
2000). Rice RLP CHITIN ELICITOR-BINDING PRO-
TEIN (CEBiP1) recognizes fungal cell wall-derived chi-
tin, Arabidopsis RLP RECEPTOR LIKE PROTEIN 23
(RLP23) recognizes necrosis and ethylene-inducing pep-
tide 1-like proteins (NLPs) (Albert et al., 2015; Kaku
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et al., 2006). Therefore, these receptors with known li-
gands are referred to as receptor kinases (RKs) or recep-
tor proteins (RPs) in this text.
Plant RLKs and RLPs can be divided into many sub-

families based on the structurally difference of the ECD
(Fig. 1), which contains the leucine-rich repeat (LRR)
domain, lysin motifs (LysM), malectin, lectin, or epider-
mal growth factor-like (EGF) domain (Shiu et al., 2004;
Vij et al., 2008). Intriguingly, one of the RLK subfamilies
lacks the transmembrane domain and is referred to as a
receptor-like cytoplasmic kinase (RLCK) subfamily.
There are 149 members in Arabidopsis and 379 in rice,
respectively (Shiu et al., 2004; Vij et al., 2008). Based on
sequence homology, RLCKs can be divided into 17 sub-
groups. Most of them contain only a Ser/Thr kinase do-
main, analogous to RLKs (Liang and Zhou, 2018; Lin
et al., 2013; Sun and Zhang, 2020).
Plant RLCKs have been reported to regulate a variety

of biological processes including plant innate immunity,
hormone signaling, sexual reproduction, stomatal pat-
terning and adaptation to abiotic stress (Liang and Zhou,
2018; Lin et al., 2013; Sun and Zhang, 2020). Increasing
evidence has revealed that plant RLCKs function in con-
cert with RKs/RPs. Many RLCK members have been re-
ported to be physically or genetically coupled to plant
RKs or RPs to transduce receptor-mediated signaling
(Tang et al., 2017; Yu et al., 2017). BOTRYTIS-
INDUCED KINASE 1(BIK1), a typical representative
member of Arabidopsis RLCK-VII, directly interacts
with FLS2 and ELONGATION FACTOR-TU (EF-Tu)

RECEPTOR (EFR) to regulate PAMP-activated signaling
(Lu et al., 2010; Zhang et al., 2010). OsRLCK176 and
OsRLCK185 interact with rice CHITIN ELICITOR RE-
CEPTOR KINASE1 (OsCERK1) and are essential for
chitin- and PGN-induced immune signaling (Ao et al.,
2014; Yamaguchi et al., 2013). Arabidopsis MARIS
(MRI), an RLCK-VIII member, has been reported to
interact with ANXUR1 (ANX1), ANX2 and FERONIA
(FER) to regulate integrity of pollen tube and growth of
root hair (Boisson-Dernier et al., 2015). Arabidopsis
COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1)
negatively regulates cold responses by phosphorylating
14-3-3 proteins (Liu et al., 2017). In this review, we focus
on recent advances of RLCKs in regulating plant re-
sponses to biotic and abiotic stress.

RLCKs are pivot signaling points in plant
responses to biotic stress
Although plants have not evolved an adaptive immune
system, they are equipped with a sophisticated innate
immune system to prevent pathogen infection (Jones
and Dangl, 2006; Chisholm, et al., 2006; Zhou and
Zhang, 2020). RLCKs have been shown to regulate plant
resistance to fungal and bacterial pathogens (Liang and
Zhou, 2018; Lin et al., 2013; Sun and Zhang, 2020).
Some RLCKs have also been shown to regulate plant re-
sistance to viral pathogens and insects (Lee and Kim,
2015; Rashid et al., 2017; Sun et al., 2021), indicating a
broad role of RLCKs in regulating plant responses to bi-
otic stress (Fig. 2).

Fig. 1 Domain organization of representative receptor-like kinases (RLKs), receptor-like proteins (RLPs), and receptor-like cytoplasmic kinases
(RLCKs). Representative types of RLKs as well as RLPs harbor a transmembrane domain to get localized to the plasma membrane (PM). Many
RLCKs associate with the plasma membrane (PM). LRR, leucine rich repeat; LysM, lysine motif
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Upon immune activation, RLCKs integrate signaling
from cell-surface-localized immune receptors. Plant RKs
and RPs serve as immune receptors to perceive molecu-
lar patterns from microbes and danger signals from host
cells caused by pathogen infection. These signaling mol-
ecules are known as microbe- or pathogen-associated
molecular patterns (MAMPs/PAMPs) and damage-
associated molecular patterns (DAMPs). The corre-
sponding RKs/RPs are referred to as pattern recognition
receptors (PRRs) (Couto and Zipfel, 2016; DeFalco and
Zipfel, 2021; Tang et al., 2017; Yu et al., 2017). Arabi-
dopsis FLS2 and EFR recognize bacterial flagellin and
EF-Tu in the presence of the co-receptor BRI1-
ASSOCIATED KINASE1 (BAK1) (Chinchilla et al.,
2007; Heese et al., 2007). Arabidopsis CHITIN
ELICITOR RECEPTOR KINASE1 (CERK1), LYSINE
MOTIF RECEPTOR KINASE5 (LYK5), and rice CEBiP1
can recognize the fungal cell wall component chitin
(Cao et al., 2014; Kaku et al., 2006; Liu et al., 2012; Miya
et al., 2007; Wan et al., 2008). PEP RECEPTOR 1
(PEPR1) and PEPR2 can sense host-derived peptide peps
(Krol et al., 2010). The recognition of MAMPs/PAMPs/
DAMPs by PRRs trigger downstream PAMP-triggered
immunity (PTI), which involves the production of

reactive oxygen species (ROS), induction of calcium in-
flux, activation of mitogen-activated protein kinase
(MAPK) and calcium-dependent protein kinase (CDPK)
pathways, and transcriptional reprogramming (DeFalco
and Zipfel, 2021). Pathogenic microbes can evade host
immune recognition or suppress host immunity by se-
creting effector proteins into hosts (Dangl et al., 2013;
Dodds and Rathjen, 2010; Jones and Dangl, 2006). To
counteract, plants have evolved intracellular immune re-
ceptors, which are known as nucleotide-binding and
leucine-rich repeat domain-containing receptors (NLRs),
to recognize cytoplasmic effectors (Jones et al., 2016).
Plant cells have a limited number of NLRs to cope with
numerous effector proteins, thus, plant NLR proteins
recognize effectors through multiple strategies. The acti-
vation of NLRs leads to effector-triggered immunity
(ETI), a more robust immune response, and is often ac-
companied by programmed cell death (Jones et al.,
2016). Recent studies have shown that PTI and ETI
share common signaling components and ETI functions
through augment of PTI (Ngou et al., 2021; Pruitt et al.,
2021; Tian et al., 2021; Yuan et al., 2021). RLCKs func-
tion as central kinases in the activation of plant immun-
ity and are the major executors to activate and

Fig. 2 Signaling responses of RLCKs to biotic and abiotic stress in plants. RLCKs function downstream of RLK (or RLP) immune receptors to
regulate a series of immune responses including production of reactive oxygen species (ROS), calcium influx, activation of MAPK cascades and
CDPKs, and transcriptional reprogramming. As the central regulators of plant immunity, RLCKs are frequently targeted by microbial effectors such
as bacterial effectors avrPphB and avrAC, the fungal effector NIS1, and the oomycete effector RXLR25. Increasing evidence indicates a role of
RLCKs in orchestrating plant adaption to abiotic stress
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transduce immune signaling downstream of PRRs
(DeFalco and Zipfel, 2021; Liang and Zhou, 2018).
RLCKs are frequently attacked by microbial virulence ef-
fectors and are required for ETI activation (Liang and
Zhou, 2018; Sun and Zhang, 2020).

Phosphorylation-dependent regulation of ROS production
The activation of PRRs and NLRs triggers a series of im-
mune responses. ROS production is an early immune re-
sponse that is mainly controlled by plasma membrane-
localized RESPIRATORY BURST OXIDASE HOMO-
LOG (Rboh) proteins (Qi et al., 2017). The apoplastic
ROS functions as molecular signals to further regulate
downstream immune responses, such as PAMP-induced
stomatal closure and callose deposition to fend off the
entry of phytopathogens (Castro et al., 2021; Daudi
et al., 2012; Qi et al., 2017; Waszczak et al., 2018).
RbohD and RbohF are major proteins that control

immune-related ROS production in Arabidopsis (Qi
et al., 2017). RbohD has been shown to be regulated by
diverse mechanisms (Dubiella et al., 2013; Kadota et al.,
2015; Kadota et al., 2014; Li et al., 2014; Zhang et al.,
2009). RbohD directly interacts with BIK1 and is phos-
phorylated by BIK1 and its closest homolog PBS1-LIKE
1 (PBL1). The phosphorylation deficient form of RbohD
fails to restore flg22-induced ROS burst and stomatal
immunity in rbohD, indicating that phosphorylation of
RbohD by BIK1 and PBL1 is required for the activation
of RbohD (Kadota et al., 2014; Li et al., 2014; Ranf et al.,
2014). Similarly, another RLCK-VII member, RPM1-
INDUCED PROTEIN KINASE (RIPK) directly phos-
phorylates RbohD and positively regulates ROS produc-
tion triggered by multiple PAMPs (Li et al., 2021). In
contrast to BIK1 and RIPK, Arabidopsis RLCK-VII
members PBL13 and CONSTITUTIVE DIFFERENTIAL
GROWTH1 (CDG1) negatively regulate flg22-induced
ROS burst. PBL13 directly interacts with and phosphory-
lates RbohD to regulate the turnover of RbohD (Lee
et al., 2020; Lin et al., 2015). CDG1 negatively regulates
flg22 and chitin-induced ROS by promoting the degrad-
ation of FLS2 and CERK1 (Yang et al., 2021).
PATTERN-TRIGGERED IMMUNITY COMPRO-

MISED RECEPTOR-LIKE CYTOPLASMIC KINASE1
(PCRK1), a homolog of BIK1, is also required for the
flg22-induced ROS burst (Kong et al., 2016; Sreekanta
et al., 2015). RLCK-XII members BR SIGNALING KIN-
ASE1 (BSK1), BSK5, BSK7 and BSK8 are required for
flg22-induced maximum ROS production (Majhi et al.,
2021; Shi et al., 2013; Yan et al., 2018). Whether PCRK1
and BSKs regulate flg22-induced ROS in a manner simi-
lar to BIK1 remains unclear. Rice OsRLCK57,
OsRLCK107, OsRLCK118, and OsRLCK176 have been
reported to directly associate with OsCREK1 and regu-
late chitin- and PGN-induced ROS production (Li et al.,

2017). OSRLCK176 and OsRLCK118 have been reported
to interact with and phosphorylate OsRbohB, indicating
that rice Rboh proteins are similarly regulated by RLCKs
as in Arabidopsis (Fan et al., 2018). BROAD-
SPECTRUM RESISTANCE 1 (OsBSR1), also known as
OsRLCK278, is required for chitin-induced production
of ROS and defense-related gene expression (Kanda
et al., 2017; Sugano et al., 2018). Silencing of PTO-
INTERACTIN 1 (PTI1), a tomato RLCK-VIII member,
leads to decreased flg22-induced ROS production and
compromised resistance to Pseudomonas syringae infec-
tion with an unknown mechanism (Schwizer et al.,
2017).
It is worth noting that RLCK proteins regulate

immune-related ROS production with redundancy and
specificity. Rao et al (2018) constructed nine high-order
mutants of the RLCK-VII subfamily (rlck-vii-1 ~ rlck-vii-
9) based on the phylogenetic tree and systematically ana-
lyzed their roles in PAMP-induced immune responses.
While RLCK-VII-5, -7, and - 8 are widely required for
ROS production induced by different PAMPs, RLCK-
VII-4 is specifically required for chitin-induced ROS
(Rao et al., 2018). Compared to other RLCK-VII mem-
bers, PBL30, PBL31, and PBL32 mainly regulate ROS
production mediated by RLP receptors (Pruitt et al.,
2021). PBL34, PBL35, and PBL36 have been reported to
be required for 3-OH-C10:0-induced immune responses
including ROS production (Luo et al., 2020).

Regulation of calcium channels and calcium-dependent
signaling
Calcium is recognized as one of the most important sec-
ond messengers and is involved in diverse signaling
events in eukaryotes. Calcium is essential for both PRR-
and NLR-mediated immune activation (Bi and Zhou,
2021; DeFalco and Zipfel, 2021). PAMPs trigger a rapid
calcium influx, which is required for the activation of
downstream immune signaling (Boudsocq and Sheen,
2013). Calcium binding to the EF hand of RbohD is es-
sential for the activation of RbohD (Boudsocq and
Sheen, 2013). Consistent with this, a calcium influx oc-
curs within seconds upon PAMP treatment and even
earlier than the ROS burst. The elevation of cytoplasmic
calcium concentration activates CDPKs. CPK4, CPK5,
CPK6, and CPK11 have been reported to be required for
the activation of PAMP-induced immunity. The cpk
multiple mutant showed reduced flg22-induced ROS
production, defense-related gene expression, and bacter-
ial resistance (Boudsocq et al., 2010). CPK5 has also
been reported to directly phosphorylate RbohD to regu-
late ROS production (Dubiella et al., 2013).
BIK1 and PBL1 are required for flg22-induced calcium

bursts. The bik1 pbl1 mutant showed significantly re-
duced calcium bursts compared to that of wild-type
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plants (Li et al., 2014; Ranf et al., 2014). Consistent with
this, co-expression of CPK5 with BIK1 K105E mutation,
a dominant negative mutation of BIK1, blocks the flg22-
induced phosphorylation of CPK5, indicating that other
PBLs may also contribute to flg22-indued calcium influx
and CDPK activation (Li et al., 2014).
Recently, CYCLIC NUCLEOTIDE GATED CHAN-

NEL 2 (CNGC2) and CNGC4 have been reported to
form a calcium channel that is responsible for flg22-
induced calcium influx under high external calcium con-
ditions. BIK1 directly phosphorylates CNGC2 and
CNGC4 to activate calcium channels (Tian et al.,
2019). Thor et al (2020) showed that BIK1 and PBL1
rapidly phosphorylate OSCA1.3, which activates its cal-
cium channel activity in guard cells and promotes
PAMP-induced stomatal closure (Thor et al., 2020).
Similarly, OsRLCK185 was reported to phosphorylate
OsCNGC9 to regulate chitin-induced calcium influx
(Wang et al., 2019b). Another family of calcium chan-
nels, GLUTAMATE RECEPTOR 2.7 (GLR2.7), 2.8 and
2.9, has also been reported to contribute to PAMP-
induced calcium influx (Bjornson et al., 2021). Whether
GLR proteins are regulated by RLCKs remains unclear.
Calcium-permeable channel CNGC20 is phosphory-

lated by BIK1 and a gain-of-function cngc20-4 mutant
showed enhanced PTI responses and ETI hypersensitive
cell death (Zhao et al., 2021). The cngc20 null mutant
was also identified in a screening for suppressor of bak1
serk4 cell death phenotype and CNGC20 was phosphor-
ylated by BAK1 (Yu et al., 2019). Both BIK1 and BAK1-
mediated phosphorylation promoted the protein stability
of CNGC20 (Yu et al., 2019; Zhao et al., 2021). CNGC20
has been reported to form heteromeric complexes with
CNGC19 (Yu et al., 2019; Zhao et al., 2021). However,
whether CNGC19 and CNGC20 contribute to calcium
influx in plant immunity remains uncertain.
Previous studies have shown that activation of NLRs

triggers a prolonged calcium influx, which is indispens-
able for RESISTANCE TO Pseudomonas SYRINGAE PV
MACULICOLA1 (RPM1) and HOPZ-ACTIVATED RE-
SISTANCE1 (ZAR1)-mediated HR responses (El Kasmi
et al., 2017; Grant et al., 2000; Wang et al., 2019a).
Xanthomonas campestris effector protein AvrAC was
recognized by ZAR1 resistosome, which is composed of
AvrAC, the RLCK-VII member PBL2, the RLCK-XII
member RESISTANCE RELATED KINASE1 (RKS1) and
the NLR protein ZAR1(Wang et al., 2019a; Wang et al.,
2019c). Bi et al (2021) showed that the ZAR1 resisto-
some forms a calcium-permeable channel to trigger im-
munity and cell death (Bi et al., 2021).

Regulation of MAPK cascades
The MAPK cascade is composed of MAPK kinase kinase
(MAPKKK), MAPK kinase (MAPKK), and MAPK itself.

The MAPK cascade is one of the most conserved signal-
ing pathways in both mammalian and plant cells. Per-
ception of PAMP molecules activates two conserved
MAPK cascades, which lead to the phosphorylation of
MPK3, MPK6, and MPK4 within minutes (Meng and
Zhang, 2013). While MPK4 is activated by MEKK1 and
MKK1/2, MPK3 and MPK6 are activated by MAPKKK3/
5 and MKK4/5 (Asai et al., 2002; Bi et al., 2018; Gao
et al., 2008; Qiu et al., 2008; Suarez-Rodriguez et al.,
2007; Yan et al., 2018).
How PRRs transduce the signals to MAPKKKs had

remained one of the key issues in the study of plant
immunity. Plant RLCKs have been reported to be
genetically required for PAMP-induced MAPK activa-
tion. AvrAc, a Xanthomonas campestris effector with
uridylyl transferase activity, specifically suppresses the
activation of BIK1 and its homologs (Feng et al.,
2012). Expression of AvrAc in Arabidopsis signifi-
cantly reduced the activation of MPK3/6 and MPK4
(Feng et al., 2012), indicating that RLCKs are required
for the activation of MAPKs. Consistent with this,
flg22-induced MAPK activation was reduced in
pcrk1 pcrk2 double mutant (Kong et al., 2016). Pep2-
induced MAPK activation was slightly reduced in the
bik1 pbl1 mutant (Yamada et al., 2016b). Rice
OsRLCK185 and OsRLCK176 have been reported to
interact with OsCERK1 and are required for chitin-
and PGN-induced MAPK activation (Ao et al., 2014;
Yamaguchi et al., 2013). PBL27, the Arabidopsis
homolog of OsRLCK185, is required for chitin-
triggered activation of MPK3/6. Rao et al (2018) sys-
temically analyzed PAMP-induced MAPK activation
in the nine rlck-vii high-order mutants and showed
that the RLCK-VII-4 subgroup (PBL19, PBL20,
PBL37, PBL38, PBL39 and PBL40) is specifically re-
quired for chitin-triggered MAPK activation (Rao
et al., 2018). The RLCK-VII-8 subgroup (BIK1, PBL1,
PBL11, PBL9 and PBL10) specifically regulate Pep2-
induced MAPK activation (Rao et al., 2018).
Over the last few years, reports have shown that

RLCKs directly phosphorylate MAPKKKs to regulate
PAMP-induced MAPK activation. Arabidopsis PBL27
interacts with both CERK1 and MAPKKK5 and phos-
phorylates MAPKKK5 to modulate chitin-induced
MAPK (Yamada et al., 2016a). BSK1 directly phos-
phorylates MAPKKK5 and regulates plant resistance
(Yan et al., 2018). Later studies showed that
OsRLCK185 interacts with OsCERK1 and
OsMAPKKKε and functions in plant resistance to rice
blast (Wang et al., 2017). Bi et al (2018) showed that
the RLCK-VII subfamily directly links PRR and
MAPKKKs, and RLCK-VII-4 members phosphorylate
MAPKKK5 to activate chitin-induced MAPK (Bi
et al., 2018; Rao et al., 2018).
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Regulatory roles of RLCKs in NLR-mediated signaling
Pathogenic microbes are equipped with a variety of viru-
lence effectors that target key signaling components in
plant immunity. As the central kinases in immune sig-
naling, RLCKs are frequently targeted by microbial ef-
fector proteins to suppress host immunity (Liang and
Zhou, 2018; Sun and Zhang, 2020). Some of the RLCKs
work as sensors for intracellular effectors and they are
regarded as “guardees” or “decoys” to perceive the pres-
ence of effectors (Liang and Zhou, 2018; Sun and Zhang,
2020). Tomato Pto protein is the first characterized
effector-targeted RLCK in plants. Pto directly interacts
with Pseudomonas syringae effectors AvrPto and AvrP-
toB and activates ETI through the NLR protein PTO RE-
SISTANCE AND FENTHION SENSITIVITY (Prf) (Kim
et al., 2002; Scofield et al., 1996; Tang et al., 1996).
AvrPto and AvrPtoB were also reported to target the
kinase domain of FLS2 and BAK1 to suppress plant im-
mune responses (Shan et al., 2008; Xiang et al., 2008).
Thus, Pto serves as a decoy to protect FLS2 -BAK1 com-
plex and functions as a sensor to perceive avrPto and
avrPtoB.
Pseudomonas syringae effector AvrPphB is a cysteine

protease that proteolytically cleaves AVRPPHB SUSCEP-
TIBLE 1 (PBS1), an RLCK-VII member, and leads to the
activation of effector-triggered immune response
through the NLR protein RESISTANCE TO Pseudo-
monas Syringae5 (RPS5) (Ade et al., 2007). PRS5 moni-
tors the cleavage of PBS1 to detect the presence of
AvrPphB (Ade et al., 2007; Shao et al., 2003). Later re-
search revealed that AvrPphB also cleaves other close
homologs of PBS1, the PBS1-like (PBL) proteins, to sup-
press plant immune responses. This led to the identifica-
tion of BIK1 and other PBL proteins as central
components of immune signaling (Zhang et al., 2010).
Xanthomonas campestris effector AvrAC (also known

as XopAC) promotes bacterial virulence by uridylylating
the conserved phosphorylation sites in BIK1 and related
PBLs to suppress plant immunity (Feng et al., 2012).
The NLR protein ZAR1 forms a stable complex with RE-
SISTANCE RELATED KINASE1 (RKS1), a pseudokinase
from the RLCK-XII subgroup. The recognition of AvrAc
by ZAR1 also requires the RLCK-VII member PBL2
(Guy et al., 2013; Wang et al., 2015). Once PBL2 is uri-
dylylated by AvrAc, the RKS1-ZAR1 complex recruits
PBL2 and induces the oligomerization of ZAR1 to form
a resistosome, which serves as a calcium channel to trig-
ger immunity and cell death (Bi et al., 2021; Wang et al.,
2015; Wang et al., 2019a; Wang et al., 2019c).
HopZ1a is a Pseudomonas syringae effector with ace-

tyltransferase activity that also triggers ETI through the
NLR protein ZAR1. ZAR1 recognizes the presence of
HopZ1a through HOPZ-ETI-DEFICIENT1 (ZED1), a
pseudokinase from the RLCK-XII subgroup. ZED1

interacts with both ZAR1 and HopZ1a and serves as a
decoy substrate for HopZ1a recognition (Lewis et al.,
2013). Two closely related RLCK-VII members, SUP-
PRESSOR OF ZED1-D1 (SZE1) and SZE2, have been re-
ported to interact with ZED1 and ZAR1 and are
involved in the recognition of HopZ1a (Liu et al., 2019).
Likewise, ZAR1 also recognizes the virulence effector
HopF2a through ZRK3, a homolog of ZED1 (Seto et al.,
2017).
OsRLCK185 and OsRLCK55 directly interact with

Xanthomonas oryzae effector Xoo1488 in yeast two-
hybrid assays (Yamaguchi et al., 2013). Further studies
showed that OsRLCK185 interacts with OsCERK1 to
regulate chitin-induced immune signaling (Yamaguchi
et al., 2013). Consistent with this, Xoo1488 suppresses
chitin-induced immune responses, indicating that
OsRLCK185 is a virulence target of Xoo1488. The
oomycete pathogen Phytopthora capsici effector RXLR25
and Colletotrichum fungi effector NIS1 have been re-
ported to suppress PAMP-induced phosphorylation of
RLCK-VII proteins by direct interaction (Irieda et al.,
2019; Liang et al., 2021).
A tomato RLCK named AVR9/CF-9 INDUCED KIN-

ASE 1 (ACIK1) is required for Avr9/Cf9 and Avr4/Cf4-
mediated resistance (Rowland et al., 2005). The Arabi-
dopsis NLR protein RPM1 detects Pseudomonas syringae
effector AvrB and AvrPRM1 by monitoring RPM1-
INTERACTING 4 (RIN4) phosphorylation. Although
neither effector has kinase activity, it causes RIN4 phos-
phorylation through the host RLCK protein RIPK and
CDG1 with an unknown mechanism (Chung et al., 2011;
Liu et al., 2011; Yang et al., 2021). The Pseudomonas syr-
ingae effector HopAI1 directly targets MPK3, MPK4 and
MPK6 and inactivates MAPK cascades (Zhang et al.,
2007). The disruption of the MAPK cascade is sensed by
the NLR protein SUPPRESSOR OF MKK1 MKK2, 2
(SUMM2), which triggers cell death (Zhang et al., 2012).
Zhang et al (2017) revealed that CALMODULIN-
BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE
3 (CRCK3) associates with SUMM2 and is directly phos-
phorylated by MPK4. SUMM2 monitors CRCK3 phos-
phorylation to sense the disruption of MAPK cascades
(Zhang et al., 2017). A recent study showed that CRCK3
overexpression also activates cell death, which requires
the kinase activity of CRCK3 and the NLR protein
SUMM2 (Yang et al., 2020; Zhang et al., 2017).

Emerging roles of RLCKs in plant responses to
abiotic stress
In addition to pathogen infection, plants also have to
cope with several abiotic stress including drought, salin-
ity and low temperature (Zhu, 2016). Although it has
not been extensively studied as in plant-microbe interac-
tions, increasing studies have reported that RLCK
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proteins play important regulatory roles in plant re-
sponses to many abiotic stresses. In the case of rice, for
instance, 86 of the 376 rice RLCK genes were differen-
tially expressed in response to cold, salt, and dehydration
stimuli (Vij et al., 2008). OsRLCK311 has been reported
to play a positive role in salt tolerance (Sade et al., 2020;
Zhang et al., 2021). OsRLCK241 was transcriptionally in-
duced by salt and drought. OsRLCK241 overexpression
confers enhanced resistance to salt and drought stress
(Zhang et al., 2021).
Arabidopsis ABA- AND OSMOTIC STRESS-

INDUCIBLE RECEPTOR-LIKE CYTOPLASMIC KIN-
ASE1 (ARCK1) has been reported to interact with
CYSTEINE-RICH RLK 36 (CRK36), a cysteine-rich re-
peat RLK, to regulate tolerance to osmotic stress and
ABA. The arck1 mutant displayed reduced tolerance to
osmotic and ABA stress. Further studies showed that
CRK36 directly phosphorylates ARCK1 and regulates
the expression of stress-responsive genes via an un-
known mechanism (Tanaka et al., 2012). Arabidopsis
CRCK1 kinase has been reported to be induced under
multiple stress conditions, including cold, salt, and ABA.
Whether and how CRCK1 is involved in abiotic stress
tolerance remains unclear (Yang et al., 2004). Esi47 is
a homolog of Arabidopsis PCRK1 in the wheatgrass
and is upregulated by salt stress and ABA treatment
(Shen et al., 2001). The Arabidopsis RLCK-VIII mem-
ber CYTOSOLIC ABA RECEPTOR KINASE 1
(CARK1) and CARK6 directly interact with and phos-
phorylate subfamily III ABA receptors, and positively
regulate drought stress (Li et al., 2019; Wang et al.,
2019d; Zhang et al., 2018a). The rice RLCK protein,
SALT TOLERANCE RECEPTOR-LIKE CYTOPLAS-
MIC KINASE 1 (STRK1), positively regulates salt and
oxidative stress by interacting with CatC at the
plasma membrane. STRK1 has been reported to phos-
phorylate CatC at specific sites to enhance the cata-
lase activity of CatC (Zhou et al., 2018).
The soybean RLCK GsRLCK, from wild soybean Gly-

cine soja, is upregulated by salt, alkali, drought, and
ABA. GsRLCK overexpression leads to increased tol-
erance to drought and salt stress in Arabidopsis (Sun
et al., 2013). CALCIUM-DEPENDENT
CALMODULIN-BINDING RECEPTOR-LIKE KINASE
(GsCBRLK), an RLCK-VI member from Glycine soja,
is transcriptionally induced by salt, drought, cold and
ABA. GsCBRLK interacts with a group 3 late embryo-
genesis abundant protein GsPM30, and overexpression
of GsCBRLK in Arabidopsis has greatly enhanced
plant tolerance to salt and ABA (Sun et al., 2019;
Yang et al., 2010). GsCBRLK also interacts with a me-
thionine sulfoxide reductase (MSR) B protein
GsMSRB5a and activates ROS signaling to regulate
carbonate alkaline stress (Sun et al., 2016).

Rice OsRLCK253 was identified in a search for rice
SAP1-interacting proteins. SAP1 is known to confer tol-
erance to abiotic stress. OsRLCK253 associates with
SAP1 and SAP11. OsRLCK253 overexpression causes in-
creased resistance to salt and drought stress in Arabi-
dopsis (Giri et al., 2011). Rice GROWTH UNDER
DROUGHT KINASE (GUDK) has been reported to be
required for grain yield under drought condition. The
gudk mutant displays defects in response to salt stress,
osmotic stress, and ABA treatment. GUDK phosphory-
lates a transcription factor, OsAP37, involved in drought
tolerance (Ramegowda et al., 2015; Ramegowda et al.,
2014).
Liu et al (2017) reported that Arabidopsis CRPK1

negatively regulates cold tolerance by phosphorylating
14-3-3 proteins upon cold treatment. COLD-
RESPONSIVE C-REPEAT-BINDING FACTORs (CBFs)
are key transcription factors that promote cold toler-
ance. The phosphorylated 14-3-3 proteins then translo-
cate into the nucleus and destabilize CBFs to regulate
cold responses (Liu et al., 2017). Together, how RLCKs
regulate abiotic stress responses requires further elucida-
tion. Additional RLCKs functioning in plant responses
to abiotic stress remain to be discovered.

Multi-layered regulation on the activity and
stability of RLCKs
As mentioned above, RLCKs are the central kinases in
plant immune signaling (Couto and Zipfel, 2016;
DeFalco and Zipfel, 2021; Liang and Zhou, 2018; Sun
and Zhang, 2020) and important regulators in plant re-
sponses to abiotic stress (Liang and Zhou, 2018; Lin
et al., 2013). Thus, the activity and stability of RLCKs
must be tightly regulated to ensure appropriate re-
sponses to biotic and abiotic stress (Liang and Zhou,
2018; Sun and Zhang, 2020).
BIK1 is a representative member of plant RLCK and

has been extensively studied over the last decade. Upon
flg22 perception, FLS2 forms a complex with BAK1 and
leads to the phosphorylation of BIK1 at specific sites,
which causes the dissociation of BIK1 from the FLS2 re-
ceptor complex (Lu et al., 2010; Zhang et al., 2010). Ac-
tivated BIK1 phosphorylates its downstream targets to
transduce immune signals (Kadota et al., 2014; Li et al.,
2014; Liang et al., 2016, 2018). BIK1 is also regulated by
monoubiquitination, which is caused by a pair of E3 li-
gases, RHA3A and RHA3B. The monoubiquitination of
BIK1 is required for the flg22-induced BIK1-FLS2 dis-
sociation and the full function of BIK1 (Ma et al., 2020).
To ensure that the immune responses are controlled

at appropriate amplitude, the activity and stability of
BIK1 are tightly controlled. The Arabidopsis protein
phosphatase PP2C38 interacts with BIK1, and controls
the phosphorylation status of BIK1 (Couto et al., 2016).
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PP2C38 dephosphorylates BIK1 in the resting state, and
upon PAMP treatment, it gets phosphorylated and dis-
sociates from BIK1 to ensure BIK1 activation (Couto
et al., 2016). Similarly, a PP2C phosphatase, Pic1, nega-
tively regulates the phosphorylation status of the tomato
RLCK protein Pti1b to modulate immune activation
(Giska and Martin, 2019).
BIK1 is known to be degraded through the ubiquitin-

proteasome pathway, and its stability has been reported
to be differently regulated by CPK28, a calcium-
dependent protein kinase (Monaghan et al., 2014), and
heterotrimeric G protein complex composed of EXTRA-
LARGE G PROTEIN 2/3 (XLG2/3), AGB1 and AGG1/2
(Liang et al., 2016). CPK28 interacts with BIK1 and
negatively regulates BIK1 accumulation, as the cpk28
mutant shows increased BIK1 protein accumulation and
enhanced disease resistance (Monaghan et al., 2014). In
contrast, Arabidopsis G proteins positively regulate BIK1
accumulation. The xlg2 xlg3, agb1 and agg1 agg2 mutant
plants showed reduced BIK1 protein levels and compro-
mised immune responses (Liang et al., 2016). PBL20, an-
other RLCK-VII member, showed enhanced degradation
in G protein mutant extracts, indicating that the G pro-
tein also regulates the stability of other RLCKs (Liang
et al., 2016). Wang et al (2018) identified a pair of E3 li-
gases, PLANT U-BOX25 (PUB25) and PUB26, which are
responsible for the proteasome-mediated degradation of
BIK1 (Wang et al., 2018). While G proteins negatively
regulate the E3 ligase activity of PUB25/26, CPK28 posi-
tively regulates the activity of PUB25/26 by phosphoryl-
ation (Wang et al., 2018). Together, these reports
showed that CPK28 and G proteins coordinate the turn-
over of BIK1 by controlling the E3 ligase activity of
PUB25/26. In addition, two MAP4Ks, SIK1 and
MAP4K4, have been reported to directly phosphorylate
BIK1 and positively regulate BIK1 stability (Jiang et al.,
2019; Zhang et al., 2018b). The E3 ligase PUB4 has been
reported to promote BIK1 degradation before immune
activation. After PAMP perception, PUB4 positively reg-
ulates the accumulation of activated BIK1 (Derkacheva
et al., 2020). Taken together, these reports showed that
the stability of BIK1 is tightly controlled by multiple lay-
ered regulations.

Conclusions and perspectives
Recent advances have documented the key regulatory
roles of RLCKs in plant responses to biotic stress. Plant
RLCKs directly associate with RK or RP immune recep-
tors to regulate PRR-mediated signaling. RLCKs target
diverse substrates to transduce immune signaling via
phosphorylation. To date, MAPKKKs, NADPH oxidase,
calcium channels, and G proteins have been identified as
substrates for RLCKs (DeFalco and Zipfel, 2021; Zhou
and Zhang, 2020). On the other side, modifications of

RLCKs trigger the activation of NLR-mediated immune
signaling. Most recent studies also implied the contribu-
tion of RLCKs in connecting PRR- and NLR-mediated
signaling (Ngou et al., 2021; Pruitt et al., 2021; Tian
et al., 2021; Yuan et al., 2021). Additional types of sub-
strates and modes of RLCK actions in NLR-mediated
signaling remain to be identified in the future.
Increasing evidence also indicates the important roles

of RLCKs in plant responses to abiotic stress. However,
the underlying mechanisms governing the activation of
RLCKs remain less investigated. Several RLKs have been
proved to function in plant responses to abiotic stress.
Whether RLK/RLP-mediated RLCK phosphorylation is a
common mechanism governing RLCK activation re-
mains elusive.
Futhermore, the mechanisms governing RLCK signal-

ing specificity require further investigation. Previous
studies have revealed the functional specificities of a
subset of RLCK-VII subfamily members in different
PRR-mediated signaling. In addition, BIK1 was shown to
play opposite roles in different PRR-mediated signaling
pathways (Wan et al., 2019). The evidence indicates the
functional specificities of RLCKs in signaling processes.
Future studies are required to further determine the spe-
cificity and regulatory mechanisms of signaling integra-
tion and dispersal by RLCKs in regulating plant
responses to biotic and abiotic stress, growth and
development.
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