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NADase and now Ca2+ channel, what else
to learn about plant NLRs?
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Abstract

Plant intracellular immune receptors known as NLR (Nucleotide-binding Leucine-rich repeat, NB-LRR) proteins
confer resistance and cause cell death upon recognition of cognate effector proteins from pathogens. Plant NLRs
contain a variable N-terminal domain: a Toll/interleukin-1 receptor (TIR) domain or a coiled-coil (CC) domain or an
RPW8 (Resistance to Powdery Mildew 8)-like CC (CCR) domain. TIR-NLR, CC-NLR and CCR-NLR are known as TNL,
CNL and RNL, respectively. TNLs and CNLs recognize pathogen effectors to activate cell death and defense
responses, thus are regarded as sensor NLRs. RNLs are required downstream of TNLs to activate cell death and
defense responses, thus are regarded as helper NLRs. Previous studies show that some TNLs form tetrameric
resistosome as NAD+ cleaving enzymes to transduce signal, while some CNLs form pentameric resistosome with
undefined biochemical function. Two recent breakthrough studies show that activated CNL and RNL function as
Ca2+ channel to cause cell death and defense responses and provide a completely new insight into the
downstream signaling events of CNL and TNL pathways.
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Plants have evolved both cell surface and intracellular
immune receptors to detect pathogen molecules and
activate defense. Plant intracellular immune receptors
known as NLRs recognize effectors secreted by
pathogens into plant cells and initiate effector-triggered
immunity (ETI). ETI involves strong defense gene induc-
tion and hypersensitive cell death localized at the site of
infection to restrict pathogen spread. NLRs constitute an
important source of resistance for breeding in agriculture
(Jones et al. 2016). Investigation of the molecular mecha-
nisms by which NLRs function to trigger immunity repre-
sents a crucial step towards the goal of engineering
effective broad-spectrum resistance in crops.
TNL and CNL recognize pathogen effectors to trigger

cell death and immune responses, thus are regarded as
sensor NLRs (Duxbury et al. 2021). Downstream of
sensor NLRs, higher plants also use helper NLRs to
transduce signals. There are three described classes of

helper NLRs: the NB-LRR protein required for HR-
associated cell death (NRC) family, the ACTIVATED
DISEASE RESISTANCE 1 (ADR1) family, and the N RE-
QUIRED GENE 1 (NRG1) family (Jubic et al. 2019).
NRCs contain the canonical CC domains at their N-
termini and are a special class of CNL. In Nicotiana
benthmiana (Nb), NRCs are required for phylogenetic-
ally related CNLs to activate cell death and immune
responses (Wu et al. 2017). ADR1s and NRG1s, com-
monly present in dicots, carry an CCR domain at their
N-termini and belong to the RNL family (Jubic et al.
2019). In Arabidopsis, ADR1s and NRG1s function
downstream of TNL to confer resistance and induce cell
death, respectively (Lapin et al. 2019).
The biochemical functions of plant NLRs to activate

cell death and defense remain elusive until recent break-
through studies. The Arabidopsis CNL ZAR1 represents
one of the best structurally characterized NLRs with
implications in downstream signaling mechanisms
(Wang et al. 2019a; Wang et al. 2019b). Pathogen effec-
tors AvrAC and HopZ1a can induce oligomerization of
ZAR1 in Arabidopsis protoplasts (Hu et al. 2020). Upon
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effector recognition, ZAR1 undergoes dramatic con-
formational changes from an inactive monomeric state
to an active pentameric state with the first helix in the
4-helical-bundle(4HB) of its CC domain being flipped
out, potentially forming a pore at the plasma membrane
(PM) (Wang et al. 2019a). The funnel-shaped pore struc-
ture of ZAR1 resistosome is suggested to function as a
channel but has not been experimentally validated until
recently.
To address this question, a landmark study by Bi et al.

showed that the effector activated ZAR1 resistosome
protrudes into the PM and forms calcium-permeable
cation channel leading to calcium influx and further
activation of cell death and defense responses (Bi et al.
2021). Expression of ZAR1 along with other genetic
requirements and the corresponding effector in Xenopus
oocytes induced strong current traces upon voltage
application in the two-electrode voltage-clamp assay,
consistent with the suggested ZAR1 channel activity. To
further investigate ZAR1 channel activity, they performed
electrophysiology studies using planar lipid bilayers and
reconstituted ZAR1 resistosome protein in vitro. The result
confirmed that ZAR1 resistosome was inserted into planar
lipid bilayers as non-selective cation channel permeable to
Na+, K+, Cs+, Mg2+, and Ca2+. Conserved glutamic acid
E11 lying in the central cavity of ZAR1 resistosome is
required for ZAR1 channel activity and function. Single-
molecule imaging showed that activated ZAR1 proteins
form approximate pentamers accumulating in the PM. Ele-
gant cell biology further revealed the sequential events be-
fore ZAR1-triggered cell death in Arabidopsis protoplasts
such as calcium influx, accumulation of reactive oxygen
species (ROS), destruction of vacuoles and chloroplasts,
loss of PM integrity and eventual cell rupture (Bi et al.
2021). Hence ZAR1 functions as both sensor of pathogen
and executor of immune responses as Ca2+ channel.
The biochemical function of plant TNLs has been

revealed with their TIR domains possessing NAD(P)+

cleaving enzymatic activity (Horsefield et al. 2019; Wan
et al. 2019). Tetrameric TNL structures in active state
confirmed that tetramerization in the TIR domain cre-
ates the active site for catalysis (Ma et al. 2020; Martin
et al. 2020). Effector-activated TNLs function as weak
NAD(P)+ cleaving enzyme to produce small signaling
molecule instead of causing NAD(P)+ depletion to in-
duce cell death (Wan et al. 2019). Upon activation, TNL
signaling converges on the lipase-like proteins Enhanced
Disease Susceptibility1 (EDS1), Senescence-Associated
Gene101 (SAG101) and Phytoalexin Deficient4 (PAD4)
(Wagner et al. 2013). In Arabidopsis, AtEDS1 heterodi-
merizes with AtPAD4 and also functions with helper
NLR AtADR1s to mediate bacterial growth restriction
and resistance, while AtEDS1 heterodimerizes with
AtSAG101 and also functions with helper NLR AtNRG1s

to control cell death (Lapin et al. 2019). Over-expression
of ADR1 and NRG1 can cause cell death in N. tabacum
independently, suggesting that they could be the ultimate
arbiter of immunity in TNL signaling pathway (Collier
et al. 2011).
In a parallel landmark study, Jacob et al. demonstrated

that active AtADR1 and AtNRG1 also function as
calcium-permeable cation channel for cell death func-
tion (Jacob et al. 2021). First, the authors resolved the
4HB structure of AtNRG1.1 CCR domain and found it
similar to both ZAR1 CC and the cell-death domain of
animal MIXED-LINEAGE KINASE-LIKE (MLKL).
Animal MLKL has been shown to function as cation
channel (Xia et al. 2016). Activation mechanisms of
AtNRG1 and AtADR1 by TNL enzymatic activity dir-
ectly or via EDS1/SAG101/PAD4 remain elusive. Hence
Jacob et al. used auto-active AtNRG1.1 allele (D485V)
and wide-type AtADR1 that can cause autonomous cell
death in Nb to study their channel activity. AtNRG1.1
D485V and AtADR1 oligomerize, enrich in PM, and in-
duce Ca2+ influx to cause cell death in Nb and human
HeLa cells, and the cell death activity can be suppressed
by Ca2+ channel blockers such as LaCl3 and GdCl3
(Jacob et al. 2021). Similar to ZAR1, mutation of nega-
tive charged residues in the very N-terminal region of
AtNRG1.1 D485V (E14Q) and AtADR1 (D11N) led to
reduced Ca2+ influx and delayed cell death. Electrophysi-
ology study in human HEK293 cells confirmed that
AtNRG1.1 D485V functions as non-selective calcium-
permeable cation channel (Jacob et al. 2021). In Arabi-
dopsis, all TNL immune receptors tested so far require
the redundant RNLs of the ADR1 and NRG1 subfamilies
(Jubic et al. 2019). Hence the authors propose that TNL
activation induces RNL-dependent Ca2+ influx, to initi-
ate cell death and, likely, immune responses.
The two landmark studies combined reveal the

molecular and biochemical mechanisms of how the two
major classes of plant intracellular immune receptors,
CNLs and TNLs, control cell death and immune
response by activating relevant NLR (ZAR1 of CNL by
itself and RNLs downstream of TNLs) as Ca2+ channel.
ZAR1 represents a special class of CNLs functioning as
both sensor of the pathogen and executor of immune re-
sponses as Ca2+ channel (Wang et al. 2019a; Bi et al.
2021). In Arabidopsis, unlike ZAR1, some CNLs such as
RPS2 and RPS5, require ADR1s as helper NLR for full
function (Saile et al. 2020). To confer resistance, RPS2
and RPS5 also require PM-localized integrin-like protein
NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1)
whose function remains elusive (Saur et al. 2021). Hence
it requires future efforts to define if other CNLs also func-
tion as Ca2+ channel or alternative signaling mechanisms
exist for CNLs. In Nb, the helper class NRCs are required
for phylogenetically related CNLs to activate cell death
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and immune responses (Wu et al. 2017). Hence, it remains
to investigate whether NRCs function as Ca2+ channel but
not those CNLs that require NRCs to transduce signal.
Jacob et al. used auto-active RNL alleles of AtNRG1.1
D485V and AtADR1 to demonstrate their channel activ-
ities. In the biological relevant context of ETI, whether
effector activated TNL signaling pathway involving EDS1/
SAG101/PAD4 also leads to RNL functioning as Ca2+

channel remains to be demonstrated.
Another important open question is how CNL- and

RNL-mediated Ca2+ influx controls cell death and
immunity. Cell death is either a consequence of Ca2+

cytotoxicity or a product of Ca2+-responsive factors that
execute a cell death program. Cell death and defense
activation can be uncoupled during ETI (Lapin et al.
2019; Laflamme et al. 2020). In the TNL signaling path-
way, the EDS1/SAG101/NRG1 branch mainly controls
cell death, while the EDS1/PAD4/ADR1 branch domi-
nates defense activation (Lapin et al. 2019). How do
NRG1- and ADR1-mediated Ca2+ influxes initiate differ-
ent outputs? What are their Ca2+-responsive factors re-
spectively? The requirement of ZAR1 residue E11
specially involved in its Ca2+ channel activity for cell
death, ROS accumulation and bacterial growth restric-
tion suggests that ZAR1-mediated Ca2+ influx controls
both cell death and defense activation (Wang et al.
2019a; Bi et al. 2021). How exactly are CNL ZAR1-
mediated cell death and defense inter-connected and
separated? Do CNLs and RNLs share Ca2+-responsive
factors for signaling? Answering these questions raised
from the two recent landmark studies will substantially
advance our understanding of plant NLR functions.
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