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Abstract

Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external
stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various
plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses
encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the
yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for
pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and
invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection
processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often
plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in
regulating known virulence factors as well as effector genes during plant infection and mediating defenses against
mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for
virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae
and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to
oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover,
these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The
IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in
different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi.
Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/
CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have
been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged
functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and
proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other
signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
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Introduction
Plant pathogenic fungi are exposed to a variety of abiotic
and biotic stresses in their natural habitats as well as
during infectious growth, such as hyperosmolarity, ex-
treme pH or temperature, mycoparasitic organisms, oxi-
dative burst, and phytoalexins. Effective stress
perception and responses are necessary for adaptation,
survival, and overcoming plant defense. Like other
eukaryotic organisms, fungi have the well-conserved
mitogen-activated protein (MAP) kinase pathways that
play important roles in responding to external stimuli
(Chen and Thorner 2007; Brewster and Gustin 2014). In
the past two decades, MAP kinase (MAPK) pathways
have been functionally characterized in various plant
pathogenic fungi that differ in dispersal, survival, host
ranges, and infection mechanisms. In addition to their
roles in infection and developmental processes, MAPKs
in fungal pathogens are important for regulating re-
sponses to various environmental stresses and interac-
tions with other microbes (Hamel et al. 2012;
Braunsdorf et al. 2016; Jiang et al. 2018).
The typical MAP kinase pathway comprises a protein

kinase cascade consisting of a MAP kinase (MAPK), a
MAPK kinase (MEK), and a MEK kinase (MEKK). The
sequential activation of these protein kinases in response
to extracellular signals results in the activation of
MAPKs, which then phosphorylate downstream target
proteins and transcription factors (TFs) to regulate tran-
scriptional and cellular changes. The budding yeast Sac-
charomyces cerevisiae, a model organism in which MAP
kinase pathways are best characterized, have five MAPKs
(Fus3, Kss1, Slt2, Hog1, and Smk1) that regulate phero-
mone response, filamentation/invasiveness, cell wall in-
tegrity, high osmolarity growth, and ascospore cell
assembly (Schwartz and Madhani 2004; Chen and Thor-
ner 2007). However, most plant pathogenic ascomycetes,
the focus of this review, normally have only three
MAPKs that are orthologous to yeast Fus3/Kss1, Slt2,
and Hog1, and three corresponding upstream MEKs and
MEKKs (Chen and Thorner 2007; Li et al. 2012), with
only a few exceptions such as two HOG1 MAPKs in
Verticillium dahlia and two BCK1 MEKKs in Fusarium
oxysporum. These three well conserved MAPK pathways
have both common and distinct biological functions in
pathogenesis, differentiation, and stress responses in
phytopathogenic fungi (Jiang et al. 2018). In this review,
we will summarize general functions of fungal MAPKs
in pathogenesis, but the emphasis will be on their roles
in regulating responses to abiotic and biotic stresses.

Roles of MAPK pathways in fungal pathogenesis
Considering all the physical barriers and possible defense
responses, the host plant is likely a ‘hostile’ habitat for
fungal pathogens, which often use MAPK signaling to

regulate infection-related morphogenesis and overcome
plant immunity. The rice blast fungus Magnaporthe ory-
zae, a model for studying fungal-plant interactions, is
the first fungal pathogen with all three MAPK pathways
functionally characterized (Hamel et al. 2012; Jiang et al.
2018). Therefore, we organized this section based on the
M. oryzae MAPKs (Fig. 1) and their homologs in S. cere-
visiae (Table 1). To date, all three MAPK pathways have
been characterized in a number of plant pathogenic as-
comycetes, including Alternaria brassicicola, Bipolaris
sorokiniana, Botrytis cinerea, Cryphonectria parasitica,
Fusarium graminearum, F. oxysporum, and Zymosep-
toria tritici (Leng and Zhong 2015; So and Kim, 2017;
Jiang et al. 2018; Francisco et al. 2020). In general, at
least two of the MAPK pathways play critical roles in
pathogenesis. In some fungi such as F. graminearum, all
three are important for plant infection (Wang et al.
2011). However, the exact infection-related functions of
each MAP kinase pathway may vary significantly among
different fungal pathogens.

The Kss1/Pmk1 invasive growth (IG) MAPK pathway
In S. cerevisiae, Kss1 and Fus3 are two partially redun-
dant MAPKs that have overlapping functions in phero-
mone response and filamentation or invasive growth
into agar (Morillon et al. 2000). Most filamentous asco-
mycetes have only one MAPK that is orthologous to
Fus3/Kss1 (Table 1). In plant pathogenic fungi, this con-
served MAPK cascade is generally required for plant in-
fection and best characterized in M. oryzae and the corn
smut fungus Ustilago maydis (Muller et al. 2003; Li et al.
2012). Pmk1, the first MAPK gene characterized in plant
pathogens, is essential for appressorium formations in
M. oryzae. It also plays a critical role in appressorium
penetration and invasive growth (IG) or cell-to-cell
spreading in planta (Xu and Hamer 1996; Sakulkoo
et al. 2018). Pmk1 is activated by its upstream Mst7
MEK and Mst11 MEKK (Fig. 1), but M. oryzae, like
other fungi, lacks a distinct homolog of yeast scaffold
protein Ste5. Instead, Mst50 functions as an adaptor
protein that interacts with Mst11 and Mst7 as well as
Ras proteins (Zhao and Xu 2007; Zhou et al. 2014). Nei-
ther MST20 nor CHM1, two PAK kinases in M. oryzae,
is required for appressorium formation. RAS2 is an es-
sential gene and Ras2 likely functions upstream from
both the cAMP-PKA and MAPK pathways (Zhou et al.
2012; Qi et al. 2015). In M. oryzae, trimeric G-proteins
and G protein-coupled receptor (GPCR) Pth11 also are
involved in regulating appressorium formation and plant
infection, mainly via cAMP signaling (DeZwaan et al.
1999; Nishimura et al. 2003). Msb2 mucin and Sho1 act
upstream from the Pmk1 cascade as sensors for plant
surface chemicals such as primary alcohols (Liu et al.
2011). For physical signals, a putative chitin-binding
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protein may play a role in sensing a hydrophobic surface
for appressorium formation (Kamakura et al. 2002).
MoEnd3 mediated receptor endocytosis for Pth11 and
MoSho1 and transduce signals into intercellular com-
partment in M. oryzae (Li et al. 2017a, 2017b). For
downstream targets, besides Mst12, Mcm1 and Sfl1 are
other two transcription factors that may be regulated by
Pmk1 for appressorium penetration and invasive growth
(Park et al. 2002; Li et al. 2011; Zhou et al. 2011).
MST12 is essential for pathogenicity and likely regulates
septin-mediated cytoskeleton reorganizations in appres-
soria for penetration. Pmk1 is also essential for hypho-
podium formation and root infection as well as the
development of appressorium-like structures at hyphal
tips (Kong et al. 2013).
In U. maydis, a basidiomycete, Kpp2 and Kpp6 are

MAPKs with overlapping functions in plant infection
and the kpp2 kpp6 double mutants are nonpathogenic.
Kpp6 plays a more important role than Kpp2 in

appressorium penetration, but both kpp2 and kpp6 dele-
tion mutants are reduced in virulence (Muller et al.
2003; Hu et al. 2007). Interestingly, transcription factor
Prf1 appears to function downstream from both the
cAMP-PKA and MAPK pathways for regulating plant
infection processes (Kaffarnik et al. 2003). In M. oryzae,
which lacks a Prf1 homolog, Sfl1 also may be coregu-
lated by the Pmk1 MAPK and cAMP signaling pathways
(Li et al. 2011; Li et al. 2017a, 2017b). For upstream sen-
sors, Msb2 and Sho1 also are important for appresso-
rium development in U. maydis (Lanver et al. 2010).
Their homologs in B. cinerea and F. oxysporum play crit-
ical roles in plant infection as well (Leroch et al. 2015;
Perez-Nadales and Di Pietro 2015). It is likely that these
two sensors are conserved in other fungal pathogens for
recognizing plant surface chemical signals to activate the
IG MAPK cascade for regulating infection-related
development. In fact, in all the appressorium-forming
pathogens, including B. sorokiniana, Colletotrichum

Fig. 1 Functions of three MAPK pathways in the model plant pathogenic fungus Magnaporthe oryzae. Plant surface (chemical and physical)
signals and other ligands of infected plant tissues are recognized by Sho1, two putative mucins (Msb2 and Cbp1), GPCR (such as Pth11), or other
uncharacterized receptors to activate the downstream Pmk1 IG MAPK pathway possibly via Gα-GTP, freed Gβγ, PAK kinases (Mst20/Chm1), and
Ras2. Mst50 is an adaptor protein that is also involved in the other two MAPK pathways. Thioredoxin Trx2 affects the activation of Mst7, which
interacts with Pmk1 at the docking sites. Activated Pmk1 regulates the expression of genes important for appressorium formation, penetration,
and invasive growth by Mst12, Mcm1, Sfl1, Tpc1, and possibly other transcription factors. (Mst12 interacts with Mcm1 and Tpc1, and Sfl1 directly
interacts with Pmk1). For the Mps1 CWI pathway that functions downstream from PKC for regulating appressorium penetration, sporulation, and
invasive growth, all the yeast cell wall integrity sensors are conserved in plant pathogenic fungi (Table 1). Transcription factors regulated by the
Mps1 MAPK cascade include Mig1, Swi6, and Gti1, with the latter as a regulator of many effector genes. Both IG and CWI MAPK pathways are
important for invasive growth and disease development. Unlike the other two MAPKs, the Osm1 MAPK is dispensable for plant infection although
it has the conserved role in osmoregulation and sensitivity to fludioxonil. It is also important for responses to oxidative stress through
transcription factor Atf1, which may be activated by other MAPKs or protein kinases because the atf1 deletion mutant is defective in plant
infection. Although Sho1 is an osmosensor in M. oryzae, it is also involved in activating the IG MAPK together with Msb2
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Table 1 Key components of the IG, CWI, and HOG MAPK pathways in M. oryzae and F. graminearum, and their orthologs in S.
cerevisiae

S. cerevisiae M. oryzae F. graminearum Functions

Kss1/Pmk1 IG Ste2 Ste2b Pre2 GPCR

Ste3 Ste3b Pre1 GPCR

Msb2 MoMsb2 FGSG_01127a Mucin

– Cbp1 – GPCR

– Pth11 FGSG_08408 GPCR

– – Giv1 GPCR

Gpa1 MagA FgGpa1 G-alpha

Ste4 Mgb1 FgGpb1 G-beta

Ste18 MGG1 FgGpg1 G-gamma

Ras2 MoRAS2 FgRAS2 GTPase

Ste20 Mst20b FgSte20 PAK

Cla4 Chm1b FgCla4 PAK

Ste5 – – Scaffold

Ste50c Mst50 FgSte50 Adaptor

Ste11 Mst11 FgSte11 MEKK

Ste7 Mst7 FgSte7 MEK

Fus3/Kss1 Pmk1 Gpmk1 (Fmk1) MAPK

Ste12 Mst12 FgSte12 TF

Mcm1 MoMcm1 FgMcm1 TF

Sfl1 MoSfl1 FgSfl1 TF

– Tpc1 FGSG_08769 TF

Slt2 CWI Wsc1 MGG_04325 FgWsc1 Sensor-transducer

Wsc2 MGG_02754 FgWsc2/2B

Wsc3 MGG_01466 FgWsc3

Mid2 MGG_12606 FGSG_08788 Sensor

Mtl1 – – Sensor

Rho1 MGG_07176 FGSG_04400 Rho

Pkc1 MoPkc1 FgPkc1 PKC

Bck1 Mck1 FgBck1 MEKK

Mkk1/Mkk2 Mkk2 FgMkk1 MEK

Slt2 Mps1 Mgv1 MAPK

Swi6 MoSwi6 FgSwi6 TF

Swi4 MGG_ FGSG_04220 TF

Rlm1 Mig1 FgRlm1 TF

Wor1 MoGti1 Fgp1 TF

Hog1 HOG Sln1 MoSln1 FgSln1 Histidine kinase

Sho1d MoSho1 FgSho1 Osmosensor

– MoHik1 FGSG_07118 Histidine kinase

Ypd1 MoYpd1 FGSG_04363 Phosphotransfer protein

Ssk1 MoSsk1 FGSG_08948 MEKK

Ssk2/Ssk22 MoSssk2 FgSsk2 MEKK

Pbs2 MoPbs2 FgPbs2 MEK

Hog1 Osm1 FgHog1 MAPK
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gloeosporioides, C. lagenarium, and C. heterostrophus,
the IG MAPK pathway is required for appressorium
formation (Li et al. 2012; Leng and Zhong 2015;
Liang et al. 2019). Furthermore, expression of the
PMK1 orthologs from C. lagenarium and Puccinia
striiformis rescues the defect of pmk1 in appressorium
formation, indicating the well-conserved nature of this
MAPK (Jiang et al. 2018).
PMK1 orthologs also are important for plant infection

in various fungal pathogens that do not form appresso-
ria, including vascular wilt pathogens F. oxysporum and
V. dahliae, the wheat scab fungus F. graminearum, corn
stalk and ear rot pathogen F. verticillioides, canker
pathogen C. parasitica, and biotrophic pathogen Clavi-
ceps purpurea (Hamel et al. 2012; Li et al. 2012; Jiang
et al. 2018). In Mycosphaerella graminicola and Stago-
nospora nodorum, the Pmk1 ortholog is important for
invasion through stomata and growth in mesophyll tis-
sues (Solomon et al. 2005; Cousin et al. 2006). Genes of
diverse functions are found to be regulated by the IG
MAPK pathway, such as PTH11 GPCR, GAS2/GAS2,
and MoHOX7 homeobox TF in M. oryzae, cell wall de-
grading enzyme (CWDE) genes in F. oxysporum, F. gra-
minearum, and Valsa mali, and pheromone precursors
in C. parasitica (Kim et al. 2009; Li et al. 2012; Wu et al.
2017). Interestingly, this MAPK pathway also regulates
the biosynthesis of deoxynivalenol (DON) in F. grami-
nearum and fumonisins in F. verticillioides (Wang et al.
2011; Zhang et al. 2011). These mycotoxins also are
toxic to plant cells and DON is a critical virulence factor
in the wheat scab fungus.
In summary, the IG MAPK is well conserved for regu-

lating plant penetration and invasive growth in phyto-
pathogenic fungi. Although the exact developmental and
infection processes that it regulates vary among different
fungi, one common theme is that this MAPK regulates
the arrest of germ tube or hyphal tip growth before re-
establishing polarized growth for penetrating and invad-
ing plant tissues. In addition, this MAPK pathway may
regulate the expression of stage-specific genes during
disease development, likely in response to plant signals
recognized at different infection stages. Besides surface
cues, other possible plant signals known to activate the

IG MAPK cascade include ethylene in C. gloeosporioides
(Kim et al. 2000), secreted class III peroxidases in F. oxy-
sporum (Turrà et al. 2015), and wheat floral tissue ex-
tract in F. graminearum (Jiang et al. 2019).

The Slt2/Mps1 Cell Wall integrity (CWI) pathway
The CWI pathway is required for remodeling of the fun-
gal cell wall during growth, development, and for
responding to environmental stimuli. In S. cerevisiae, cell
wall stresses activate the small G protein Rho1, which
then activates the Slt2 MAPK cascade (Table 1) via Pkc1
to regulate gene expression by transcription factors
Rlm1 and Swi6 (Jiménez-Gutiérrez et al. 2020). In M.
oryzae, the mps1 mutant forms melanized appressoria
but is defective in penetration, infectious growth, and
sporulation (Xu et al. 1998). Deletion of its upstream
MEKK Mck1 results in similar defects in cell wall integ-
rity and plant infection (Jeon et al. 2008). Similar to
mps1 and bck1 mutants, the mig1 (MoRlm1) deletion
mutant is nonpathogenic and defective in the differenti-
ation and growth of invasive hyphae, likely due to de-
fects in overcoming defense responses (Mehrabi et al.
2008). The Moswi6 mutant has defects in appressorium
turgor generation and forms small specks, but not typ-
ical blast lesions, on rice leaves (Qi et al. 2012). Mps1
also controls MoGti1, a transcription factor important
for penetration peg formation and expression of several
effector genes in M. oryzae (Li et al. 2016) (Fig. 1).
The CWI MAPK pathway also has been characterized

in a number of plant pathogenic fungi, including B.
cinerea, C. parasitica, C. purpurea, F. graminearum, M.
graminicola, and Sclerotinia sclerotiorum (Sanz et al.
2017; Jiang et al. 2018). In general, mutants deleted of
the Slt2 ortholog and its upstream MEK or MEKK are
significantly reduced in virulence or are non-pathogenic,
indicating a conserved role of the CWI MAPK pathway
during plant infection. However, infection processes reg-
ulated by this pathway differ among fungal pathogens.
For example, unlike in M. oryzae, the Slt2 ortholog is
important for appressorium development in C. lagenar-
ium and C. gloeosporioides (Kojima et al. 2002; Yong
et al., 2013). Whereas the MgSlt2 mutant is normal in
stomata penetration but defective in developing invasive

Table 1 Key components of the IG, CWI, and HOG MAPK pathways in M. oryzae and F. graminearum, and their orthologs in S.
cerevisiae (Continued)

S. cerevisiae M. oryzae F. graminearum Functions

Skn7 MoSkn7 FgSkn7 TF

Atf1 MoAtf1 FgAtf1 TF

- No homolog
aPredicted gene number (Homolog are present but not characterized)
bHomologs not important for appressorium formation
c Ste50 is functionally related to multiple MAPKs in S. cerevisiae and M. oryzae
d Sho1 functions mainly in the HOG pathway as an osmosensor in the budding yeast although it ortholog play an important role together with Msb2 to regulate
the IG pathway in fungal pathogens
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hyphae in M. graminicola (Mehrabi et al. 2006), SMK3 is
important for initial infection and sclerotium formation
but not for lesion expansion in S. sclerotiorum (Bashi
et al. 2016).
In M. oryzae, the mps1 mutant has a normal growth

rate but produces only limited aerial hyphae. Its ortho-
logs also are dispensable for normal growth rate in Col-
letotrichum species. However, mutants deleted of the
Slt2 ortholog have severe growth defects in other fungi,
such as F. graminearum, B. cinerea, and C. parasitica
(Hou et al. 2002; Rui and Hahn 2007; So and Kim,
2017). Interestingly, the Cpslt2 and Cpbck1 mutants of
C. parasitica often produce spontaneous suppressors
that have a faster growth rate but are still defective in
plant infection (So and Kim, 2017), suggesting differ-
ent roles of the CWI MAPK pathway during vegeta-
tive and infectious growth. In F. graminearum,
deletion of FgHOG1 partially rescues the growth de-
fect of the mgv1 mutant but not its defect in patho-
genesis (Ren et al. 2019).

The Hog1/Osm1 high-Osmolarity glycerol (HOG) MAPK
pathway
Whereas the other two fungal MAPKs have the TEY
dual phosphorylation site, Hog1 and its orthologs have
the TGY motif, which is similar to p38 stress activated
MAP kinases (SAPKs) in animals. In yeast, the Ssk2/
Ssk22-Pbs2-Hog1 MAPK cascade is activated by Sln1
and Sho1 (Table 1), two partially redundant but mech-
anistically distinct sensors, to mainly regulate responses
to hyperosmotic stress (Brewster and Gustin 2014). In
M. oryzae, the osm1 deletion mutant is defective in
osmoregulation in hyphae but normal in appressorium
turgor generation and plant infection (Dixon et al.
1999). Its upstream sensor histidine kinases MoSln1 and
MoHik1, phosphotransfer protein MoYpd1p, and re-
sponse regulator MoSsk1 MEKK (Table 1) also are
important for osmoregulation but dispensable for
pathogenesis (Jacob et al. 2016) (Fig. 1). However, the
Sho1 homolog plays an important role in activating
the IG MAPK pathway together with Msb2 for plant
infection than for osmoregulation in M. oryzae (Liu
et al. 2011).
Like in M. oryzae, the Hog1/Osm1 ortholog is dispens-

able for plant infection in several fungal pathogens such
as Cochliobolus orbiculare and Bipolaris oryzae (Mori-
waki et al. 2006; Jiang et al. 2018). However, the HOG
MAPK pathway is important for plant infection in other
plant pathogenic fungi (Jiang et al. 2018). For example,
the hog1 mutant is nonpathogenic and defective in the
switch to hyphal growth in M. graminicola (Mehrabi
et al. 2006). In B. cinerea, Sak1 is important for appres-
sorium development and penetration of plant epidermal
cells (Liu et al. 2008). In F. graminearum, the Fghog1

mutant is defective in plant infection and DON produc-
tion (Zheng et al. 2012). In Ustilaginoidea virens,
UvHog1 regulates the production of secondary metabo-
lites that are toxic to plant cells (Zheng et al. 2016).
These observations indicate that the HOG pathway
likely plays a species-specific role during plant infection
in fungal pathogens. Interestingly, the C. sativus Cshog1
mutant is normal in root infection but significantly re-
duced in virulence on barley leaves (Leng and Zhong
2015). In C. parasitica, whereas the other two MEK kin-
ase genes are important, the Cpkk3 MEK (CpPbs2) is
dispensable for pathogenesis on chestnut (Moretti et al.
2014). However, the Cpmk1 MAPK (CpHog1) mutant is
slightly reduced in virulence in a different C. parasitica
strain (Park et al. 2004). Therefore, the HOG MAPK
pathway may have strain-specific and tissue-specific
roles during plant infection as well.
The best characterized downstream target of the HOG

MAPK in plant pathogens is the Atf1 (a CREB-like)
bZIP transcription factor. In F. graminearum, Atf1 inter-
acts with FgOs2 (FgHog1) in the nucleus under osmotic
stress, and constitutive expression of FgATF1 partially
complements the defects of Fgos-2 mutant in osmoregu-
lation and pathogenesis (Van Nguyen et al. 2013). Atf1
orthologs also are important for virulence in F. verticil-
lioides, M. oryzae, V. dahlia, and other fungal pathogens
(Jiang et al. 2018; Szabó et al. 2020; Tang et al. 2020; Liu
et al. 2020). However, in these fungi, ATF1 orthologs
mainly regulate response to oxidative stress instead of
hyperosmotic stress. Furthermore, responses to oxidative
stress often involve the CWI as well as HOG MAPK
pathways as described below.

MAPK signaling in regulating abiotic stress
responses
In S. cerevisiae, Slt2 and Hog1 mainly regulate responses
to cell wall and hyperosmotic stresses, respectively, al-
though these MAPKs, particularly Hog1, also are in-
volved in other stress responses (Ikner and Shiozaki
2005; Serrano et al. 2006; Brewster and Gustin 2014). In
comparison, MAPK pathways in phytopathogenic fungi
generally play more important roles in response to vari-
ous environmental stresses (Fig. 2), including antifungal
chemicals, reactive oxidative species (ROS), elevated
temperatures, UV irradiation, and plant defense com-
pounds (Lee et al. 2017; Dunayevich et al. 2018; Yang
et al. 2020).

Cell wall stress
The fungal cell wall is not only important for maintain-
ing morphology but also for protecting against environ-
mental stresses. Like in S. cerevisiae, the CWI MAPK
pathway plays a critical role in regulating responses to
cell wall stress in plant pathogenic fungi, and mutants
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deleted of the Slt2/Mps1 ortholog have increased sensi-
tivities to cell wall lytic enzymes and cell wall stressors
such as Congo Red (CR) or Calcofluor White (CFW)
(Hamel et al. 2012; Jiang et al. 2018). Autolysis of aerial
hyphae is observed in old cultures of the mps1 and bck1
mutants in M. oryzae and Aspergillus flavus (Xu et al.
1998; Jeon et al. 2008; Zhang et al. 2020; Feng et al.
2021). In S. cerevisiae, cell stressors, such as CR and
Caspofungin, are sensed by the Mid2 and Wsc1 sensors
(Jin et al. 2013). Similar sensors appear to be involved in
sensing these cell wall stressors in fungal pathogens,
such as U. maydis and F. graminearum (Carbó and
Pérez-Martín 2010; Xu et al. 2019). In yeast, cell wall
damage caused by β-1,3-glucanase and protease activities
is sensed by Sho1 and mucin Hkr1 (not Msb2) to acti-
vate Hog1, which in turn activates Slt2 (Rodríguez-Peña
et al. 2013). Although whether mediated by the CWI
MAPK or not is not clear, the involvement of the HOG
pathway in responding to cell wall stress also has been
observed in plant pathogenic fungi such as F.

graminearum and S. sclerotiorum (Zheng et al. 2012;
Duan et al. 2013). In A. brassicicola, both CWI and
HOG pathways are involved in response to cell wall
stress caused by camalexin and brassinin, two indolic
phytoalexins produced by Brassica species (Joubert
et al. 2011).
In some plant pathogenic fungi, the IG MAPK path-

way also plays a role in cell wall stress responses. How-
ever, its importance and regulatory functions vary
among different fungal pathogens. For example, deletion
of ChMK1 results in hypersensitivity to CFW and CR in
C. higginsianum (Wei et al. 2016), but the Cfpmk1 mu-
tant has increased tolerance against CR and SDS in C.
fructicola (Liang et al. 2019). Whereas the CcPmk1 mu-
tant is hypersensitive to cell wall stress and cell wall lytic
enzymes in Cytospora chrysosperma (Yu et al. 2019), the
chk1 mutant has the hyphal autolysis and aerial hyphal
growth defects in C. heterostrophus (Lev et al. 1999). In
F. graminearum, both Gpmk1 and Mgv1 MAPKs are in-
volved in regulating basal resistance to plant defensin

Fig. 2 Regulation of responses to abiotic stresses by MAPK Signaling. In general, the HOG pathway plays a major role in regulating responses to
osmotic and oxidative stresses in fungi. It is also a major regulator for responses to various environmental stresses, such as UV irradiation, heavy
metals, and heat stress in many fungal pathogens. The CWI MAPK pathway mainly regulates responses to cell wall stresses caused by lytic
enzymes, cell wall disturbing chemicals, and camalexin and brassinin phytoalexins. In some plant pathogenic fungi, the CWI and HOG MAPKs
crosstalk to regulate responses to cell wall and oxidative stresses. In comparison with the other two MAPKs, the IG MAPK generally plays less
important roles in regulating stress responses in fungal pathogens although it may be involved in the co-regulation of responses to heat, pH, and
other environmental stresses together with the HOG or CWI pathway. Nevertheless, in some fungi, the IG and CWI MAPKs regulate melanin
synthesis and melanization of cell wall confer resistance to various stresses
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MsDef1 but not MtDef4 (Ramamoorthy et al. 2007). In
M. oryzae, deletion of a Pmk1-interacting gene PIC5 re-
sults in increased sensitivity to cell wall lytic enzyme
(Zhang et al. 2011). In F. oxysporum, deletion of FMK1
in the wild type has no obvious effect on sensitivity to
cell wall stress but increases the sensitivity of the mpk1
(Slt2) mutant (Segorbe et al. 2017), suggesting a minor
role of the IG MAPK in cell wall integrity.

Osmotic stress
Plant pathogenic fungi may face hyperosmotic stress
during infection of tissues with high sugar contents and
survival in desiccated plant tissues. The HOG pathway is
conserved in fungal pathogens for regulating adaptive re-
sponses to hyperosmotic stress, including the synthesis
and retention of compatible osmolytes such as glycerol,
arabitol, and sorbitol (Dixon et al. 1999; Zheng et al.
2016; Li et al. 2020). Deletion of HOG1 orthologs results
in increased sensitivity to hyperosmotic stress in all the
plant pathogenic fungi studied. Like in yeast, Hog1
orthologs are rapidly phosphorylated in response to
hyperosmotic stress in fungal pathogens such as C. het-
erostrophus (Yoshimi et al. 2005). For the upstream histi-
dine kinases of the HOG pathway in M. oryzae, the
Mosln1 mutant is more susceptible to salt stress, but the
Mohik1 mutant is more sensitive to sugar stress (Jacob
et al. 2014). Downstream transcription factors of the
HOG pathway that have been shown to regulate osmo-
regulation in fungal pathogens include Atf1 and Skn7
(Zheng et al. 2016; Tang et al. 2020). However, these
transcription factors have species-specific functions in
osmoregulation. For example, Atf1 is more important in
F. graminearum but Skn7 is more important in B.
cinerea for regulating responses to osmotic stress (Jiang
et al. 2015; Viefhues et al. 2015; Yang et al. 2015).
Interestingly, knocking down the expression of

PiHOG1 in Piriformospora indica, an endophyte of rice
roots, results in an increased sensitivity to osmotic stress
not only in the fungus but also in rice plants colonized
by the knocked down strain (Jogawat et al. 2016). The
accumulation of compatible osmolyte proline is reduced
in rice roots inoculated with this strain, suggesting that
the endophytic fungus may confer osmotic stress toler-
ance to the host plant by upregulating proline produc-
tion via the HOG MAPK. Although likely irrelevant to
plant pathogens, it is worth noting that the HOG path-
way also regulates response to hypoosmotic stress in the
halophilic fungus Wallemia ichthyophaga, which has
two functional Hog1 MAPKs (Konte and Plemenitas
2013).

Oxidative stress
Oxidative stress can be caused by ROS generated intra-
cellularly or exposure to oxidants from the environment

or host plants. In many plant pathogenic fungi, the
HOG pathway plays a critical role in oxidative stress re-
sponse. Mutants deleted of the Hog1 MAPK or other
key components of this pathway have increased sensitiv-
ity to oxidative stress, and some are defective in plant in-
fection as described above. The Atf1 ortholog is one
major TF functioning downstream from the HOG
MAPK to regulate genes important for oxidative re-
sponses in fungal pathogens (Guo et al. 2011; Tang et al.
2020). Homologs of the response regulator Skn7, an-
other component of the HOG pathway, also is important
for oxidative stress response in fungal pathogens such as
A. alternata (Chen et al. 2012), likely by regulating the
expression of oxidative stress-induced genes, including
those encoding catalases and superoxide dismutase
(Fassler and West 2011). Nevertheless, in some fungi
such as M. oryzae, the Skn7 ortholog is dispensable for
response to oxidative stress and pathogenesis
(Motoyama et al. 2008).
Mutants deleted of key components of the CWI

MAPK pathway also have increased sensitivities to oxi-
dative stress in some fungal pathogens such as B. cinerea
(Yin et al. 2018) and F. verticillioides (Zhang et al. 2015).
However, it is not clear whether this MAPK regulates
stress response genes directly or by crosstalk with the
HOG pathway in these fungi. In yeast, under low or
moderate oxidative stress conditions, the highly O-
mannosylated Mtl1 protein acts together with Wsc1 or
its paralog Mid2 as the sensors of the CWI pathway to
activate Slt2, which results in the translocation and deg-
radation of cyclin C, a negative regulator of genes in-
volved in stress responses (Vilella et al. 2005; Jin et al.
2013). Homologs of Mtl1 and Mid2 are present in the
genomes of fungal pathogens but none of them have
been functionally characterized.
AP1 is another b-ZIP transcription factor (conserved

from yeast to human) that acts as a redox-responsive
regulator for regulating oxidative stress-related genes.
The C-terminal domain of Yap1 contains cysteine resi-
dues that can form an intramolecular disulfide bridge
under oxidizing conditions, which enable its localization
to the nucleus for activating its target genes. Although
AP1 orthologs are involved in oxidative stress responses
in general, their importance for plant infection vary
among fungal pathogens. For example, the ChAP1 dele-
tion mutant of C. heterostrophus is increased in sensitiv-
ity to H2O2 but has no obvious defect in virulence (Lev
et al. 2005). However, mutants deleted of the AP1 ortho-
log are hypersensitive to oxidative stress and defective in
plant infection in A. alternata, C. gloeosporioides, and
M. oryzae (Lin et al. 2010; Guo et al. 2011; Sun et al.
2016). Nevertheless, the functional relationship between
AP1 and MAPKs remains to be clarified in these patho-
gens. In the budding or fission yeast, Yap1 is a redox-
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sensitive transcription factor that is not known to be a
direct substrate of Hog1/Sty1 MAPK, suggesting an in-
direct relationship. In M. oryzae, Mst7 interacts with
thioredoxin Trx2, which is a target of MoAP1 and im-
portant for response to H2O2 or diamide (Zhang et al.
2016; Wang et al. 2017), suggesting a possible indirect
relationship between of Pmk1 and MoAP1. The Tpc1
transcription factor that regulates NOXD expression in
M. oryzae interacts with Mst12 (Galhano et al. 2017),
further implicating the involvement of the IG MAPK
pathway in responses to oxidative stress.

Antifungal chemicals
Treatments with fungicides or antifungals with different
modes of actions likely cause target-specific stresses in
fungi, which may trigger MAPK-mediated responses.
One well-characterized example is the roles of multiple
MAPKs in responding to cell wall stress caused by Cas-
pofungin, CR, and CFW described above (2.1). Another
example is the over-stimulation of the HOG pathway by
phenylpyrrole fungicides fludioxonil and fenpiclonil.
First discovered in Neurospora crassa, treatments with
fludioxonil results in the accumulation of intracellular
glycerol and cell burst, and null mutations in OS-2
(HOG1) confer resistance against these fungicides
(Zhang et al. 2002). Fludioxonil also stimulates cell burst
and Hog1 overactivation in C. lagenarium (Kojima et al.
2004), and mutants deleted of the Hog1 ortholog are re-
sistant to fludioxonil in yeast and other plant pathogenic
fungi (Jiang et al. 2018). Deletion of the HOG1 ortholog
or upstream components of the HOG pathway in fungal
pathogens, including homologs of yeast PBS2, SSK2/
SSK2, SLN1, YPD1, and HIK1 also confer resistance or
tolerance to fludioxonil. However, none of these HOG
components are the direct target of fludioxonil. A recent
study suggested that fludioxonil may target and inhibit
triosephosphate isomerase, resulting in elevated cytosolic
methyglyoxal, which in turn changes a Sln1-like group
III histidine kinase into a phosphatase to constitutively
activate the downstream Hog1 MAPK cascade (Brand-
horst et al. 2019). Remarkably, fludioxonil and fenpiclo-
nil have been applied to control foliar pathogens for
over 30 years, but field isolates with complete resistance
against these phenylpyrrole fungicides have not emerged
and spread widely in crop fields (Kilani and Fillinger
2016), which may be related to the defects of HOG mu-
tants in stress response and survival in nature.
Interestingly, the os-2, os-5 (PBS2), and ssk22 deletion

mutants in N. crassa are also resistant to dicarboximide
fungicides vinclozolin and iprodione (Zhang et al. 2002;
Fujimura et al. 2003). Resistance against dicarboximide
fungicides also has been observed in mutants defective
in the HOG pathway in plant pathogens (Jiang et al.
2018). For example, in Alternaria alternata, the hog1,

ssk1, skn7, and hsk1 deletion mutants all express in-
creased tolerance at various degrees against fludioxonil
and vinclozolin, with the hsk1 mutant having the highest
level of tolerance (Yu et al. 2016). However, although
stimulation of glycerol accumulation has been reported
(Ochiai et al. 2002), the actual target of dicarboximide
fungicides is not certain. In some fungi, mutants in the
cAMP-PKA pathway and PKC also confer resistance
against dicarboximide fungicides (Ramesh et al. 2001;
Mehrabi et al. 2006). In addition, the chk1 and mps1
mutants of C. heterostrophus are slightly increased in
tolerance, but the F. graminearum mgv1 mutant is in-
creased in sensitivity to fludioxonil (Degani 2015; Ren
et al. 2019), suggesting that the other two MAPKs may
play minor roles in fludioxonil tolerance, likely by cross-
talk with the HOG pathway.

Heat stress (HS)
Fungal pathogens must tolerate elevated temperatures in
the field. Although the functions of MAPK pathways in
heat stress (HS) responses, particularly the CWI path-
way, are well characterized in the budding yeast, such as
the activation of Slt2 via Cbk1 and Bck2, and Hog1
phosphorylation due to glycerol loss at elevated temper-
atures (Kuravi et al. 2011; Dunayevich et al. 2018), there
are only limited studies on the regulation of heat toler-
ance by MAPKs in plant pathogenic fungi. The mgv1
mutant of F. graminearum has increased sensitivity to
elevated temperatures, which is partially suppressed by
deletion of FgHog1 (Ren et al. 2019). Like other organ-
isms, fungi produce heat shock proteins (HSPs) and
chaperones to protect proteins from aggregation and
degradation. In yeast, Sfl1 is a heat shock factor-like
transcriptional regulator that controls the expression of
Hsp30 at 42 °C (Galeote et al. 2007). In M. oryzae,
MoSfl1 functions downstream from both the cAMP sig-
naling and Pmk1 MAPK pathways and the Mosfl1 dele-
tion mutant has increased sensitivity to elevated
temperatures (Li et al. 2011; Li et al., 2017).
The MoSsb1 HSP70-like protein interacts with

MoMkk1, the MEK for Mps1, and regulates its expres-
sion. MoSsb1 forms protein complexes with MoSsz1
(another member of HSP70) and MoZuo1 (a HSP40
protein) that are important for tolerance to temperature
stress in M. oryzae (Yang et al. 2018). HSP90, one of the
most ubiquitous chaperones, facilitates the activation of
Slt2 in response to heat stress, and its client proteins
that include Hog1 in S. cerevisiae and Candida albicans
(Leach et al. 2012). In plant pathogens, HSP90 likely has
similar functions in response to heat and other stresses
via its association with MAPKs. Interestingly, some plant
pathogens produce resorcyclic acid lactones such as
zearalenone, which may be inhibitory to plant and fungal
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HSP90 proteins during their interactions with host plant
(pathogenesis) or other fungi (competition).

Responses to other environmental factors
Although there are only limited studies, fungal MAPKs
also have been implicated in responding to other envir-
onmental stresses. In M. oryzae, vegetative growth of the
Mohik5 and Mohik9 mutants is sensitive to hypoxia-
inducing NaNO2 and treatment with NaNO2 resulted in
Osm1 phosphorylation, suggesting a role for the HOG
pathway in response to hypoxia (Jacob et al. 2014). In
Trichoderma atroviride, silencing of ThHOG1 (TMK3)
results in a minor increase in sensitivity to 40mM
CuSO4 (heavy metal stress) that stimulates ThHog1
phosphorylation (Delgado-Jarana et al. 2006). The HOG
pathway is also involved in regulating DNA repair in T.
atroviride because the tmk3 and pbs2 mutants are highly
sensitive to UV irradiation when incubated in dark (Es-
quivel-Naranjo et al. 2016). Furthermore, light stimulates
Tmk3 phosphorylation, and deletion of TMK3 affects
the expression of genes induced by blue light (Esquivel-
Naranjo et al. 2016). The HOG pathway is known to be
involved in light response and circadian rhythm in the
model filamentous ascomycetes N. crassa and Aspergil-
lus nidulans (Bennett et al. 2013; Yu et al. 2021).
In F. oxysporum, alkaline pH induces the rapid phos-

phorylation of Fmk1 MAPK, whereas shifting to acidic
pH (5.0) results in its dephosphorylation (Masachis et al.
2016). Because rapid alkalization or acidification of in-
fected tissues may be parts of plant defense responses, it
is possible that fungal pathogens use changes in pH to
trigger the expression of certain effectors or virulence
factors via the IG MAPK pathway. The biosynthesis of
melanin, an excellent photoprotectant, is also known to
be regulated by the IG MAPK pathway in plant patho-
genic fungi, such as C. gloeosporioides, C. heterostrophus,
and V. dahliae (Lev et al. 1999; Rauyaree et al. 2005; He
et al. 2017). Melanization of the cell wall provides pro-
tection against various stresses, including ionizing and
UV irradiation, host defensive compounds, elevated
ROS, and fungivores. In fact, many fungi that live in ex-
treme habitats such as extreme cold are melanized
(Gessler et al. 2014). Regulation of melanin synthesis by
the IG MAPK pathway suggests its indirect involvement
in response to various environmental stresses, likely to-
gether with the HOG and/or CWI MAPKs. In C. hetero-
strophus, both Chk1 and Mps1 MAPKs are involved in
the regulation of CMR1 and melanin synthesis (Eliahu
et al. 2007).

Roles of MAPK signaling in biotic stress responses
Besides infection of their hosts, plant pathogenic fungi
also have to compete with other microbes in the envir-
onment or on plant surface for survival and propagation.

In comparison with their roles in pathogenesis and re-
sponse to abiotic stresses, functions of MAPKs in the in-
teractions of fungal pathogens with mycoviruses,
bacteria, and other fungi are under-investigated (Fig. 3).

Interactions with bacteria
Fungal and bacteria can form a range of physical associ-
ations, and bacteria-fungal interactions (BFI) can affect
the ecosystems in which they coexist or their associa-
tions with host plants or animals (Deveau et al. 2018).
Whereas ‘fungiphile’ bacteria are preferentially associ-
ated with fungi and mainly live in the ‘hyphosphere’
habitat surrounding hyphae, fungal endobacteria live in-
side hyphal cells as symbionts. Some bacteria are para-
sites that degrade fungal cells but others simply use
hyphae for bacterial transport, such as the utilization of
F. oxysporum hyphae by Rahnella aquatilis (Palmieri
et al. 2020). In these diverse and dynamic physical inter-
actions, both bacteria and fungi are active in signaling
and signal recognition for responding appropriately to
their partners. Fungal quorum sensing molecules (such
as farnesol and tyrosol) and bacterium-secreted metabo-
lites (such as quinolones and homoserine lactones) have
been implicated in inter-kindom signaling (Chatterjee
et al. 2020; Sharma et al. 2020). However, the roles of
fungal MAP kinase pathways in the establishment of BFI
or BFI networks have not been well studied. In S. cerevi-
siae, treatments with Escherichia coli lipopolysaccharide
(LPS) and endotoxically active lipid A stimulate the
phosphorylation of Hog1 and its translocation to the nu-
cleus, as well as the expression of its downstream target
GPD1 (Marques et al. 2006). In V. dahliae, treatment
with iturins, pore-forming lipopeptides, produced by Ba-
cillus amyloliquefaciens, activates Hog1 and causes cell
wall integrity defects (Han et al. 2015). During symbiotic
establishment with Mycetohabitans endobacteria, several
components of the HOG pathway and its downstream
targets were upregulated in Rhizopus microsporus (Las-
tovetsky et al. 2016). These observations indicate a role
of the HOG MAPK pathway in fungal-bacteria interac-
tions. Furthermore, the TOR kinase targeted by rifamy-
cin functions upstream from MAP kinase cascades in S.
cerevisiae and filamentous fungi (Loewith and Hall 2011;
Inoue and Nomura 2018), suggesting indirect inhibition
of fungal MAPKs by antibiotics produced by bacteria.
Recognition of microbe-associated molecular patterns

(MAMPs) by Nod-like immune receptors (NLRs) leads
to the activation of downstream MAPKs for regulating
defense responses in plants and animals. Secreted effec-
tors of some bacterial pathogens are known to interfere
with host MAPK signaling (Shan et al. 2007; Krachler
et al. 2011). NLR-like receptor genes are widely distrib-
uted in filamentous fungi, and some of them may be in-
volved in MAMP recognition (Uehling et al. 2017) to
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activate fungal MAPKs for defense response against bac-
teria. On the other hand, fungal MAPKs may be targeted
by bacterial effectors for inhibition. Consistent with this
hypothesis, expression of the Pseudomonas syringae ef-
fector HopAI, a MAPK inhibitor, significantly reduces
the phosphorylation level of Mps1 and Mgv1 MAPKs in
M. oryzae and F. graminearum (Zhang et al. 2017).
Along the same line, some of the bacterial species used
for biocontrol against fungal pathogens may target fun-
gal MAPKs for interfering with their pathogenesis-
related functions. To test these hypotheses and better
understand the roles of fungal MAPKs in BFI, it will be
helpful to have a model plant pathogenic fungus for
studying fungal-bacterial interactions during plant
infection.

Fungal-mycovirus interactions
Like plants and animals, fungi are also susceptible to in-
fections by mycoviruses. The best characterized mycov-
irus is Cryphonectria hypovirus 1 (CHV1) that causes
hypovirulence and defects in sexual/asexual development
in C. parasitica. CHV1 infection interferes with the ex-
pression levels of the trimeric G-proteins that function

upstream from both cAMP signaling and MAPK path-
ways (Dawe and Nuss 2013). Although the exact mecha-
nisms are not clear, all three MAPKs in C. parasitica are
involved in its interactions with CHV1. The first MAPK
found to be affected by mycovirus infection is CpMK1
(Hog1). The phosphorylation of CpMK1 under hyperos-
motic conditions is reduced in the virus-infected hypo-
virulent strain, which has increased osmotic sensitivity
(Park et al. 2004), indicating the suppression of CpMK1
activation by CHV1.
Unlike CpMK1, the level of CpMK2 (Pmk1) phosphor-

ylation is not affected but its downstream TF CpSte12 is
down-regulated by CHV1 infection (Choi et al. 2005;
Deng et al. 2007). Furthermore, only the CpKK2
(CpSte7) deletion mutant, not mutants deleted of the
two other MEK genes, could not be infected with CHV1
virus or transformed with infectious CHV1 cDNA via
protoplasts (Turina et al. 2016), suggesting a role of this
MAPK pathway in mycovirus infection and replication.
In C. parasitica, CpPK1, a Cot-1 homolog, is transcrip-
tionally upregulated by CHV1 and overexpressing
CpPK1 reproduces some of the viral symptoms (Kim
et al. 2004). CpPK1 may be functionally related to the

Fig. 3 Roles of MAPK signaling in fungal interactions with viruses and bacteria. Although with only limited studies, the HOG and CWI pathways
have been implicated in bacteria-fungal interactions (BFIs). For examples, iturins, a special class of pore-forming lipopeptides secreted by B.
amyloliquefaciens, and E. coli lipopolysaccharide (LPS) or endotoxin lipid A stimulate the phosphorylation of Hog1. Activated Hog1 MAPK localizes
to the nucleus and regulates the expression of GPD1 and other downstream targets. Whereas the recognition of MAMPs (microbe-associated
molecular pattern) such as LPS by GPCR and NLR-like receptors in fungal pathogens may lead to the activation of MAPK pathways, bacteria may
secrete effector proteins to suppress the activation of MAPKs involved in BFIs. In M. oryzae, expression of the bacterial effector HopAI significantly
reduces the phosphorylation of Mps1 and therefore inactivates the CWI signaling. Similarly, fungal pathogens likely utilize MAPKs to regulate
defense against mycoviruses but mycovirus infection may directly or indirectly interfere with MAPK signaling in fungal pathogens. In C. parasitica,
CHV1 infection reduces the expression of trimeric G-proteins and downstream Ste12 transcription factor of the IG MAPK pathway. CHV1 infection
also affects the phosphorylation of the MEK (positively) of the CWI pathway and Hog1 MAPK (negatively) of the HOG pathway
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IG MAPK pathway because spontaneous suppressor
mutations in this pathway can partially rescue the
cot-1 mutant, and the scaffold protein Hym1 for the
Cot-1 NDR kinase complex is essential for the activa-
tion of this MAPK in N. crassa (Maerz et al. 2008;
Dettmann et al. 2012).
For the CWI pathway, CHV1 partially represses the

dephosphorylation of CpKK1 MEK, resulting in its ele-
vated phosphorylation and likely the hyperactivation of
its downstream MAPK (Turina et al. 2016). Further-
more, studies in other fungi such as F. graminearum and
N. crassa have showed that the CWI MAPK is essential
for hyphal fusion (Hou et al. 2002; Fischer and Glass,
2019). Because cell death triggered by fusion between
vegetative incompatible strains protects against the
spreading of mycoviruses in fungal hyphae (Dawe and
Nuss 2013), the CWI MAPK pathway likely plays an in-
direct but important role in defense against mycoviruses
in plant pathogenic fungi in general.

Fungal-fungal interactions
Many fungi also co-exist or compete against each other
in nature. Whereas some interactions are mediated via
antagonistic/inhibitory compounds or metabolites re-
leased into the environment, some involve direct hyphal-
hyphal contacts, leading to hyphal fusion and mycopara-
sitism or heterokaryosis. Although signaling compounds
and their receptors remain to be identified, two MAP
kinase pathways and the Striatin-Interacting protein
Phosphatase And Kinase (STRIPAK) complex have been
implicated in regulating chemotropism and hyphal fu-
sion, an integrated process of colonial growth in the
saprophytic model fungus N. crassa and Sordaria macro-
spora (Reschka et al. 2018; Fischer and Glass, 2019). In
N. crassa, the Soft protein functions as a scaffold for the
upstream components of the CWI MAPK pathway and
the Soft complexes undergo oscillations of assembly and
disassembly (4-min intervals) at hyphal tips during
chemotropic interactions. Ham-5 functions as the
scaffold protein for the Mak-2 (Kss1) cascade, and the
Ham-5 complexes mirror the Soft complexes in 4-min
interval oscillations of assembly and disassembly at hy-
phal tips in interacting hyphae. Mirroring oscillations of
the Soft and Ham-5 complexes may be related to their
functions in signal secretion and reception, respectively
(Goryachev et al. 2012). The STRIPAK complex (Kück
et al. 2016) also localizes to the hyphal tip and cross-
talks with Mak1 and Mak-2 pathways to regulate hyphal
fusion. Besides their physical associations detected by
mass spectrometry analysis, key components of the Soft,
Ham-5, and STRIPAK complexes are required for full
phosphorylation of Mak-1 and Mak-2 MAPK (Dettmann
et al. 2014; Fischer and Glass, 2019). Furthermore, PP-1
(Ste12) of the Mak-2 pathway directly activates the

expression of Adv-1 that functions downstream from
Mak-1 for regulating genes important for hyphal fusion
(Fischer et al. 2018). However, the functions of these
three complexes in hyphal fusion may be not well con-
served in fungal pathogens. In F. graminearum, Mgv1
MAPK is essential for hyphal fusion and heterokaryon
formation (Hou et al. 2002) but hyphal fusion still oc-
curs in the Fgso (Fgsoft) and Gpmk1 deletion mutants
(Zheng et al. 2013).
Hyphal fusion can occur between hyphae of the same

strain, different strains of the same species, or different
species. In N. crassa, the doc genes regulate non-self rec-
ognition before hyphal fusion (Heller et al. 2016), but
the Het genes control heterokaryon incompatibility after
hyphal fusion (Glass and Kaneko 2003). Whereas fusion
between incompatible strains leads to cell death in het-
erokaryotic cells, heterokaryons are formed between
compatible strains, which may lead to parasexual
reproduction and somatic recombination to increase
genetic variation in asexual fungal pathogens (Clutter-
buck 1996; Daskalov et al. 2017). Although studies are
lacking, MAPKs may also play regulatory roles in para-
sexual reproduction processes after hyphal fusion and
heterokaryon formation.
Mycoparasitism also involves recognition and hyphal

attachment but results in the killing and degradation of
host hyphae by the mycoparasite after hyphal fusion or
penetration. Mycoparasitic fungi are often facultative
parasites that switch from saprophytic to parasitic
growth when triggered by host-derived signals such as
oligopeptides or oligochitosaccharides and secondary
metabolites (Druzhinina et al. 2011; Holzlechner et al.
2016). The best characterized mycoparasitic fungi are
Trichoderma species, such as T. atroviride and T. virens
that are used for biocontrol of fungal diseases. However,
biocontrol involves interactions with the host plant, and
some Trichoderma species can stimulate plant immune
responses. Therefore, whereas the roles of MAPKs in
hyphal-hyphal interactions may be conserved during
mycoparasitism, their functions in biocontrol may in-
volve species- or strain-specific stimulation of plant
immunity.
All three MAPKs named as Tmk1/TmkA (Kss1),

Tmk2/TmkB (Slt2), and Tmk3/TmkC (Hog1) have been
characterized in Trichoderma species. In T. virens, a
gliovirin producer, the tmkA and tmkB deletion mutants
both are defective in vegetative growth and reduced in
mycoparasitism against S. rolfsii but normal against
Rhizoctonia solani, indicating overlapping functions of
these two MAPKs (Mukherjee et al. 2003; Mukherjee
et al. 2012; Kück et al. 2016). Whereas TmkB is
important for cell wall integrity, Tmk1 regulates
mycoparasitism-relatedt genes, showing their distinct
functions. In T. atroviride, the tmk1 deletion mutant is
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reduced in mycoparasitic ability to overgrow host fungi
but increased in antifungal activities and ability to pro-
tect against R. solani infection in bean (Reithner et al.
2007), and TaSte12 is involved in regulating hyphal in-
teractions (coiling) and mycoparasitic activity (Gruber
and Zeilinger 2014). These results suggest that the Tmk1/
TmkA MAPK has a conserved role in mycoparasitism by
regulating the expression of mycoparasitism-related genes
(such as chitinase genes and genes responsible for synthe-
sis of antifungal metabolites) and mycoparasitic hyphal
interactions. Consistent with these observations, deletion
of the TMK1 ortholog in Clonostachys chloroleuca, an-
other mycoparasitic fungus, also affects the expression of
cell wall lytic enzymes, mycoparasitic ability, and biocon-
trol (Sun et al. 2020). However, deletion of this MAPK
gene in a gliovirin-deficient mutant of T. virens increases
mycoparasitic activity against R. solani (Mendoza-Men-
doza et al. 2003), which is contradictory to the regulation
of mycoparasitic hyphal-hyphal interactions by this MAPK
pathway.
As expected, Tmk3/ThHog1 regulates responses to

hyperosmotic and oxidative stresses in T. atroviride and
T. harzianum (Delgado-Jarana et al. 2006; Esquivel-
Naranjo et al. 2016). In T. harzianum, deletion of
ThHOG1 reduces its antagonistic activity against host
fungi Phoma betae and C. acutatum. ThHog1 likely
plays a role in mycoparasitism by regulating responses
to toxic compounds produced by host fungi. Although
studies are lacking, the host fungi may also use Hog1 or
other MAPKs to regulate defense or antagonistic re-
sponses against mycoparasitic fungi or other predators.
Interestingly, Tmk3 is involved in the repression of sub-
sets of secondary metabolism (SM) genes that are stimu-
lated by mechanical wounding but suppressed by
Drosophila larvae (Atriztán-Hernández et al. 2019). In
comparison with the wild type, Drosophila larvae prefer
feeding on hyphae of the tmk3 mutant but have a higher
mortality rate, suggesting a role of this MAPK in interac-
tions with fungivorous insects.

Perspectives
In phytopathogenic fungi, the well-conserved IG, CWI,
and HOG MAPKs have both conserved and species-
specific functions in regulating plant infection, stress re-
sponses, growth, and sexual or asexual development
(Hamel et al. 2012; Jiang et al. 2018). However, it is
worth mentioning that, to date, most of the MAPK stud-
ies in plant pathogenic fungi deal with ascomycetous
pathogens. Based on studies in U. maydis, the compo-
nents and functions of MAPK pathways in basidiomy-
cetes are likely different from those in phytopathogenic
ascomycetes. Also, most of these MAPK studies in fun-
gal pathogens are based on targeted gene knockout mu-
tants. Proteomics studies in yeast have shown that

MAPKs often are hubs in the protein-protein networks
(Chen and Snyder 2010). Therefore, some of the pheno-
types observed with mutants disrupted in MAPK signal-
ing may be due to indirect effects via protein-protein
interaction networks. It will be important to determine
the effects of transient inhibition with ATP analog PP-1
on MAPKs with appropriate mutants at the ATP bind-
ing site (Sakulkoo et al. 2018) for comparisons.
For all the known upstream sensors or receptors of

yeast MAPK pathways, their homologs are present in
fungal pathogens, including GPCRs, Sho1, Msb1, Wsc1–
3, Mst11, Mid2, and Sln1 (Jendretzki et al. 2011; Alvaro
and Thorner 2016; Vázquez-Ibarra et al. 2020). How-
ever, in comparison with other sensors, GPCRs are sig-
nificantly expanded in fungal pathogens. In the budding
yeast, three typical GPCR genes encode two pheromone
receptors and one glucose sensor. In M. oryzae, there
are over 40 putative GPCRs, and at least one of them
with the CFEM domain, PTH11, has been convincingly
shown to be important for appressorium formation and
virulence (Kulkarni et al. 2005). F. graminearum has
over 100 putative GPCRs, including 12 CFEM GPCRs
and a subfamily of infection-related or specific GPCRs
(Jiang et al. 2019). These GPCRs may be involved in
sensing different host and environmental signals to acti-
vate downstream MAPKs. Some of them may be in-
volved in sensing their own signals (quorum sensing) or
ligands from other microbes during fungal-fungal or
fungal-bacterial interactions.
Unlike their roles in pathogenesis or mycoparasitism,

the roles of fungal MAPK pathways in defensive interac-
tions against viruses, bacteria, and other fungi have not
been well studied. Nevertheless, several publications
have shown that microbes have the capacity to activate
fungal MAPK signaling, possibly by the recognition of
microbial signals/ MAMPs by membrane receptors. The
presence of putative NLRs in fungal pathogens suggest
that MAPK signaling may function downstream from
some of those NLRs involved in MAMP recognition. For
genes regulated by MAPKs for defense responses, there
are only very limited studies. Fungi are known to secrete
enzymes, toxins, and other secondary metabolites to
compete with other microbes in the environment or on
the plant surface. Genes encoding defense-related en-
zymes or proteins may be regulated by multiple MAPKs,
and the activation of multiple MAPK pathways can alter
the composition of the surrounding microbiota. There-
fore, to better understand the role of fungal MAPKs in
biotic interactions, the single, double, or triple MAPK
mutants should be comparatively studied for changes in
fungal-bacterial or fungal-fungal interactions.
Another important area is to further characterize the

functional relationships among these MAPK pathways.
A considerable amount of evidence shows the crosstalk
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between HOG and CWI, CWI and IG, or IG and HOG
pathways in fungal pathogens in responses to biotic and
abiotic stresses. Nevertheless, fungal pathogens must
utilize all these signaling pathways to coordinately regu-
late responses to a variety of stresses encountered during
plant infection or survival in nature. Therefore, it will be
helpful to systematically characterize the functional rela-
tionships among all three MAPK cascades in responses
to different stresses or during different infection and de-
velopmental stages. These MAPKs may share some com-
mon downstream targets and upstream components or
regulators/sensors. Furthermore, all three MAPKs are
likely involved in crosstalk with other signaling path-
ways. For example, the IG MAPK is known to interact
with the cAMP-PKA pathways in regulating infection
structure formation and invasive growth in M. oryzae
and other fungi (Jiang et al. 2018). Crosstalk between
calcium signaling and CWI and other MAPKs also occur
in plant pathogens (Wurzinger et al. 2011). It will be im-
portant to use transcriptomics and proteomics ap-
proaches to systematically characterize the crosstalk and
functional relationships among these well-conserved sig-
nal transduction pathways.
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