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Voting protocols on the star graph
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Abstract. Let G = (V, E) be a finite graph together with an initial
assignment V → {0, 1} that represents the opinion of each vertex. Then
discordant push voting is a discrete, non-deterministic protocol that
alters the opinion of one vertex at a time until a consensus is reached.
More precisely, at each round a discordant vertex u (i.e., one that has a
neighbor with a different opinion) is chosen uniformly at random, and
then we choose a neighbor v with different vote uniformly at random,
and force v to change its opinion to that of u. In case of the discordant
pull protocol we simply choose a discordant vertex uniformly at random
and change its opinion. In this paper, we give asymptotically sharp
estimations for the worst expected runtime of the discordant push and
pull protocols on the star graph.

Mathematics Subject Classification. Primary 91A22, Secondary 60J10.

Keywords. Discordant voting, Push, Pull, Star graph.

1. Introduction

Models of voting in finite graphs have been studied intensively for decades,
see [2,6,10–12]. Throughout this paper, a discrete-time voting protocol is
defined by specifying a graph and a set of nondeterministic rules. Then the
process is divided into rounds. Each step, the participants can affect the vote
of their neighbors according to the rules given.

We note that many alternative definitions were investigated in the lit-
erature. Continuous-time voting processes were studied in [6,9]. In [1,8] the
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graph evolves together with the opinions of the vertices. Connections of vot-
ing processes and coalescing random walks were investigated in [9,13], and
for other recent applications see [4,14].

We consider discrete-time voting models where the graph is fixed, and
the vote is a binary decision: the two options to choose from are 0 and 1. Such
a protocol can be synchronous (see [5] for examples), i.e., it is allowed that
several vertices of the graph change their opinion in one round; otherwise it
is asynchronous. The so-called linear voting model was introduced in [5] as a
common generalization of many well-studied voting protocols. Three of the
most common special cases of asynchronous linear voting are the

• Oblivious protocol: each round an edge uv is chosen uniformly at ran-
dom, and then either u adopts the opinion of v or the other way around,
with equal probability.

• Push protocol: each round a vertex u is chosen uniformly at random,
and a randomly chosen neighbor of u adopts the opinion of u.

• Pull protocol: each round a vertex u is chosen uniformly at random, and
u adopts the opinion of a randomly chosen neighbor of u.

Linear voting models are somewhat impractical, as it is typical that many idle
rounds occur in the process. E.g., consider push, pull or oblivious voting on
the complete graph Kn; in this particular case, the three protocols coincide.
If one opinion is significantly more popular than the other, then with very
high probability, both chosen vertices in a round have the more popular
opinion. If this is the case, then none of the opinions are modified in that
round. This example demonstrates the advantage of discordant (oblivious,
push, pull) voting protocols defined in [3]. An edge uv is discordant if u and
v have different opinion, and a vertex is discordant if it is in a discordant
edge. To define discordant oblivious, push and pull voting, the above three
definitions are modified so that whenever a random choice is made, we only
allow discordant edges or vertices to be picked (always uniformly at random).

The goal of every voting scheme that we study now is to reach con-
sensus, that is, a state where all participants have the same opinion. The
topic of the present paper is the expected time T to reach consensus with
the discordant push, pull and oblivious processes on the star graph with
n vertices. It was proven in [3] that the discordant push process has an
expected runtime between C1n

2 log n and C2n
2 log n at worst, with some

positive constants C1, C2. We improve these bounds, showing that the dis-
cordant push protocol reaches consensus on the star graph with n vertices in
Tpush = 1

8n2 log n+O(n2) expected time. The pull protocol is the fastest out
of the three above defined processes on the star graph. Its expected runtime
is Tpull = 1

6n2+ 1
6n log n+O(n). It was already discussed in [3] that the obliv-

ious protocol has expected runtime Toblivious = 1
4n2 +O(n). These results are

somewhat counter-intuitive. As mentioned in [3], for a typical graph the push
protocol should be the fastest out of the three, and the pull voting should be
the slowest. The analogous problems for cycle graphs were solved in [15].
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2. Preliminaries

2.1. General notation

Given an absorbing Markov chain P . As usual, we denote by Q the upper

left minor of the canonical form of P =
(

Q R
0 I

)
. So Q is the transition

matrix restricted to the transient states. Following standard notation, N =
(I − Q)−1 denotes the fundamental matrix of the Markov chain. We denote
by 1 the column vector all of whose entries are 1, and whose length equals
to the number of transient states. It is well-known that the expected times
to absorption from each transient state as initial state are the coordinates of
the vector N1. For an introduction to Markov chains see [7]. Throughout the
paper log denotes the natural logarithm and w is the central vertex of the
given star graph with n vertices.

2.2. Push voting on the star graph

In order to make the problem more transparent, we define a Markov chain
that perfectly describes the voting process. A number is assigned to each
possible list of opinions of the vertices that might occur during the voting
process, namely the number of neighbors of the center w in the star that have
the opposite opinion as w. Hence, all possible lists of opinions such that w has
i neighbors that disagree with w are identified with one state, and we simply
refer to it as state i. This way the 2n possible lists of opinions are replaced
by only n states, as 0 ≤ i ≤ n − 1, and instead of two absorbing states we
only have the one, namely i = 0. If i > 0, then the process can evolve to two
possible states. If we pick a vertex out of the i discordant neighbors of the
center, then the vote of the center is altered, hence we reach the state n−1−i.
If we pick the center, then one of its discordant neighbors is pushed, thus we
end up in state i − 1. So the probability of transition from i to n − 1 − i is

i
i+1 , and the probability of transition from i to i−1 is 1

i+1 . We are interested
in the expected time to reach consensus from the worst case. Note that the
worst case is the one with an equal number m of zeros and ones (or as close
to equal as possible). This can be extracted from the calculation below, but
it is also quite intuitive. The center changes color with high probability, so
the expected runtime from i and n− 1− i has to be close, and if we start the
process from m, then it will reach i or n − i for all i.

Note that it is impossible to reach state n−1 from m, or in fact from any
state different from n − 1: indeed, in state n − 1 all the edges are discordant,
and none of the discordant voting protocols can move into such a state, as in
each step two vertices are forced to agree. So we may omit state n − 1, and
only consider the transient states 1, . . . , n−2 and the unique absorbing state
0.

The (n − 2) × (n − 2) matrix I − Q derived from the transition matrix
looks as follows (we do the illustration and the calculation for odd n, the case
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of even n is very similar, and of course, the same estimation is obtained in
the end); k = (n + 1)/2:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · · 0 0 0 0 0 − 1
2

− 1
3 1 0 0 0 0 0 · · · 0 0 0 0 − 2

3 0

0 − 1
4 1 0 0 0 0 · · · 0 0 0 − 3

4 0 0

0 0 − 1
5 1 0 0 0 · · · 0 0 − 4

5 0 0 0

...
...

. . .
. . . . .

. ...

· · · 0 0 − 1
k−2 1 0 0 0 − k−3

k−2 0 0 · · ·
· · · 0 0 0 − 1

k−1 1 0 − k−2
k−1 0 0 0 · · ·

· · · 0 0 0 0 − 1
k

1
k

0 0 0 0 · · ·
· · · 0 0 0 0 − k

k+1 − 1
k+1 1 0 0 0 · · ·

· · · 0 0 0 − k+1
k+2 0 0 − 1

k+2 1 0 0 · · ·
... . .

. ...
. . .

. . .
...

0 0 0 −n−5
n−4 0 · · · · · · 0 − 1

n−4 1 0 0 0

0 0 −n−4
n−3 0 0 · · · · · · 0 0 − 1

n−3 1 0 0

0 −n−3
n−2 0 0 0 · · · · · · 0 0 0 − 1

n−2 1 0

−n−2
n−1 0 0 0 0 · · · · · · 0 0 0 0 − 1

n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix is denoted by A. We need to solve the system of linear equations
Az = 1 in order to compute N1, see Sect. 2.1. The (k − 1)-th element of that
solution vector corresponds to the worst case. We shall apply elementary
steps of Gaussian elimination on the rows of A to obtain the row vector that
is all zero except for the (k−1)-th element, which is 1. The following program
shows the steps that need to be applied. We use standard notation that is
used in several programming languages (e.g., Python); note that A[i] is the i-
th row of the matrix, where indexation of rows starts by 1 (unlike in Python,
where the first index of an array is 0), and the symbols − =,+ = and ∗ =
mean that the left hand side is decreased, increased and multiplied by the
right hand side, respectively.

The first step is a special one: A[k − 1]∗ = k.
Then we apply the following triples of steps for i = 0, 1, . . . , k − 3:

A[k + i]− =
k + i

k + i + 1
A[k − i − 1]

A[k − i − 2]+ = (A[k − i − 1] + A[k + i])

A[k − i − 2]∗ = (k − i − 1)

Initially, there is 1 on the right-hand side of every equation. We denote
by x the vector obtained after applying all these steps to the right-hand side.
The combined result of the first two steps in the triple of steps above is that
in the (k − i − 2)-th line we obtain 1 + (xk−i−1 + (1 − k+i

k+i+1 · xk−i−1)) =
2+ 1

k+i+1 ·xk−i−1. After applying the third step, we obtain the value xk−i−2 =
2(k − i − 1) + k−i−1

k+i+1 · xk−i−1.
Putting ai = xk−1−i, the sequence (ai)i=0,...,(k−1) is uniquely deter-

mined by the base condition a0 = k and the following recursive definition:
ai = ai−1 · k−i

k+i + 2k − 2i. We define bi = k2

i+1 − (i + 1) and εi = ai − bi for
i = 0, . . . , k − 1.

Lemma 2.1. Let (ci)i=0,...,(k−1) be a sequence satisfying the same recursive
definition as ai, that is, ci = ci−1· k−i

k+i +2k−2i. Then ci > ci−1 iff ci−1 < bi−1,
ci = ci−1 iff ci−1 = bi−1, and ci < ci−1 iff ci−1 > bi−1.
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Proof. Obvious from the definition of the sequences. �

Lemma 2.2.

1. For all i ≤ 1√
2

· √
k we have ai ≥ ik.

2. For all i we have ai ≤ (2i + 1)k.
3. If k ≥ 100, then there is an � ≤ 2·√k such that a� ≥ b�, and the smallest

such index � is at least 1
2 · √

k.

Proof. The first two items are shown by induction. Both statements hold for
the initial value i = 0. If i ≤ 1√

2
·√k, then by the induction hypothesis we have

ai = k−i
k+i ·ai−1 +2k−2i ≥ (1− 2i

k )ai−1 +2k−2i ≥ (1− 2i
k )(i−1)k+2k−2i =

ik − 2i2 + k ≥ ik.
The second item follows from

ai ≤
(

1 − i

k

)
ai−1 + 2k − 2i ≤

(
1 − i

k

)
(2i − 1)k + 2k − 2i

= (2i + 1)k − 2i2 − i ≤ (2i + 1)k.

The third item is shown indirectly. Assume that ai < bi for all i ≤ 2·√k.
Then by Lemma 2.1 the series (ai) is strictly monotone increasing at any
index less than 2 · √

k. By item 1 of the current lemma, this means that
ai ≥

(
1√
2

· √
k − 1

)
k for all 1√

2
· √

k ≤ i ≤ 2 · √
k. On the other hand, if � is

the floor of 2 ·√k, then �+1 ≥ 2 ·√k, so b� = k2

�+1 −(�+1) ≤ k2

2·√k
−(2 ·√k) <

1
2 ·k3/2 <

(
1√
2

· √
k − 1

)
k ≤ a� if k ≥ 100, a contradiction. The smallest index

� such that a� ≥ b� cannot be smaller then 1
2 · √

k: the series (ai) is strictly
monotone increasing in that region, and if � ≤ 1

2 · √
k + 1, then by item 2

we have a� ≤ (2� + 1)k = (
√

k + 3)k = k3/2 + 3k, whereas the series (bi) is
strictly monotone decreasing and b� ≥ k2

�+1 − (� + 1) ≥ k2

1
2 ·√k+2

− ( 12 · √k + 2),

which for k ≥ 100 is bigger than k3/2 + 3k. �

Lemma 2.3. Let k ≥ 100, and let � be the smallest index such that a� ≥ b�

(cf. Lemma 2.2).

1. For all i ≤ � we have 0 ≤ ai ≤ 5k3/2, and 0 ≤
�∑

i=1

ai ≤ 10k2.

2. 0 ≤ ε� < 7k

3. For all i ≥ � + 1 we have 0 ≤ εi = k−i
k+i · εi−1 + k2

i(i+1) + 1, and moreover

0 ≤
k−2∑
i=�

εi < 6k2.

4. The sum of all the ai is
k−2∑
i=0

ai = 1
2 · k2 log k + O(k2).

Proof. By Lemma 2.2 we have 1
2 · √

k ≤ � ≤ 2 · √
k. The first item follows

from item 2 of Lemma 2.2 and from the fact that the series (ai) is monotone
increasing in the first � indices by Lemma 2.1.

For the second item, we use the inequalities
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• a�−1 < b�−1, by the minimality of �; equivalently, a�−1 − b�−1 < 0,
• a� − a�−1 ≤ 2k by the recursive rule that defines the series (ai), and
• b�−1 − b� = (k2

� − �) − ( k2

�+1 − � − 1) < k2

�2 + 1 ≤ 5k, as 1
2 · √

k ≤ �.

Adding up these three inequalities yields the second item of the lemma.
The third item is shown by first observing that

ai = (bi−1 + εi−1) · k − i

k + i
+ 2k − 2i =

(
k2 − i2

i
+ εi−1

)
· k − i

k + i
+ 2k − 2i

=
(k2 − 2ki + i2) + 2ki − 2i2

i
+

k − i

k + i
· εi−1 =

k2

i
− i +

k − i

k + i
· εi−1

=
k2

i + 1
− (i + 1) +

k − i

k + i
· εi−1 +

k2

i(i + 1)
+ 1 = bi +

k − i

k + i
· εi−1 +

k2

i(i + 1)
+ 1.

This calculation verifies εi = k−i
k+i · εi−1 + k2

i(i+1) + 1, and in particular all the

εi are non-negative for i ≥ �. For the upper estimation of the sum
k−2∑
i=�

εi we

observe that k−i
k+i ≤ 1 − 1

2
√

k
for all i ≥ �, as 1

2 · √
k ≤ � ≤ i. Hence, for any

tuple � ≤ i1 < i2 < · · · < it we have
t∑

u=1

u∏
v=1

k−iv
k+iv

≤
∞∑

m=0
(1 − 1

2
√

k
)m = 2

√
k.

Thus

k−2∑
i=�

εi = ε� +
(

k − �

k + �
ε� +

k2

�(� + 1)
+ 1

)

+
(

k − (� + 1)
k + (� + 1)

·
(

k − �

k + �
ε� +

k2

�(� + 1)
+ 1

)
+

k2

(� + 1)(� + 2)
+ 1

)
+ · · ·

and by expanding all the parentheses in this expression, it is clear that the
sum of all coefficients of ε� is at most 2

√
k, and so is the sum of all coefficients

of any of the k2

i(i+1) . We may simply estimate from above the coefficient of
each occurrence of 1 by 1: there are less then k2/2 occurrences. This way we
obtain the upper estimation

k−2∑
i=�

εi ≤ 2
√

kε� + 2
√

k ·
k−2∑
i=�

k2

i(i + 1)
+

k2

2

≤ 2
√

k · 7k + 2k5/2
k−2∑
i=�

(
1
i

− 1
i + 1

)
+

k2

2
≤ 14k3/2 + 2k5/2 · 1

�
+

k2

2

≤ 14k3/2 + 4k2 +
k2

2
≤ 6k2

as k ≥ 100.
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We now prove the fourth item. By item 1 we have
∑k−2

i=0 ai =
∑�−1

i=0 ai +∑k−2
i=� ai = O(k2) +

∑k−2
i=� ai. So the sum is

k−2∑
i=0

ai = O(k2) +
k−2∑
i=�

bi +
k−2∑
i=�

εi = O(k2) +
k−2∑
i=�

bi

= O(k2) +
k−2∑
i=�

k2

i + 1
−

k−2∑
i=�

(i + 1) = O(k2) + k2 ·
k−2∑
i=�

1
i + 1

= O(k2) + k2 ·
(

k−1∑
i=1

1
i

−
�∑

i=1

1
i

)
= O(k2) + k2 · (log k − log � + O(1))

= O(k2) + k2 · (log k − log �).

As 1
2 · √

k ≤ � ≤ 2 · √
k, we have log � = 1

2 log k + O(1). Thus

k−2∑
i=0

ai = O(k2) + k2 · (log k − log k

2
+ O(1)) =

k2 log k

2
+ O(k2).

�

Theorem 2.4. The worst expected runtime of the discordant push protocol on
the star graph with n vertices is 1

8n2 log n + O(n2).

Proof. We prove for odd n. After running the above discussed steps of Gauss-
ian elimination on the matrix A, we obtain the following matrix. We only
visualize the first row A[1] and the rows A[k −1], A[k], A[k +1], . . . , A[n−4],
A[n − 3], A[n − 2].⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 0 0 1
...

0 0 0 · · · 0 0 −1 1 0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 −1 1 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 0 −1 1 0 · · · 0 0 0 0

...
. . .

. . .
...

. . .
. . .

...
. . .

. . .

0 0 0 · · · 0 0 0 0 0 0 0 · · · −1 1 0 0
0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 −1 1 0
0 0 0 · · · 0 0 0 0 0 0 0 · · · 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence, to obtain the row vector all of whose entries are 0 except for the
(k − 1)-th, we need to compute A[1] − (A[k] + · · · + A[n − 2]). The current
values on the right-hand sides of the equations corresponding to rows 1, k,
k + 1, k + 2, . . . , n − 2 are ak−2, 1 − k

k+1 · a0, 1 − k+1
k+2 · a1, 1 − k+2

k+3 · a2, . . . ,

1 − k+(k−3)
k+(k−3+1) · ak−3, respectively. Thus the value of the (k − 1)-th unknown
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is ak−2 +
(

k
k+1 · a0 − 1

)
+

(
k+1
k+2 · a1 − 1

)
+ · · · +

(
k+(k−3)

k+(k−3+1) · ak−3 − 1
)

=
(
1 + O

(
1
k

)) ·
(

k−2∑
i=0

ai

)
+ O(k) = 1

2k2 log k + O(k2) = 1
8n2 log n + O(n2). �

2.3. Pull voting on the star graph

Theorem 2.5. The worst expected runtime of the discordant pull protocol on
the star graph with n vertices is 1

6n2 + 1
6n log n + O(n).

Proof. We prove for odd n. The same notation is used as in the case of
push voting. There is only a slight difference in the transition matrix: the
probability of transition from i to n − 1 − i is 1

i+1 , and the probability of
transition from i to i − 1 is i

i+1 .
The (n − 2) × (n − 2) matrix I − Q derived from the transition matrix

looks as follows (we do the illustration and the calculation for odd n, the case
of even n is very similar, and of course, the same estimation is obtained in
the end); k = (n + 1)/2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · · 0 0 0 0 0 − 1
2

− 2
3 1 0 0 0 0 0 · · · 0 0 0 0 − 1

3 0

0 − 3
4 1 0 0 0 0 · · · 0 0 0 − 1

4 0 0

0 0 − 4
5 1 0 0 0 · · · 0 0 − 1

5 0 0 0

...
...

. . .
. . . . .

. ...

· · · 0 0 − k−3
k−2 1 0 0 0 − 1

k−2 0 0 · · ·
· · · 0 0 0 − k−2

k−1 1 0 − 1
k−1 0 0 0 · · ·

· · · 0 0 0 0 − k−1
k

k−1
k

0 0 0 0 · · ·
· · · 0 0 0 0 − 1

k+1 − k
k+1 1 0 0 0 · · ·

· · · 0 0 0 − 1
k+2 0 0 − k+1

k+2 1 0 0 · · ·
... . .

. ...
. . .

. . .
...

0 0 0 − 1
n−4 0 · · · · · · 0 −n−5

n−4 1 0 0 0

0 0 − 1
n−3 0 0 · · · · · · 0 0 −n−4

n−3 1 0 0

0 − 1
n−2 0 0 0 · · · · · · 0 0 0 −n−3

n−2 1 0

− 1
n−1 0 0 0 0 · · · · · · 0 0 0 0 −n−2

n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix is denoted by B. We follow a similar strategy as in the pre-
vious subsection. Of course, some factors need to be modified in the Gaussian
elimination steps.

The first step is a special one: B[k − 1]∗ = k
k−1 .

Then we apply the following triples of steps for i = 0, 1, . . . , k − 3:

B[k + i]− =
1

k + i + 1
B[k − i − 1]

B[k − i − 2]+ = (B[k − i − 1] + B[k + i])

B[k − i − 2]∗ =
k − i − 1
k − i − 2

Initially, there is 1 at every entry in the right-hand side vector of the
system of linear equations. It is easy to show by induction that after these
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steps, we have the following values on the right-hand side of the equations:

yk−1 =
k

k − 1

yk−2 =
(

k

k − 1
· k

k + 1
+ 2

)
· k − 1
k − 2

=
k2 + 2(k2 − 1)

k2 − 1
· k − 1
k − 2

yk−3 =
((

k

k − 1
· k

k + 1
+ 2

)
· k − 1
k − 2

· k + 1
k + 2

+ 2
)

· k − 2
k − 3

=
k2 + 2(k2 − 1) + 2(k2 − 4)

k2 − 4
· k − 2
k − 3

and in general

yk−(i+1)

=
(

· · ·
((

k

k − 1
· k

k + 1
+ 2

)
· k − 1
k − 2

· k + 1
k + 2

+ 2
)

· · ·
)

· k − i

k − (i + 1)

=
k2 + 2(k2 − 1) + · · · + 2(k2 − i2)

k2 − i2
· k − i

k − (i + 1)

=
k2(2i + 1) − 2 · i(i+1)(2i+1)

6

k2 − i2
· k − i

k − (i + 1)
=

3k2(2i + 1) − i(i + 1)(2i + 1)
3(k + i)(k − (i + 1))

.

In particular, y1 = 3k2(2k−3)−(k−2)(k−1)(2k−3)
3(2k−2)(k−(k−2+1)) = 4k3+O(k2)

6k+O(1) = 2
3k2 +

O(k).
To obtain the row vector with a single 1 in the (k −1)-th entry, we need

to return the following difference: B[1]− (B[k]+B[k+1]+ · · ·+B[n−2]), see
the illustration in the previous subsection. Hence, the value of the (k − 1)-th
unknown is y1 + S where S stands for the sum −(yk + yk+1 + · · · + yn−2). In
order to estimate S, we use the equations −yk+i = 1

k+i+1 · yk−(i+1) − 1 for
i ≥ 0. That is,

S =
k−3∑
i=0

(
1

k + i + 1
· yk−(i+1) − 1

)
= O(k) +

k−3∑
i=0

1
k + i + 1

· yk−(i+1) =

= O(k) +
k−3∑
i=0

3k2(2i + 1) − i(i + 1)(2i + 1)
3(k + i)(k + i + 1)(k − (i + 1))

.

Note that the denominator of the summands is at least k2 for all i.
Thus any constant, linear and quadratic term in the numerator is negligible.
Indeed, for each value of i, the contribution of such a term is O(1), and
there are O(k) different values of i, yielding an O(k) contribution altogether.
Hence, we can replace the expression 3k2(2i+1)−i(i+1)(2i+1)

3(k+i)(k+i+1)(k−(i+1)) by something else
that has the same denominator 3(k + i)(k + i + 1)(k − (i + 1)) and the same
cubic terms 6k2i − 2i3 in its numerator. A straightforward calculation shows
that

1
3

(
i

k − 1 − i
+

5ki + 3i2

(k + i)(k + i + 1)

)
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is an appropriate replacement in this sense. Thus

S = O(k) +
1
3

·
k−3∑
i=0

(
i

k − 1 − i
+

5ki + 3i2

(k + i)(k + i + 1)

)
.

The second fraction 5ki+3i2

(k+i)(k+i+1) in the summand again yields an O(k) error,
as 5ki + 3i3 ≤ 8k2, and the denominator is at least k2, making the second
fraction at most 8 in all k −2 summands of the sum. The first fraction i

k−1−i

can be written as k−1
k−1−i − 1, and the −1 is once again negligible since it only

contributes an O(k) error. In summary, S = O(k)+ 1
3 ·∑k−3

i=0
k−1

k−1−i = O(k)+
k−1
3 · ∑k−1

j=2
1
j . Since

∑k−1
j=2

1
j = log k + O(1), we have S = O(k) + 1

3k log k.
Hence, the desired expected runtime is

y1 + S =
2
3
k2 +

1
3
k log k + O(k) =

1
6
n2 +

1
6
n log n + O(n).

�

Funding Open access funding provided by HUN-REN Alfréd Rényi Institute
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