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Abstract

The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and
plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated
regulatory mechanisms of this complex that govern development and various stress responses. In this review, we
summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF
complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights
the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the
potentials in exploiting chromatin remodeling for management of crop disease are presented.
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Introduction
Eukaryotic genome are organized and compacted by 146
base pairs of DNA wrapped around a histone octamer,
forming structures named nucleosomes, which enable
long DNA strands to precisely fit into the nucleus (Mit-
tal & Roberts, 2020; Ojolo et al. 2018). Within the nu-
cleus, DNA strands are highly folded, constrained, and
compacted into higher order chromatin structures, and
the dynamic regulation of chromatin can ensure the ap-
propriate timing, location and sequence of cellular
DNA-based events (Luger et al. 2012; Roberts & Orkin,
2004). Therefore, mechanisms that govern chromatin
dynamics are integral components of eukaryotic gene
regulation, that include covalent histones, DNA modifi-
cations and ATP-dependent chromatin remodeling com-
plexes (Centore et al. 2020; Roberts & Orkin, 2004).
Chromatin remodelers utilize the energy derived from

ATP (adenosine triphosphate) hydrolysis to move,

destabilize, eject, or restructure nucleosomes, thus
modulating the access of transcription machinery to
DNA (Becker & Hörz, 2002; Hohmann & Vakoc, 2014).
The ATP-dependent chromatin remodeling complex can
be divided into four distinct subfamilies: SWI/SNF,
ISWI, CHD and INO80. These subfamilies share a con-
served ATPase domain but functions in a largely non-
redundant manner to govern discrete biological pro-
cesses, such as transcriptional regulation, DNA replica-
tion, DNA repair, homologous recombination and
chromosomal segregation (Clapier & Cairns, 2009; Hoh-
mann & Vakoc, 2014; Masliah-Planchon et al. 2015).
Among the four chromatin remodeling complex subfam-
ilies, the SWI/SNF complex is evolutionarily conserved
and was first discovered through genetic screens and
biochemical purification in budding yeast Saccharomyces
cerevisiae (Mittal & Roberts, 2020; Neigeborn & Carlson,
1984). Notably, the SWI/SNF complex is the most
strongly associated regulator of chromatin access (Cla-
pier et al. 2017; Euskirchen et al. 2012). Many studies
have shown that the SWI/SNF complex regulates various
stress responses and developmental pathways in budding
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yeast, Drosophila, and human through precise control of
gene expression (Kasten et al. 2011; Kwon & Wagner,
2007). In this review, we highlight key functions and
regulatory mechanisms of this complex in regulating
plant-pathogen interactions.

Compositions of the SWI/SNF complex
The conserved components of SWI/SNF complex were
characterized in several eukaryotic organisms including
S. cerevisiae, Arabidopsis and human (Table 1). All core
and actin-related subunits, as well as the transcription
associated component Swp73/Snf12, are well conserved
in various eukaryotes. However, each organism uniquely
constructs distinct SWI/SNF complex using both the
conserved components and unique subunits. Even
though the complex normally contains 9–12 subunits
(Roberts & Orkin, 2004; Smith et al. 2003), only five of
these, i.e. Swi2/Snf2 (the ATPase subunit), Snf5, Swi3,
Arp7 and Arp9, are comparable or almost comparable
to the entire complex when we take budding yeast as an
example (Phelan et al. 1999; Roberts & Orkin, 2004;
Zhang et al. 2018). Studies on the subunit architecture
in S. cerevisiae revealed that the loss of Arp7 or Arp9
disrupts the catalytic core of SWI/SNF (Zhang et al.
2018). While in the absence of Snf5, the catalytic ternary
complex Snf2-Arp7-Arp9 could be fully detached, sug-
gesting its role in coordinating the distinct modules in
SWI/SNF (Dutta et al. 2017; Zhang et al. 2018). In
addition, the locations of Snf5, Swp82 and Swi1 indicate
that these subunits are associated with the binding of
the complex with transcription factors (Prochasson et al.
2003; Zhang et al. 2018).

The number of conserved components also varies
from species to species, especially the most vital com-
ponents associated with ATPase activity (Table 1).
This finding prompted us to construct a phylogenetic
tree to characterize the homologs of Snf2 and their
functional domains in animals, plants and fungi. As
shown in Fig. 1, the predicted ATPases were clustered
into six groups: Group 1, SNF2 and BRG1; Group 2,
CHR12; Group 3, BRM and SYD; Group 4, DDM1;
Group 5, CHD1; and Group 6, ISWI. All group mem-
bers contain two highly conserved domains, SNF2_N
and Helicase_C, while different groups having unique
domains. For instance, only group 1 members contain
HSA and bromo domain, and the bromo domain is
capable of binding to acetylated histones, which sug-
gests that members of group 1 may function as
reader proteins of acetylation (Jarończyk et al. 2021).
SnAC domain is distributed in groups 1 and 2, and
the SYD domain in members of group 3. The QLQ
domain is present only in groups 1 and 3. Group 4
members have the shortest protein length, and they
only contain the two conserved domains SNF2_N and
Helicase_C. Interestingly, almost all members of
group 4 originate from plants, and most of them are
DDM1 or DDM1-like proteins. These proteins play a
role in maintaining DNA methylation even though
they have no methyltransferase activity (Ramirez-
Prado et al. 2018; Vongs et al. 1993). Another notice-
able finding is that the chromo domain is strictly dis-
tributed within the group 5. This domain is
implicated in the binding of the proteins that are
found to methylate histone tails and RNAs (Lu et al.

Table 1 The components of SWI/SNF complex in various eukaryotic organisms

Saccharomyces cerevisiae Drosophila
melanogaster

Homo sapiens Arabidopsis thaliana Function

Swi2/Snf2 BRM BRG1, BRM BRM, SYD, CHR12, CHR23 Core subunit, ATPase activity

Snf5 SNR1/BAP45 SNF5/INI1 BSH Core subunit

Swi3 MOR/BAP155 BAF155
BAF170

AtSwi3A
AtSwi3B
AtSwi3C
AtSwi3D

Core subunit

Arp9
Arp7

BAP55
BAP47

BAF53A
BAF53B

AtArp7
AtArp4

Actin related

Swp73/Snf12 BAP60 BAF60A
BAF60B
BAF60C

CHC1, CHC2 Transcription associated

Swi1/Adr6 OSA BAF250/hOSA1 Prion protein

Polybromo Polybromo Transcription associated

β-actin β-actin β-actin Actin related

BAP111/dalao BAF57

Swp82
Snf6
Taf14
Snf11
Rtt102

Specific subunits for yeast
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2020; Pray-Grant et al. 2005). It is noteworthy that
the CHD3 members of group 5 own three extra do-
mains, i.e., PHD, DUF1086, and DUF1087. Among
them, the PHD is considered as a histone code reader
(Wang et al. 2021). In addition, the components of
group 6 also contain two distinct domains SLIDE and
HAND that are associated with extra-nucleosomal
DNA and the entry site of nucleosomes (Dang &
Bartholomew, 2007).

Functional mechanisms of the SWI/SNF complex
Regulatory roles of the SWI/SNF complex in gene
transcription
The SWI/SNF remodelers are key regulators of nucleo-
some positioning, which typically controls chromatin ac-
cessibility and binding sites for transcriptional machinery
at the gene promoters or enhancers, thus leading to either
gene activation or repression (Clapier et al. 2017;
Euskirchen et al. 2012). Genome-wide analysis showed

Fig. 1 Phylogenetic tree of ATPases in animals, plants, and fungi. The sequence of ScSnf2 (YOR290C) was used as a bait to elicit all sequences
with high homology and annotation, and the threshold was set to e-value = 1e− 10. A maximum-likelihood phylogenetic tree was constructed
with sequences of ATPases or their homologs. All predicted ATPases were attributed to six groups (Group 1–6) based on the composition of
domains. Different groups and conserved domains of ATPases were indicated by different colors. Am: Apis mellifera; At: Arabidopsis thaliana; Af:
Aspergillus fumigatus; Bm: Bombyx mori; Bc: Botrytis cinerea; Bd: Brachypodium distachyon; Bn: Brassica napus; Ce: Caenorhabditis elegans; Ca:
Candida albicans; Candida g: Candida glabrata; Cp: Candida parapsilosis; Cg: Colletotrichum graminicola; Cn: Cryptococcus neoformans; Cs: Cucumis
sativus; Dc: Daucus carota; Dm: Drosophila melanogaster; Ff: Fusarium fujikuroi; Fg: Fusarium graminearum; Fo: Fusarium oxysporum; Fv: Fusarium
verticillioides; Hc: Histoplasma capsulatum; Hs: Homo sapiens; Nc: Neurospora crassa; Nt: Nicotiana tabacum; Os: Oryza sativa; Pb: Paracoccidioides
brasiliensis; Pa: Podospora anserine; Po: Pyricularia oryzae; Sc: Saccharomyces cerevisiae; Sp: Schizosaccharomyces pombe; Ss: Sclerotinia sclerotiorum;
Sl: Solanum lycopersicum; St: Solanum tuberosum; Tt: Thermothelomyces thermophiles; Tr: Trichoderma reesei; Yl: Yarrowia lipolytica; Zm: Zea mays

Jian et al. Stress Biology            (2021) 1:18 Page 3 of 15



that approximately 5% of genes are regulated by the SWI/
SNF at the transcription level in the budding yeast (Sudar-
sanam et al. 2000), flies (Zraly et al. 2006), as well as mice
(Gresh et al. 2005). However, due to the low intracellular
level and the lack of intrinsic DNA binding specificity of
the SWI/SNF complexes, they need to be guided by gene-
specific transcriptional regulators, covalent histone modi-
fiers or long noncoding RNAs (lncRNAs) to facilitate spe-
cific gene loci targeting in various organisms (Peterson &
Workman, 2000; Sanz et al. 2012).
In A. thaliana, the physical interaction of SWI/SNF sub-

units with different proteins governs a wide range of de-
velopmental processes, such as embryo, leaf and flower
organ development, response to plant hormones, and abi-
otic stresses (Ramirez-Prado & Benhamed, 2021; Reyes,
2014). A plant-unique H3K27 demethylase REF6 targets
the CTCTGYTY motif-containing genomic loci through
its zinc-finger (ZnF) domains and further facilitates

recruitment of the BRM complex (Li et al. 2016). The Ara-
bidopsis SYD (a homolog of the yeast Snf2p ATPase) can
act as a transcriptional repressor of the meristem identity
switch in the floral transition via interacting with and al-
tering activity of the plant-specific transcriptional activator
LEAFY (Wagner & Meyerowitz, 2002). Upon auxin sens-
ing, the MONOPTEROS transcription factor recruits the
BRM complex to increase DNA accessibility for induction
of key regulators of flower primordium initiation (Wu
et al. 2015). In Arabidopsis, some lncRNAs are produced
by a specialized RNA Polymerase V (Pol V). The Pol V-
produced lncRNAs can be associated with IDN2, a
lncRNA-binding protein. Interestingly, SWI3B, an essen-
tial subunit of the BRM complex physically interacts with
DN2, and subsequently contributes to lncRNAs-mediated
transcriptional silencing (Zhu et al. 2013).
The fungal SWI/SNF complexes work in concert with

various transcription factors and covalent histone

Table 2 Recruiters of SWI/SNF complex in modulating fungal growth and stress responses

Number Fungal species Recruiter Target
gene

Process Reference(s)

1 Saccharomyces
cerevisiae

Yap8 ACR2
ACR3

Arsenic stress (Menezes et al. 2017)

2 S. cerevisiae Cha4 SRG1 Serine available (Hainer et al. 2011)

3 S. cerevisiae Swi5 HO Cell cycle (Cosma et al. 2016)

4 S. cerevisiae Sko1/Hog1/Tup1
ternary

GRE2
AHP1
HAL1

Hyperosmotic stress (Proft & Struhl, 2002)

5 S. cerevisiae Rlm1 MLP1
KDX1

Cell wall stress (Sanz et al. 2012)

6 S. cerevisiae Asf1 PHO5 Phosphate depletion (Adkins et al. 2007)

7 S. cerevisiae Adr1
Cat8

ADH2
FBP1

Glucose repression (Biddick et al. 2008)

8 S. cerevisiae HSF
Msn2/4

HSP12
HSP82
SSA4

Heat shock (Erkina et al. 2008; Shivaswamy & Iyer,
2008)

9 S. cerevisiae Gal4, VP16, Gcn4, Hap4 – – (Yudkovsky et al. 1999)

10 S. cerevisiae SAGA
NuA4

– – (Hassan et al. 2001)

11 Neurospora WC-1 FRQ Circadian cycle (Wang et al. 2014)

12 Cryptococcus
neoformans

Znf2 ZNF2 Yeast-to-hypha differentiation (Lin & Zhao, 2019)

13 Candida
albicans

Mrr1 MDR1 Fluconazole resistance (Liu & Myers, 2017)

14 Trichoderma
reesei

XYR1 QM9414 Cellulolytic response (Cao et al. 2019)

15 Fusarium
graminearum

FgAreB FHB1
FHB2
GSNOR
NOR

Nitrosative stress (Jian et al. 2021)

16 F.
graminearum

FgSR CYP51A
CYP51B
CYP51C

Tebuconazole/ phytoalexin
stress

(Liu et al. 2019)
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modifiers to facilitate maintaining proper chromatin acces-
sibility landscapes during fungal development and stress re-
sponsive processes (Table 2), which is consistent with those
in plants. When we look at yeast as an example, the SWI/
SNF complex functions together with regulatory protein
Yap8 to mediate transcriptional activation of ACR2 and
ACR3 in response to arsenic stress in S. cerevisiae (Menezes
et al. 2017). While transcription factor Cha4 recruits SWI/
SNF to initiate SRG1 transcription by remodeling the two
nucleosomes located at the SRG1 transcription start site
when serine is available to the cells (Hainer et al. 2011).
When yeast encounters cell wall stress, the downstream
transcription factor of cell wall integrity pathway Rlm1
physically interacts with SWI/SNF to direct its association
to target promoters (Sanz et al. 2012). Moreover, several re-
ports showed that the SWI/SNF complex is recruited by
multiple transcription factors. For instance, Adr1 and Cat8
recruits SWI/SNF complex upon glucose repression (Bid-
dick et al. 2008), whereas two classes of transcriptional acti-
vators HSF and Msn2/4 associate with this complex to
modulate chromatin disassembly at heat shock gene pro-
moters (Erkina et al. 2008; Shivaswamy & Iyer, 2008). One
interesting report demonstrated that the yeast repressor
Sko1 recruits Cyc8(Ssn6)-Tup1 corepressor complex to
regulate transcription of genes that are induced upon
hyperosmotic stress. During this process, the MAP kinase
Hog1 associates with target promoters, phosphorylates
Sko1, and converts Sko1 into a transcriptional activator.
Subsequently, the formation of Sko1/Hog1/Tup1 ternary
transcription activator complex is important for SWI/SNF
recruitment during the transcriptional induction process
(Proft & Struhl, 2002). Additionally, histone modifiers can
also mediate the recruitment of SWI/SNF complex. As
yeast cells progress through the cell cycle, the activator
Swi5 enters into nuclei at the end of anaphase, which re-
cruits both SWI/SNF and Spt-Ada-Gcn5-Acetyltransferase
(SAGA) complexes to the HO endonuclease promoter
(Cosma et al. 2016). Nucleosome arrays provide a func-
tional link between histone acetylation and the SWI/SNF
complex, and the retention of SWI/SNF is mediated by his-
tone acetylation (Hassan et al. 2001). Further studies sug-
gest that SWI/SNF preferentially displaces acetylated
histones from the array relative to total histones, and the
acetyl-lysine binding domain, Swi2/Snf2 bromodomain,
plays a vital role in this process (Chandy et al. 2006; Mitra
et al. 2006). Upon phosphate depletion, chaperone anti-
silencing function 1 (Asf1) recruits SWI/SNF complex to
promote chromatin disassembly at the yeast PHO5 pro-
moter (Adkins et al. 2007).

Involvement of the SWI/SNF complex in mRNA splicing
In higher eukaryotes, mRNA splicing is important for
controlling both qualitative and quantitative aspects of
gene expression. Moreover, the alternative splicing from

a single gene can generate multiple functionally distinct
protein isoforms, which greatly expands the genetic plas-
ticity of an organism and has emerged as a vital layer of
gene regulation in response to diverse stresses (Black,
2000; Blencowe, 2006; Pleiss et al. 2007). Changes in
chromatin structure have been shown to affect mRNA
splicing (Allemand et al. 2016; Kornblihtt, 2006). The
genome-wide mapping of nucleosome positioning from
different organisms shows that nucleosomes are particu-
larly enriched at intron-exon junctions (Luco et al.
2011), which is evolutionarily conserved from plants to
mammals, suggesting an essential role of nucleosome
positioning in exon definition (Luco et al. 2011;
Schwartz et al. 2009).
The SWI/SNF has been reported to interact with Pol

II (Kornblihtt, 2006), thus influencing the efficiency of
splicing (Allemand et al. 2016). For example, the accu-
mulation of phosphorylated RNA Pol II in a central
block of alternative exon of the CD44 gene in human
cells can be caused by the overexpression of Brm, the
core ATPase of SWI/SNF complex, which leads to the
increased accumulation of mature mRNA (Batsché et al.
2006). Furthermore, the SWI/SNF complex also regu-
lates mRNA splicing by modulating the transcription
elongation rate of RNA Pol II through its subunit SNF5,
therefore affecting the transcription of genes involved in
hormone signaling (Zraly & Dingwall, 2012). The maize
SWI3D protein, ZmCHB101, impacts alternative splicing
by influencing transcriptional elongation rate mediated
by RNA Pol II in response to osmotic stress (Yu et al.
2019). Schwabish and Struhl (2007) reported that SWI/
SNF affects RNA Pol II elongation thereby influencing
splicing through two possible mechanisms, including the
association with Pol II or factors that travel with elong-
ating Pol II, and recognition of distorted chromatin that
occur during transcriptional elongation process to per-
mit passage of Pol II.
A widely reported mechanism of SWI/SNF controlling

splicing is by recruitment of splicing machinery, e.g.,
spliceosomal components, splicing factors (SFs) and
RNA binding proteins (RBPs). In fission yeast, SWI/SNF
contributes to splicing catalysis by promoting the re-
cruitment of Prp2 ATPase, which functions to
destabilize SF3 immediately before the first step of ca-
talysis (Patrick et al. 2015). Similarly, SWI/SNF is con-
sidered as a key regulator in S. cerevisiae meiotic
splicing, because it can lead to the redistribution of spli-
ceosomes from ribosomal protein genes (RPGs), where
the splicing of RPGs can be finely tuned to the environ-
mental conditions and nutrient availability encountered
by cells (Pleiss et al. 2007; Venkataramanan et al. 2017).
Human and Drosophila SWI/SNF family influences spli-
cing when adapting to environmental stimuli via physical
interaction and snRNPs U1/U5 recruitment (Batsché et al.
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2006; Tyagi et al. 2009). Studies in HeLa and Schizosac-
charomyces pombe cells both revealed that interactions be-
tween U2 snRNP and SWI/SNF subunits influence
splicing process (Cavellán et al. 2006; Fair & Pleiss, 2017;
Makarov et al. 2012; Patrick et al. 2015). Specifically, hu-
man SWI/SNF complex may serve as an adaptor for U2
snRNP association with chromatin. SWI/SNF proteins
were identified as components of spliceosomal complex E
(Makarov et al. 2012), and the overexpression of U2
snRNP components in ΔSWI/SNF cells led to inefficient
splicing of many introns in fission yeast (Patrick et al.
2015). Moreover, studies in Drosophila indicated that
SWI/SNF plays a role in pre-mRNA processing, possibly
by modulating the recruitment and/or assembly of spli-
cing factors (Waldholm et al. 2011). BAF57/SMARCE1 in-
teracts with splicing factor SRSF1 to regulate mechanical
stress-induced alternative splicing of cyclin D1 in osteo-
blast cells (Feng et al. 2021). In addition to splicing factors,
recruitment of RNA binding proteins is also an important
way to modulate splicing by SWI/SNF complex. For in-
stance, in human cells, the ATPase Brm in concert with
the mRNA-binding protein p54 regulate the splicing of
telomerase reverse transcriptase (TERT) by accelerating
exon-inclusion (Ito et al. 2008). Expression of the ATPase
BRG1 in cervical cancer C33A cells promotes the local

recruitment of splicing-RNA binding factors to chromatin
and RNA, and further alters their binding to the nascent
pre-mRNA, subsequently affecting alternative splicing
(Zapater et al. 2019).
Taken together, SWI/SNF complex influences splicing

by two distinct but conserved mechanisms, including
modulation of RNA Pol II accumulation/elongation and
recruitment of splicing machinery (Allemand et al. 2008;
Batsché et al. 2006; Kornblihtt, 2006) (Fig. 2). Moreover,
the function of splicing in response to external stimuli is
an ubiquitously accepted way that allows eukaryotes to
quickly adjust the abundance of functional transcripts to
environmental perturbations (Allemand et al. 2008;
Capovilla et al. 2015; Pleiss et al. 2007). While studies in
fungi remain limited, especially those in pathogenic
fungi, summarizing SWI/SNF interactors affecting spli-
cing events upon stress stimuli in plants and animals is
important and provides significant reference for research
in pathogenic fungi.

Involvement of the SWI/SNF complex in DNA damage
repair (DDR)
DNA damage can be corrected by DNA repair pathways
(Ataian & Krebs, 2006; Lindahl, 2000). However, the
genomic DNA packaged inside chromatin hinders DNA

Fig. 2 Two mechanisms by which SWI/SNF complex may affect splicing to adapt environmental stimuli. A The overexpression of Brm causes
accumulation of phosphorylated RNA Pol II, thereby leading to increased mature mRNA. The core subunits of SWI/SNF complex SNF5 and Swi3,
can modulate the transcription elongation rate of RNA Pol II at the target pre-mRNA, thus affecting the transcripts of hormone signaling and
osmotic response, respectively. B SWI/SNF complex regulates pre-mRNA splicing by recruiting components of spliceosome, SFs (Splicing factors),
as well as RBPs (RNA binding proteins) to target pre-mRNA. Both of the mechanisms promote splicing progress
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accessibility, and therefore the DNA repair and signaling
machineries have to overcome this chromatin barrier to
access the lesion (Ataian & Krebs, 2006; Smeenk & van
Attikum, 2013; Wang et al. 2020). An increase in chro-
matin mobility has also been observed at lesions of bud-
ding yeast and human cells exposed to DNA damage
(Hauer et al. 2017; Miné-Hattab & Rothstein, 2012; Rou-
kos et al. 2013), which suggests a tight relationship be-
tween DNA damage repair (DDR) and chromatin
structure.
ATP-dependent chromatin remodeling complex SWI/

SNF members function directly in nucleotide-excision
repair (NER), double-strand break (DSB) repair and
other DDR pathways by modifying chromatin structure
around DNA damage sites and further recruiting DDR
proteins (Bao & Shen, 2007; Mittal & Roberts, 2020;
Ribeiro-Silva et al. 2019; Smeenk & van Attikum, 2013)
(Fig. 3). NER is a versatile DNA repair pathway that can
remove a variety of structurally unrelated lesions includ-
ing UV-induced bulky DNA adducts (Spivak, 2015). In
S. cerevisiae, damage-recognition heterodimer Rad4-
Rad23 associates with Snf6 and Snf5, two subunits of the

SWI/SNF complex to increase DNA accessibility for NER
in chromatin, and their association is stimulated by UV ir-
radiation (Gong et al. 2006). Moreover, BRG1 facilitates
NER at different stages by modulating chromatin relax-
ation and stabilizing xeroderma pigmentosum group C
protein (XPC) at the damage sites, which subsequently
promotes xeroderma pigmentosum group G protein
(XPG), and proliferates cell nuclear antigen (PCNA) re-
cruitment to complete the repair in mammalian cells
(Zhao et al. 2009). Inactivation of ATPase subunits down-
regulates GTF2H1, a core subunit of the transcription fac-
tor IIH (TFIIH) complex, thus compromising TFIIH
stability and NER pathway (Ribeiro-Silva et al. 2018).
In addition to NER, the SWI/SNF complex also func-

tions in homologous recombination (HR) and non-
homologous end-joining (NHEJ), which are two major
conserved DSB repair pathways (Bao & Shen, 2007;
Smeenk & van Attikum, 2013). For example, the chro-
matin remodeling activity of SWI/SNF contributes to
Mre11-Rad50-Xrs2 (MRX) recruitment and resection
initiation during HR, as nucleosome eviction at a DSB
site is observed to be delayed in a SWI/SNF mutant

Fig. 3 Regulatory mechanisms of the SWI/SNF complex in various DNA damage repair pathways. A Various models of how different subunits of
SWI/SNF complex can recruit or be recruited by DNA damage associated factors to facilitate DNA damage repair (DDR) pathways, such as NER,
HR, NHEJ and other DDR pathways. B Phosphorylation of ATPase or acetylation/phosphorylation of histone are implicated to promote the
localization of SWI/SNF complex and further recruit DNA damage associated factors at the damage loci

Jian et al. Stress Biology            (2021) 1:18 Page 7 of 15



(Wiest et al. 2017). Promoting the Rad51- and Rad54-
dependent strand invasion during recombinational repair
of the mating-type loci also requires SWI/SNF complex
to alleviate heterochromatic constraints (Hauer & Gas-
ser, 2017; Sinha et al. 2009). Consistently, downregula-
tion of BRG1 and BRM in human cells reduced HR
efficiency by 40–50% and 15%, respectively. BRG1 is im-
portant for activating ATM- and Rad3-related (ATR)
kinase and reducing nucleosome density at DSBs, which
further changes the chromatin structure and promotes
CtIP nuclease recruitment, thus stimulating DNA end
resection and HR (Hays et al. 2020). In both yeast and
mammalian cells, BRM stimulates recruitment of NHEJ
factors KU70/KU80, while BRG1 promotes HR-
associated DNA end resection and RPA and RAD51
loading (Ribeiro-Silva et al. 2019). SWI/SNF complex
also participates in other DDR pathways. For example,
inactivation of ATPase subunits compromise H2AX
phosphorylation, thereby affecting their function in DSB
repair (Park et al. 2006). Meanwhile, the depletion BRG1
increases R-loops and R-loop-dependent DNA breaks as
well as transcription-replication conflicts (Bayona-Feliu
et al. 2021). In plant cells, the presence of an appropriate
level of the SWI/SNF subunit SWI3B enhances the dis-
sociation of structural maintenance complex 5 (SMC5)
from chromosomes for its further recruitment at DSBs
during DNA damage (Jiang et al. 2019).
Depletion, mutation or loss of SWI/SNF subunits has

been shown to cause defects in DNA damage repair,
suggesting that SWI/SNF complex is rapidly recruited to
DSBs (Harrod et al. 2020). But how does SWI/SNF com-
plex know when and where to find targets? Post-
transcriptional modifications have been implicated to
promote the localization of SWI/SNF to DNA damage
sites. For instance, A-T mutated (ATM)-mediated phos-
phorylation of BRG1 and BAF170 increases the associ-
ation of SWI/SNF complex with the early DDR protein
BRIT1/MCPH1 (Kwon et al. 2015; Peng et al. 2009). The
Ser-721 phosphorylation of BRG1 by ATM facilitates
DSB repair by stimulating the association with γ-H2AX
nucleosomes via enhancing the affinity to acetylated H3
(Kwon et al. 2015). The histone H2B kinase AMPK2, a
major substrate of the tumor suppressor LKB1, is re-
cruited to DSBs by LKB1. Disruption of the AMPK2
phosphorylation site impairs BRM recruitment to DSB
sites, which further fails to activate NHEJ pathway (Ui
et al. 2014). In addition, the acetylation of histone H3
and H4 has been shown to facilitate SWI/SNF recruit-
ment. CBP and p300 acetylate H4 K5/K8/K12/K16 and
H3 K18 to facilitate SWI/SNF chromatin remodeling at
DSBs, which may provide access to the damage site for
the NHEJ factors Ku70/Ku80 (Ogiwara et al. 2011). The
SWI/SNF subunit Taf14 functions as a selective reader
of histone H3 Lys9 acetylation (H3K9ac), and disruption

of this binding in cells impairs the transcription of DNA
damage response genes (Shanle et al. 2015). γH2AX re-
cruits histone acetyltransferase GCN5 to trigger acetyl-
ation of H3, which subsequently attracts SWI/SNF
binding (Lee et al. 2010; Park et al. 2006). Other mecha-
nisms can also contribute to SWI/SNF recruitment at
DSBs, for example, DDR protein BRIT1/MCPH1 associ-
ates with core subunits of SWI/SNF and promotes their
recruitment and retention (Lukas et al. 2011; Peng et al.
2009). During methyl methanesulfonate (MMS) induc-
tion in S. cerevisiae, the activator Crt1 facilitates the re-
cruitment of TFIID and SWI/SNF, which in turn
promotes chromatin remodeling and preinitiation com-
plex assembly (Ghosh & Pugh, 2011).

Roles of the SWI/SNF complex in plant-pathogen
interaction
As sessile organisms, plants must properly modulate
their gene expression to survive in the environment,
which is greatly influenced by the dynamic chromatin
structure (Chang et al. 2020; Song et al. 2021). Mounting
evidence has shown that SWI/SNF complex plays im-
portant roles in plant abiotic stress responses, including
temperatures, drought, salt, osmotic stress and hormone
signaling pathways as well as biotic stresses (Bhadouriya
et al. 2020; Chang et al. 2020; Song et al. 2021; Thouly
et al. 2020). In this review, we focus on deciphering the
roles of this chromatin remodeling complex in response
to plant biotic stress, which will advance our under-
standing in plant-pathogen interactions.

The SWI/SNF complex regulates plant immune response
Unlike animals, plants lack an adaptive immune system
that produces antibodies and lack mobile cells to detect,
prevent or reduce infections once perceiving microbial
pathogens. Instead, plants have evolved an innate im-
munity system to defend against microbial attack (Ding
& Wang, 2015). Phytohormones including salicylic acid
(SA), jasmonic acid (JA), ethylene (ET), abscisic acid
(ABA), auxins, gibberellins (GA), cytokinins, and brassi-
nosteroids, emerged as important players in plant im-
mune response (Pieterse et al. 2009). Accumulating
evidence has shown that chromatin structures play es-
sential roles in regulating plant defense responses via
physical association with the components or regulators
of phytohormone signaling pathways (Chen et al. 2017;
Ding & Wang, 2015; Ojolo et al. 2018; Ramirez-Prado
et al. 2018; Sarnowska et al. 2016).
In Arabidopsis, BRM binds to abscisic acid (ABA)-in-

duced basic domain/leucine zipper transcription factor
ABA INSENSITIVE5 (ABI5) locus to stabilize the local
nucleosome, thus negatively regulating its expression
level in the absence of stress stimuli (Han et al. 2012). A
two-hybrid analysis revealed that the core subunit of
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SWI/SNF complex SWI3B interacts with HYPERSENSI-
TIVE to ABA1 (HAB1), a protein phosphatase type 2C,
to modulate ABA signaling (Saez et al. 2008). In
addition, the dysregulation of pathogenesis-related (PR)
genes in the BRM101 mutant indicates a role for this
protein in salicylic acid (SA)-mediated resistance (Bez-
hani et al. 2007; Chen et al. 2017; Han et al. 2012). BRM
also directly associates with the promoters of GA bio-
synthesis genes to positively regulate its expression,
whereas the loss of BRM leads to remarkable decrease
level of endogenous bioactive GA (Archacki et al. 2013;
Reyes, 2014). Moreover, several subunits of SWI/SNF
complex (SWI3B, SWI3D, and BSH) interact with the
miRNA-binding protein ARGONAUTE1 (AGO1) to fa-
cilitate its binding to chromatin upon JA, auxin, and SA
stimuli in Arabidopsis (Liu et al. 2018a; Maury et al.
2019).
In addition to regulating phytohormone signaling

pathways, the SWI/SNF complex plays important roles
in modulating transcription and splicing of resistant
genes. In Arabidopsis, SWP73A directly binds to the
promoters of NLR (NOD-like receptor) genes to sup-
press their expression level. In addition, it may also
function as a H3K9me2 reader to enhance this transcrip-
tion suppression (Huang et al. 2021), as H3K9me2 is a
transcriptional repression marker in plants (Pfluger &
Wagner, 2007). Moreover, SWP73A affects the alterna-
tive splicing of some NLRs through indirectly suppress-
ing the key regulator of RNA splicing CDC5, thus
inhibiting the defense responses in Arabidopsis. In turn,
bacteria-induced small RNAs silence SWP73A to acti-
vate a group of NLRs and trigger robust immune re-
sponses upon infection (Huang et al. 2021).
Other than the above mentioned subunits of SWI/SNF

complex, another Arabidopsis ATPase, SYD, also plays
important roles in plant defense against specific biotic
stresses. Genetic, biochemical and biological evidences
have shown that SYD is recruited to the promoters of
genes controlling jasmonate (JA)- and ethylene (ET)-
dependent defense responses to positively regulate their
expression levels upon Botrytis cinerea infection (Walley
et al. 2008). Moreover, SYD is required for resistance
against the necrotrophic pathogen B. cinerea rather than
the biotrophic pathogen Pseudomonas syringae, which
indicates that chromatin remodeling participates in re-
sistance to pathogens selectively (Walley et al. 2008).
SNC1 (Suppressor of NPR1, Constitutive 1) is an intra-
cellular Arabidopsis NLR protein that can be activated
to induce defense responses (Zhang et al. 2003). Mean-
while, SYD functions antagonistically with MOS1 and
MOS9 at the chromatin level to regulate SNC1 tran-
scription and SNC1-mediated immunity (Johnson et al.
2015). Strikingly, the expression levels of SYD were
found to be dramatically decreased upon indoleacetic

acid (IAA), ABA, and benzothiadiazole (BTH) treat-
ments and increased upon flg22 treatment, which sug-
gests that SYD responds to pathogen attack at the
transcription level (Shu et al. 2021).
In rice (Oryza sativa L.), the putative SWI/SNF2 class

ATPase BRHIS1 is downregulated by the rice blast fun-
gus Magnaporthe oryzae infection, suggesting that
BRHIS1 plays a negative regulatory function in plant im-
munity (Li et al. 2015). RNA-seq and ChIP-seq data
show that BRHIS1 suppresses the expression of a few
defense-related genes (OsPBZc and OsSIRK1) rather
than SA pathway genes, therefore regulating plant im-
munity in an SA-independent manner (Li et al. 2015).
Further co-IP assays suggest that BRHIS1 specifically in-
teracts with monoubiquitinated histone variants,
H2A.Xa/H2A.Xb/H2A.3 and H2B.7 (Li et al. 2015).
However, the enrichment of these histone variants at the
promoter regions of OsPBZc and OsSIRK1 is correlated
with their increased expression, whereas the BRHIS1 ex-
pression is suppressed (Li et al. 2015). These findings in-
dicate that the BRHIS1 can relax chromatin state for
defense genes by monoubiquitination local histone vari-
ants under normal growth conditions. Upon pathogen
attack, BRHIS1 is inhibited, which makes chromatin ac-
cessible for defense gene expression. Together, the asso-
ciation between BRHIS1 and monoubiquitinated histone
variant allows plants to establish an expression-ready
chromatin state for defense genes to facilitate rapid acti-
vation of induced plant immune responses (Chen et al.
2017; Li et al. 2015).

The signaling pathways regulates the SWI/SNF complex in
plant
Although the pivotal role of SWI/SNF complex in plant
immunity has been documented, how this complex is
regulated in stress response or pathogen attack remains
to be elucidated. One interesting study established a
model suggesting that effector-SWI/SNF association
plays vital roles during ectomycorrhizal-plant interac-
tions. During infection, the effector-like protein
PaMiSSP9.7 encoded by mycorrhizal fungus Pisolithus
albus enters host root cells and localizes into the nu-
cleus. Furthermore, it interacts with the SWI3D, a sub-
unit of the SWI/SNF complex in host plant Eucalyptus
grandis, that is activated and required to alter the out-
come of mycorrhization (Aguirre, 2017).
More recently, Song and colleagues demonstrated the

stability and activity of SWI/SNF subunits are also con-
trolled by post-translational modifications (Song et al.
2021). Vicente and colleagues found that treatment with
NaCl or ABA resulted in a decline in BRM protein
(Vicente et al. 2017), which may be a result of the phos-
phorylation or dephosphorylation of BRM (Peirats-Llo-
bet et al. 2016). Specifically, phosphorylation of BRM by
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the kinase SnRK2 contributes to its inhibition, whereas
PP2CA-mediated dephosphorylation recovers the ability
of BRM to negatively control ABA response (Peirats-Llo-
bet et al. 2016). Another core subunit of SWI/SNF com-
plex, SWI3B, physically interacts with the clade A PP2C
phosphatase HAB1 (a core component in ABA signal
pathway) and is directly dephosphorylated in an ABA-
dependent manner (Saez et al. 2008). In addition to
phosphorylation or dephosphorylation, the ubiquitin-
proteasome system has also been shown to modulate
BRM protein stability (Song et al. 2021). For instance,
deletion mutants of brm-3 and the SUMO ligase
mms21–1 both show resembling defects in root develop-
ment, and the protein level of BRM is dramatically de-
creased in mms21–1 mutant. Further biochemical
evidence indicated that BRM is modified by SUMO3,
and AtMMS21 enhances this SUMOylation to elevate
BRM stability (Zhang et al. 2017). BRM is degraded by
26S proteasome in response to high-boron induced
DSBs (Sakamoto et al. 2018), suggesting BRM is a target
of 26S proteasome and is required for DSBs tolerance.
During this process, BRM associates with histone acetyl-
ation to make chromatin more accessible, which could
be inhibited by 26S proteasome (Sakamoto et al. 2018).

The SWI/SNF complex plays important roles in fungal
pathogenesis
During the infection process, pathogens encounter di-
verse stresses. To successfully invade hosts, fungi have
evolved sophisticated strategies to adjust their develop-
mental processes to adapt to the changes in various
stimuli, including both the environment and the host
(Łaźniewska et al. 2012). Several reports have demon-
strated that the SWI/SNF complex is involved in stress
responses and fungal pathogenesis (Table 2). The best
characterized model is the most prevalent human fungal
pathogen C. albicans. Knock-out mutation of SWI1 or
SNF2, two core subunits of SWI/SNF complex, leads to
a complete loss of pathogenicity in murine systemic can-
didiasis by inhibiting the expression of hyphae (filamen-
tation)-specific genes (Mao et al. 2006). When cells
encounter serum or nutrient starvation, the ATPase
SNF2 is recruited by a synergistic action of NuA4 HAT
complex and the hyphae-specific transcription factor
Efg1 to the promoters of hyphae-specific genes, indicat-
ing that the SWI/SNF complex harnesses histone modi-
fying enzyme to govern Candidia pathogenicity (Lu
et al. 2008). Consistently, deletion of SNF5 leads to an
altered metabolome and a loss of virulence, which im-
plies its essential roles in maintaining metabolic homeo-
stasis and pathogenicity in C. albicans (Burgain & Pic,
2019). The SWI/SNF complex is also involved in flucon-
azole resistance by cooperating with the inactivated form
of transcription factor Mrr1 to promote nucleosome

displacement from MDR1 (a multiple drug resistance
gene 1) promoter, which further permits Mrr1 binding
(Liu & Myers, 2017). Importantly, the fungal-specific
subunit of SWI/SNF complex SNF6 is critical for C.
albicans to colonize its host and to cause disease, sug-
gesting SNF6 is a potential antifungal target (Tebbji
et al. 2017). Similarly, in Cryptococcus neoformans, SWI/
SNF assists transcription factor Znf2 to control yeast-to-
hypha differentiation, which opens the promoter regions
of hyphal specific genes, including the ZNF2 gene itself,
therefore facilitating fungal pathogenesis (Lin & Zhao,
2019).
In Neurospora crassa, white Collar-1 (WC-1) recruits

SWI/SNF complex to remodel and loop chromatin at
FRQ, thereby activating FRQ expression to initiate the
circadian cycle (Wang et al. 2014). In Trichoderma ree-
sei, the transcriptional activator of cellulase/hemicellu-
lase genes, XYR1, interacts with the SNF12 subunit of
SWI/SNF complex to remodel chromatin at cellulase
gene promoters, thus activating their expression to initi-
ate the cellulolytic response (Cao et al. 2019). In our pre-
vious studies, we found two transcription factors FgAreB
and FgSR that recruit SWI/SNF complex via direct inter-
action with Swp73 to orchestrate genes responding to
nitrosative and phytoalexin stresses, respectively, during
F. graminearum infection (Jian et al. 2021; Liu et al.
2019). Importantly, Swp73 is essential in F. grami-
nearum (Jian et al. 2021). These results are consistent
with the cases observed in human, which also showed
that BAF60a can serve as a bridge for the interactions
between transcription factors and SWI/SNF complex
(Iba et al. 2003; Oh et al. 2008). In addition, BAF60 (a
Swp73 homolog) RNA interference mutant lines showed
severe growth defects in Arabidopsis (Jégu et al. 2014),
which further stressed the decisive role of this subunit
across eukaryotes. Based on these published reports, we
deduced that the disruption of interactions between
BAF60 and transcription factors can cause transcrip-
tional repression of a number of genes that participate
in stress response.
It is widely accepted that reactive oxygen species

(ROS) production by NADPH oxidases is one of the
earliest responses of pathogen recognition in both plants
and animals (Kadota et al. 2015). ROS acts as antimicro-
bials to prevent pathogen entry, and ROS-mediated
DNA oxidative damage can be corrected by DNA repair
pathways (Wang et al. 2020). Studies have established
that the SWI/SNF complex is required for DNA damage
repair, which is conserved from fungi to humans (Bao &
Shen, 2007; Bohm et al. 2021; Harrod et al. 2020; Jiang
et al. 2019; Ribeiro-Silva et al. 2019; Wiest et al. 2017).
Therefore, we propose that the SWI/SNF complex plays
a critical function in responses to ROS during plant-
pathogen interactions. Although studies about the
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canonical SWI/SNF participates in this process have not
been reported yet, another subtype of SWI/SNF family
RSC has been characterized to modulate ROS response
in phytopathogen-plant interactions. For example, silen-
cing SFH1 (Snf5 homolog) in Sclerotinia sclerotiorum
causes defects in hyphal growth and decreases ROS ac-
cumulation, suggesting its function in ROS production
(Liu et al. 2018b). Also in the soil-borne pathogenic fun-
gus Verticillium dahlia, VdDpb4 and VdIsw2 of ISWI
chromatin remodeling complex play roles in maintaining
chromatin structure for positioning nucleosomes and
transcription regulation of DDR genes in response to
ROS stress during plant infection (Wang et al. 2020).
In addition to ROS, host perception of pathogens can

also provoke reactive nitrogen species (RNS), leading to
nitrosative stress (NS) (Arasimowicz-Jelonek &
Floryszak-Wieczorek, 2016). It is worth mentioning that
our recent work suggests SWI/SNF complex can be re-
cruited by transcription factor FgAreB to the nitrosative
stress response (NSR) gene promoters, subsequently
promoting NSR gene expression in F. graminearum (Jian
et al. 2021). Furthermore, a transcriptional repressor,
FgIxr1 was found to compete with the SWI/SNF com-
plex to bind FgAreB, which negatively regulates NS re-
sponse. In turn, NS promotes FgIxr1 degradation,
therefore, enhancing the recruitment of the SWI/SNF

complex by FgAreB (Jian et al. 2021). Taken together,
SWI/SNF complex participates in plant-pathogen inter-
action via different routes (Fig. 4).

Future perspectives
Nucleosomal structure is a barrier to transcription, DNA
replication, and genome-wide DNA repair (Jansen &
Verstrepen, 2011). SWI/SNF chromatin remodeling
complex can utilize the energy derived from ATP hy-
drolysis to maintain proper nucleosome organization,
thereby controlling major intracellular DNA-based bio-
logical processes (Becker & Hörz, 2002; Hohmann &
Vakoc, 2014). Phylogenetic analyses and literatures sug-
gest that the components of SWI/SNF complex and
their mechanisms of operation are evolutionarily con-
served across eukaryotes. However, studies of fungal
SWI/SNF complex are limited, especially in phytopatho-
genic fungi, when compared to those in human and
plants. Thus, summarizing and discussing the compos-
ition and function of SWI/SNF complex in higher eu-
karyotes will help advance our understanding of this
complex in pathogenic fungi.
Genetic and biochemical experiments have revealed

that the SWI/SNF complex is an essential regulator of
numerous chromosomal processes, and its dysregulation
leads to severe defects in development and stress

Fig. 4 The SWI/SNF complex is involved in plant-pathogen interaction. A During Eucalyptus grandis-Pisolithus albus interaction, the effector-like
protein PaMiSSP9.7 produced by the mycorrhizal fungus enters plant root nucleus to interact with Swi3D of SWI/SNF complex. B SWI/SNF
complex mediates fungal development and pathogenesis by reprogramming the expression of stress responsive genes to phytohormone, ROS
and RNS during various pathogen-plant interactions
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response across eukaryotes (Clapier et al. 2017;
Euskirchen et al. 2012; Jégu et al. 2014; Kwon & Wag-
ner, 2007). This remodeler is built in a modular mode,
with specific subunits that interact with or being regu-
lated by specific activators/repressors/covalent histone
modifiers or other functional proteins governing diverse
stress responses. But how do these specific interactions
provide such varied targeting repertoire, and how do
they enable particular remodeler outcomes at specific lo-
cations? It will be of great interest to discover the SWI/
SNF subunit interacting partners, combined with gen-
etic, proteomics, transcriptomic and other high-
throughput sequencing techniques, which will open new
avenues to characterize a divergent set of fungal SWI/
SNFs and their specific biological roles in pathogen-
plant interaction. Further characterization of the SWI/
SNF complex, including its organization, assembly, 3D
structure, interaction partners, molecular regulatory
mechanisms, and their roles in pathogen-plant interac-
tions are expected to generate novel strategies that will
help develop prevention measurements of plant diseases.
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