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Abstract. The basis for our studies is a large class of orthogonal poly-
nomial sequences (Pn)n∈N0 , which is normalized by Pn(x0) = 1 for all
n ∈ N0 where the coefficients in the three-term recurrence relation are
bounded. The goal is to check if x0 ∈ R is in the support of the orthog-
onalization measure µ. For this purpose, we use, among other things,
a result of G. H. Hardy concerning Cesàro operators on weighted l2-
spaces. These investigations generalize ideas from Lasser et al. (Arch
Math 100:289–299, 2013).
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1. Orthogonal polynomials on the real line and tridiagonal
operators

Let μ be a probability measure on the real line. We denote the support of μ
by S and assume its cardinality #S = ∞. Let (pn)n∈N0 denote the unique
orthonormal polynomial sequence with respect to μ, that is deg pn = n,∫

pnpmdμ = δn,m, and pn has a positive leading coefficient for all n,m ∈ N0.
The orthonormal polynomial sequence (pn)n∈N0 satisfies a recurrence relation

xpn(x) = λnpn+1(x) + βnpn(x) + λn−1pn−1(x) (1)

with p−1(x) = 0, p0(x) = 1, λ−1 = 0, λn > 0 and βn ∈ R for all n ∈ N0.
Conversely, if (pn)n∈N0 is defined by (1), there is a probability measure

μ such that (pn)n∈N0 is the orthonormal polynomial sequence with respect
to μ, see e.g. [2].

In the case (λn)n∈N0 and (βn)n∈N0 are bounded S is compact and vice
versa. The boundedness implies also that the orthogonalization measure μ
is uniquely determined. The smallest interval containing S is called the true
interval of orthogonality, see e.g. [2].
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Now, let x0 ∈ R\N , where N = {x ∈ C : ∃n ∈ N with pn(x) = 0} is the
set of zeros of all orthonormal polynomials. It is well known that N ⊂ R, see
e.g. [2]. The normalized polynomials

Pn(x) =
pn(x)
pn(x0)

(2)

form an orthogonal polynomial sequence (Pn)n∈N0 with respect to μ, that is
∫

PnPmdμ =
δn,m

hn
(3)

with hn > 0. We call x0 a normalizing point. The corresponding three-term
recurrence relation is

xPn(x) = γnPn+1(x) + βnPn(x) + αnPn−1(x) (4)

with P−1(x) = 0, P0(x) = 1,

γn =
pn+1(x0)
pn(x0)

λn, (5)

αn =
pn−1(x0)
pn(x0)

λn−1, and (6)

αn + βn + γn = x0 for all n ∈ N0. (7)

Note that (6) implies α0 = 0. It is also important to emphasize that (7)
applies if and only if x0 is a normalization point and that our investigations
heavily depend on Eq. (7).

Moreover, γnαn+1 = λ2
n > 0. One easily shows

hn+1αn+1 = hnγn (8)

which implies

hn =
γ0 . . . γn−1

α1 . . . αn
= p2n(x0) for all n ∈ N0. (9)

Note that (9) also applies in the case n = 0, where the nominator and de-
nominator are empty products that means they are set equal 1 by default.
Therefore, (3) as well as (9) yields h0 = 1.

The so called Christoffel–Darboux formula is given by
n∑

k=0

Pk(x)Pk(y)hk = γnhn
Pn+1(x)Pn(y) − Pn(x)Pn+1(y)

x − y
, (10)

see [2]. Hence,
n∑

k=0

Pk(x)2hk = γnhn(P ′
n+1(x)Pn(x) − P ′

n(x)Pn+1(x)), (11)

and in particular setting x = x0 we get

P ′
n+1(x0) − P ′

n(x0) =
Hn

γnhn
(12)
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with

Hn =
n∑

k=0

hk for all n ∈ N0. (13)

Definition 1.1. If {P ′
n+1(x0) − P ′

n(x0) : n ∈ N0} is bounded, then we call x0

a normalizing point with bounded growth of derivatives.

Note that further on speaking about x0 as a normalizing point of bounded
growth of derivatives is the same as to speak about the boundedness of
{ Hn

γnhn
: n ∈ N0}.

Subsequently we deal with the case S = suppμ is compact which is
equivalent with (γnαn+1)n∈N0 and (βn)n∈N0 are bounded sequences. Then
the true interval of orthogonality is [minS,max S].

Lemma 1.1. In the case x0 ≥ max S we have αn+1, γn > 0 for all n ∈ N0 and
in the case x0 ≤ min S we have αn+1, γn < 0 for all n ∈ N0.

Proof. Since N ⊂ (min S,max S) and the leading coefficient of all orthonor-
mal polynomials is positive we have in the case x0 ≥ max S that pn(x0) > 0
for all n ∈ N0. Whereas in the case x0 ≤ min S the sign of pn(x0) is alternat-
ing. �

On the set of complex-valued sequences there acts a linear operator
T : CN0 → C

N0 determined by the recurrence relation (4). More precisely, for
ξ ∈ C

N0 put

(Tξ)n = Tξn = γnξn+1 + βnξn + αnξn−1 for all n ∈ N0, (14)

where ξ−1 = 0. Written as tridiagonal matrix the operator T has the form

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β0 γ0 0 0 0 · · ·
α1 β1 γ1 0 0 · · ·
0 α2 β2 γ2 0 · · ·
0 0 α3 β3 γ3 · · ·
...

...
...

. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Note that in our investigations T acts on the different spaces CN0 , l1(h)
and l2(h) which is clear from the respective context. First let us study T as
an operator on

l1(h) =

{

ξ ∈ C
N0 :

∞∑

n=0

| ξn | hn < ∞
}

(16)

with norm ‖ξ‖1 =
∑∞

n=0 | ξn | hn for all ξ ∈ l1(h).

Proposition 1.1. In the case | αn |, | βn | and | γn |≤ B for all n ∈ N0 the
operator T: l1(h) → l1(h) is well defined and continuous. Especially we have

∞∑

n=0

Tξnhn = x0

∞∑

n=0

ξnhn and ‖Tξ‖1 ≤ C‖ξ‖1 (17)

for all ξ ∈ l1(h), where C = min(3B, | x0 | +2B).
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Proof. Set γ−1 = ξ−1 = h−1 = 0.
Applying (8) and the assumed absolute convergence of the series we

obtain
∞∑

n=0

Tξnhn =
∞∑

n=0

(γnξn+1 + βnξn + αnξn−1)hn

=
∞∑

n=0

αn+1ξn+1hn+1 + βnξnhn + γn−1ξn−1hn−1

=
∞∑

n=0

(αn + βn + γn)ξnhn = x0

∞∑

n=0

ξnhn.

∞∑

n=0

| Tξn | hn ≤
∞∑

n=0

(| γn || ξn+1 | + | βn || ξn | + | αn || ξn−1 |)hn

=
∞∑

n=0

| αn+1 || ξn+1 | hn+1+ | βn || ξn | hn

+ | γn−1 || ξn−1 | hn−1

=
∞∑

n=0

(| αn | + | βn | + | γn |) | ξn | hn ≤ 3B

∞∑

n=0

| ξn | hn.

At least two of the coefficients in | αn | + | βn | + | γn | do have the
same sign. For instance, if signαn = signβn, then | αn | + | βn | + | γn |=|
αn + βn + γn − γn | + | γn |≤| x0 | +2 | γn |≤| x0 | +2B. Proceeding the
same way with all the other possibilities one gets alternatively

∑∞
n=0 | Tξn |

hn ≤ (| x0 | +2B)
∑∞

n=0 | ξn | hn, which completes the proof. �
We focus on the weighted Hilbert space

l2(h) =

{

ξ ∈ C
N0 :

∞∑

n=0

| ξn |2 hn < ∞
}

(18)

with scalar product 〈ξ, υ〉 =
∑∞

n=0 ξnυnhn and norm ‖ξ‖2 =
√〈ξ, ξ〉 for all

ξ, υ ∈ l2(h).

Proposition 1.2. In the case | αn |, | βn | and | γn |≤ B for all n ∈ N0

the operator T: l2(h) → l2(h) is a well defined, self-adjoint and continuous
operator with

‖Tξ‖2 ≤ C‖ξ‖2, (19)

where C = min(3B, | x0 | +2B).

Proof. Set γ−1 = ξ−1 = h−1 = υ−1 = 0.
Now let ξ ∈ l2(h). Since

| Tξn | ≤
√

| γn |
√

| γn | | ξn+1 | +
√

| βn |
√

| βn | | ξn |
+

√
| αn |

√
| αn | | ξn−1 |

the Cauchy–Schwarz inequality implies

| Tξn |2≤ (| γn | + | βn | + | αn |)(| γn || ξn+1 |2 + | βn || ξn |2 + | αn || ξn−1 |2).



On the spectrum of tridiagonal operators

Therefore, proceeding like in the proof of Proposition 1.1

∞∑

n=0

| Tξn |2 hn ≤ C
∞∑

n=0

(| γn || ξn+1 |2 + | βn || ξn |2 + | αn || ξn−1 |2)hn

= C

∞∑

n=0

| αn+1 || ξn+1 |2 hn+1+ | βn || ξn |2 hn

+ | γn−1 || ξn−1 |2 hn−1

= C

∞∑

n=0

(| αn | + | βn | + | γn |) | ξn |2 hn ≤ C2
∞∑

n=0

| ξn |2 hn,

which implies ‖Tξ‖2 ≤ C‖ξ‖2, where C = min(3B, | x0 | +2B).
For arbitrary ξ, υ ∈ l2(h) one gets due to the absolute convergence

〈Tξ, υ〉 =
∞∑

n=0

(γnξn+1 + βnξn + αnξn−1)υnhn

=
∞∑

n=0

ξn(γn−1υn−1hn−1 + βnυnhn + αn+1υn+1hn+1)

=
∞∑

n=0

ξn(αnυn−1hn + βnυnhn + γnυn+1hn) = 〈ξ, Tυ〉.

�

Corollary 1.1. In the case | αn |, | βn | and | γn |≤ B for all n ∈ N0 the
spectrum σ(T ) is a subset of [−C,C], where C = min(3B, | x0 | +2B).

The numerical range of T is the set

W (T ) =
{〈Tξ, ξ〉 : ξ ∈ l2(h), ‖ξ‖2 = 1

}
. (20)

Since T is self-adjoint we have

{m(T ),M(T )} ⊆ σ(T ) ⊆ co(σ(T )) ⊆ W (T ) = [m(T ),M(T )], (21)

where co(σ(T )) is the convex hull of σ(T ), m(T ) = inf W (T ) and M(T ) =
supW (T ), see [5, Intro]. Moreover, ‖T‖ = max(| m(T ) |, | M(T ) |).

Proposition 1.3. In the case | αn |, | βn | and | γn |≤ B for all n ∈ N0 one
gets

〈(x0id − T )ξ, ξ〉 =
∞∑

n=0

γn | ξn − ξn+1 |2 hn for all ξ ∈ l2(h). (22)
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Proof. Set γ−1 = ξ−1 = h−1 = 0. Using (8) and the absolute convergence of
the series one gets for an arbitrary ξ ∈ l2(h) that

∞∑

n=0

(x0ξn − Tξn)ξnhn =
∞∑

n=0

((αn + βn + γn)ξn − αnξn−1

− βnξn − γnξn+1)ξnhn

=
∞∑

n=0

(γnξnξn − γnξn+1ξn)hn

+ (γn−1ξnξn − γn−1ξn−1ξn)hn−1

=
∞∑

n=0

γn(ξnξn − ξn+1ξn + ξn+1ξn+1 − ξnξn+1)hn

=
∞∑

n=0

γn | ξn − ξn+1 |2 hn.

�

Lemma 1.2. The following statements apply.

(i)
∑∞

n=0 γn | ξn − ξn+1 |2 hn ≥ 0 for all ξ ∈ l2(h) with ‖ξ‖2 = 1 if and
only if γn > 0 for all n ∈ N0.

(ii)
∑∞

n=0 γn | ξn − ξn+1 |2 hn ≤ 0 for all ξ ∈ l2(h) with ‖ξ‖2 = 1 if and
only if γn < 0 for all n ∈ N0.

Proof. If γn > 0 for all n ∈ N0 then
∑∞

n=0 γn | ξn − ξn+1 |2 hn ≥ 0 for all
ξ ∈ l2(h). In the case we have not γn > 0 for all n ∈ N0 there is an index
m ∈ N0 such that γm < 0 and γn > 0 for all n ∈ {0, . . . , m − 1}. Define
ζ ∈ l2(h) by ζn = (

∑m
k=0 hk)−1/2 for all n ∈ {0, . . . , m} and ζn = 0 for all

n ∈ {m + 1,m + 2 . . .}. Then ‖ζ‖2 = 1 and
∑∞

n=0 γn | ζn − ζn+1 |2 hn = γm |
ζm |2 hm < 0.

The second statement is shown quite analogue. �

Corollary 1.2. If | αn |, | βn |, | γn |≤ B for all n ∈ N0 and C = min(3B, |
x0 | +2B), then the following statements apply.

(i) If γn > 0 for all n ∈ N0, then W (T ) ⊆ [−C, x0]. In particular, σ(T ) ⊆
[−C, x0].

(ii) If γn < 0 for all n ∈ N0, then W (T ) ⊆ [x0, C]. In particular, σ(T ) ⊆
[x0, C].

(iii) If there exist k, l ∈ N0 with γkγl < 0, then x0 ∈ (min S,max S).

Note that in the following L2(R, μ) is as usual a set of equivalence classes
and a function used in this context represents an equivalence class. This is
also expressed by using the formulation ’for μ-almost all x ∈ R’.

Define ε(k) ∈ l2(h) by

ε(k)n =
δk,n

hk
for all n, k ∈ N0. (23)
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Then obviously

‖ε(k)‖22 =
1
hk

=
∫

P 2
k dμ for all k ∈ N0. (24)

Extending the map ε(k) 
→ Pk linearly to the linear span of {ε(k) : k ∈ N0}
and finally to the closure of the linear span we get the so-called Plancherel
isomorphism

P : l2(h) → L2(R, μ),

which is an isometric isomorphism from l2(h) onto L2(R, μ). It is completely
determined by

P(ε(k)) = Pk for all k ∈ N0.

Note that

Tε(k) = αkε(k−1) + βkε(k) + γkε(k+1) for all k ∈ N0, (25)

where ε
(−1)
n = 0 for all n ∈ N0. Now we define an operator M on L2(R, μ) by

M(f) = P ◦ T ◦ P−1(f) for all f ∈ L2(R, μ), (26)

where P−1 denotes the inverse operator of P. Then M ∈ B(L2(R, μ)) with
‖M‖ ≤ min(3B, | x0 | +2B). Taking into account the three-term recurrence
relation (4) we deduce that

M(Pk)(x) = P(Tε(k))(x) = P(αkε(k−1) + βkε(k) + γkε(k+1))(x) = xPk(x)
(27)

for μ-almost all x ∈ R and for all k ∈ N0. If g is a function in the linear span
of {Pk : k ∈ N0}, then the linearity of M yields

M(g)(x) = xg(x) for μ-almost all x ∈ R. (28)

Since M is bounded and the closure of the linear span of {Pk : k ∈ N0} is
L2(R, μ) we get by standard arguments that

M(f)(x) = xf(x) for μ-almost all x ∈ R and for all f ∈ L2(R, μ). (29)

By [4, Definition 2.61 and Corollary 4.24] the spectrum σ(M) is exactly the
essential range

R = {λ ∈ R : μ({x ∈ R :| x − λ |< ε}) > 0 for all ε > 0} , (30)

Obviously R = suppμ and σ(M) = σ(T ). Hence, we can add to Corollary 1.2
the following result.

Corollary 1.3. For orthogonal polynomials (Pn)n∈N0 which are defined by (4)
with | αn |, | βn | and | γn |≤ B for all n ∈ N0 we have

S = suppμ = σ(T ). (31)
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2. A characterization of x0 /∈ S
In the whole section we assume that | αn |, | βn | and | γn |≤ B for all n ∈ N0.

The main result of this paper will be a necessary and sufficient condition
for x0 ∈ S. Moreover, in the case of x0 /∈ S we will present an explicit form
of the inverse (x0id − T )−1, which is based on a weighted Cesàro operator
C ∈ B(l2(h)).

Define Cη = ((Cη)n)n∈N0 = (Cηn)n∈N0 by

Cηn =
1

Hn

n∑

k=0

ηkhk for all η ∈ l2(h). (32)

Then C is a bounded linear operator on l2(h) with ‖C‖ ≤ 2, see [3, Theorem
A]. It is straightforward to show that the adjoint operator C∗ ∈ B(l2(h)) is
defined by

C∗ηn =
∞∑

k=n

ηk
hk

Hk
for all η ∈ l2(h). (33)

Theorem 2.1. If x0 /∈ S = σ(T ), then x0 is a normalizing point with bounded
growth of derivatives.

Proof. Given n ∈ N0 denote by χ(n) the sequence with χ
(n)
k = 1 for k ∈

{0, . . . , n} and χ
(n)
k = 0 for k ∈ {n + 1, n + 2, . . .}. An easy computation

shows that

(x0id − T )χ(n)
k = 0 for all k ∈ N0\{n, n + 1},

(x0id − T )χ(n)
n = γn, and

(x0id − T )χ(n)
n+1 = −αn+1.

Hence,

‖(x0id − T )χ(n)‖22 = γ2
nhn + α2

n+1hn+1 = γn(γn + αn+1)hn

=| γn || γn + αn+1 | hn.

Since x0 /∈ σ(T ), there exists A = (x0id − T )−1 ∈ B(l2(h)). Then

‖A ◦ (x0id − T )χ(n)‖22 = ‖χ(n)‖22 =
n∑

k=0

hk = Hn, and

‖A ◦ (x0id − T )χ(n)‖22 ≤ ‖A‖2‖(x0id − T )χ(n))‖22
= ‖A‖2 | γn | hn | γn + αn+1 |
≤ 2B‖A‖2 | γn | hn,

which implies

Hn ≤ 2B‖A‖2 | γn | hn for all n ∈ N0.

Therefore,
{

Hn

γnhn
: n ∈ N0

}
is bounded. �

In order to prove the converse implication we start with determining
a sequence ω = (ωn)n∈N0 such that (x0id − T )(ω) = ε(0). Note that in the
following lemma the operator T acts on C

N0 .
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Lemma 2.1. A sequence ω = (ωn)n∈N0 ∈ C
N0 satisfies (x0id− T )(ω) = ε(0) if

and only if

ωn+1 = ω0 −
n∑

k=0

1
γkhk

for all n ∈ N0. (34)

Proof. We have ((x0id − T )ω)0 = 1/h0 = 1 if and only if ω0 − ω1 = 1
γ0

. For
n ≥ 1 we see that ((x0id − T )ω)n = ωn − (γnωn+1 + βnωn + αnωn−1) = 0 if
and only if γn(ωn+1 − ωn) = αn(ωn − ωn−1). Now, by iteration we get

ωn+1 − ωn =
αn

γn
(ωn − ωn−1) =

αnαn−1 · · · α1

γnγn−1 · · · γ1
−1
γ0

=
−1

γnhn
.

�

Next we investigate under which assumptions a sequence ω = (ωn)n∈N0

of Lemma 2.1 is a member of l2(h).

Lemma 2.2. If x0 is a normalizing point with bounded growth of derivatives,
then

∞∑

k=0

1
| γk | hk

< ∞, (35)

and consequently the series
∑∞

k=0
1

γkhk
is convergent.

Proof. Due to the assumption there exists a D > 0 with
n∑

k=0

(
1

γkhk

)2

hk ≤ D

n∑

k=0

(
1

Hk

)2

hk for all n ∈ N0.

Since Cε(0) =
(

1
Hn

)

n∈N0

∈ l2(h), we have
(

1
γnhn

)

n∈N0

∈ l2(h), that is
∑∞

k=0
1

γ2
khk

< ∞. Finally, γ2
k ≤ B | γk | yields

∑∞
k=0

1
|γk|hk

< ∞, which

implies the series
∑∞

k=0
1

γkhk
is convergent. �

Now with respect to Lemma 2.1, if the series
∑∞

k=0
1

γkhk
is convergent,

then the sequence ω = (ωn)n∈N0 is defined by

ωn =
∞∑

k=n

1
γkhk

for all n ∈ N0. (36)

In order to prove that ω ∈ l2(h) whenever
{

Hn

γnhn
: n ∈ N0

}
is bounded,

we use the adjoint weighted Cesàro operator C∗ ∈ B(l2(h)). Define a sequence
η = (ηn)n∈N0 by

ηn =
Hn

γnh2
n

for all n ∈ N0. (37)

Lemma 2.3. If x0 is a normalizing point with bounded growth of derivatives,
then η ∈ l2(h).
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Proof. We have | ηn |≤ D 1
hn

for all n ∈ N0. Hence, we have to show that
(

1
hn

)

n∈N0

∈ l2(h). According to Lemma 2.2 it follows

∞∑

k=0

1
h2

k

hk ≤ B

∞∑

k=0

1
| γk | hk

< ∞.

�

Since C∗η = ω, Lemmas 2.3 and 2.1 yield the following proposition.

Proposition 2.1. If x0 is a normalizing point with bounded growth of deriva-
tives, then ω ∈ l2(h) (defined by (36)) satisfies (x0id − T )ω = ε(0).

Assuming that x0 is a normalizing point with bounded growth of deriva-
tives our next goal is to find sequences ω(m) ∈ l2(h) with (x0id − T )ω(m) =
ε(m) for all m ∈ N.

To that end, we introduce a sequence of operators Sm ∈ B(l2(h)) by
setting

Sm+1 =
1

γm
(T ◦ Sm − βmSm − αmSm−1) for all m ∈ N0, (38)

where S−1 = 0 and S0 = id.

Proposition 2.2. The following two statements apply.

(i)

Smε(0) = ε(m) for all m ∈ N0. (39)

(ii)

(Smω)k =
{

ωm if k = 0, . . . , m,
ωk if k = m + 1,m + 2, . . .

for all m ∈ N0. (40)

Proof. In any case the proof is done by induction.
(i): By trivial means we have S0ε

(0) = ε(0). Since S1 = 1
γ0

(T − β0id) we
have (S1ε

(0))0 = 1
γ0

(β0 − β0) = 0, (S1ε
(0))1 = α1

γ0

1
h0

= 1
h1

and (S1ε
(0))k = 0

for all k ≥ 2. Therefore, S1ε
(0) = ε(1).

Assume that Smε(0) = ε(m) and Sm−1ε
(0) = ε(m−1) for m ∈ N0 is already

shown. Then

Sm+1ε
(0) =

1
γm

(T ◦ Sm − βmSm − αmSm−1) ε(0)

=
1

γm

(
Tε(m) − βmε(m) − αmε(m−1)

)

=
1

γm

(
αmε(m−1) + βmε(m) + γmε(m+1) − βmε(m) − αmε(m−1)

)

=
1

γm

(
γmε(m+1)

)
= ε(m+1).
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(ii): By trivial means we have (S0ω)k = ωk for all k ∈ N0. Moreover, since
S1 = 1

γ0
(T − β0id), Tω = x0id − ε(0) and x0 = β0 + γ0 we get

S1ω =
1
γ0

Tω − β0

γ0
ω =

1
γ0

((β0 + γ0)ω − ε(0)) − β0

γ0
ω = ω − ε(0)

γ0
.

Hence, (S1ω)0 = ω1, (S1ω)1 = ω1, and (S1ω)k = ωk for all k ≥ 2.
Assume again that the statement is already shown for m ∈ N and m−1.

Then for k = 0, . . . , m − 1 we have

(Sm+1ω)k =
1

γm
((T ◦ Smω)k − βmωm − αmωm−1)

=
1

γm
(x0ωm − βmωm − αmωm−1) = ωm +

αm

γm
(ωm − ωm−1)

= ωm − αm

γm

1
γm−1hm−1

= ωm − 1
γmhm

= ωm+1.

For k = m it follows

(Sm+1ω)k =
1

γm
(αmωm + βmωm + γmωm+1 − βmωm − αmωm) = ωm+1.

Finally, for k = m + 1,m + 2, . . . we have

(Sm+1ω)k =
1

γm
(αkωk−1 + βkωk + γkωk+1 − βmωk − αmωk)

=
1

γm

(

γk

(

ωk − 1
γkhk

)

+ βkωk

+αk

(

ωk +
1

γk−1hk−1

)

− βmωk − αmωk

)

=
1

γm

(

x0ωk − 1
hk

+
1
hk

− βmωk − αmωk

)

= ωk.

�
Now our goal is met by setting ω(m) = Smω for all m ∈ N0.

Proposition 2.3. If x0 is a normalizing point with bounded growth of deriva-
tives, then Smω ∈ l2(h) satisfies (x0id − T )Smω = ε(m) for all m ∈ N0.

Proof. Obviously Sm commutes with x0id − T . Hence,

(x0id − T )Smω = Sm(x0id − T )ω = Smε(0) = ε(m) for all m ∈ N0.

�
For m ∈ N0 define the sequence η(m) by

η
(m)
k =

{
0 if k = 0, . . . , m − 1,
Hk

γkh2
k

if k = m,m + 1, . . .
. (41)

Note that η(0) = η. If
{

Hn

γnhn
: n ∈ N0

}
is bounded, then according to

Lemma 2.3 we know that η(m) ∈ l2(h) for all m ∈ N0. Moreover,

C∗η(m)
n =

{∑∞
k=m

η
(m)
k hk

Hk
=

∑∞
k=m

1
γkhk

= ωm if n ≤ m,
∑∞

k=n
1

γkhk
= ωn if n > m

. (42)
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By Proposition 2.2(ii) we have C∗η(m) = Smω for all m ∈ N0. Now we can
combine the results above to determine the inverse operator of x0id − T .
Define a sequence ϕ = (ϕn)n∈N0 by

ϕn =
H2

n

γnh2
n

for all n ∈ N0. (43)

Note that Hn

|γn|hn
≤ D for all n ∈ N0 implies | ϕn |≤ D2B for all n ∈ N0.

The multiplication with ϕ ∈ l∞ defines a bounded operator Mϕ on
l2(h), where Mϕ(ξ)n = ϕnξn for all ξ ∈ l2(h), n ∈ N0.

Theorem 2.2. If x0 is a normalizing point with bounded growth of derivatives,
then C∗◦Mϕ◦C is the inverse of the operator x0id−T , where ϕ is the sequence
in (43).

Proof. Let m ∈ N0. We know that Cε
(m)
k = 0 for all k = 0, . . . ,m − 1

and Cε
(m)
k = 1

Hk
for all k = m,m + 1, . . .. Hence, Mϕ ◦ Cε(m) = η(m) and

C∗ ◦ Mϕ ◦ Cε(m) = Smω. In particular

(x0id − T ) ◦ (C∗ ◦ Mϕ ◦ C)ε(m) = ε(m) for all m ∈ N0.

Furthermore, we obtain

C∗ ◦ Mϕ ◦ C ◦ (x0id − T )ε(m)

= (C∗ ◦ Mϕ ◦ C)(x0ε
(m) − (γmε(m+1) + βmε(m) + αmε(m−1)))

= x0Smω − (γmSm+1ω + βmSmω + αmSm−1ω)

= x0Smω − T ◦ Smω = (x0id − T )Smω = ε(m) for all m ∈ N0.

Therefore,

C∗ ◦ Mϕ ◦ C ◦ (x0id − T ) = id = (x0id − T ) ◦ C∗ ◦ Mϕ ◦ C,

i.e. (x0id − T )−1 = C∗ ◦ Mϕ ◦ C. �

Summing up the results we gain the following theorem.

Theorem 2.3. x0 /∈ suppμ = σ(T ) if and only if x0 is a normalizing point
with bounded growth of derivatives.

Finally, we want to show the relationship of the results here with [1,
Theorem 2.3]. For this we use the terms A, A and D(A) with the same
meaning as in [1]. Let

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

β0 λ0 0 0 0 · · ·
λ0 β1 λ1 0 0 · · ·
0 λ1 β2 λ2 0 · · ·
0 0 λ2 β3 λ3 · · ·
...

...
...

. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (44)

where (βn)n∈N0 and (λn)n∈N0 are the coefficients of (1). Then A can be
regarded as a linear operator A : CN0 → C

N0 , ξ 
→ Aξ = (Aξn)n∈N0 , where

Aξn = λn−1ξn−1 + βnξn + λnξn+1 for all n ∈ N0. (45)
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Note that λ−1 = 0 and ξ−1 can be chosen arbitrary.
Moreover, let l2 = l2(h) with hn = 1 for all n ∈ N0, and

c00 = {ξ ∈ C
N0 : #{n ∈ N0 : ξn �= 0} < ∞}. (46)

Of course, (c00, ‖‖2) is a subspace of the Hilbert space (l2, ‖‖2). As mentioned
in [1] the linear operator

A : c00 → l2, ξ 
→ Aξ (47)

is closable and its closure is given by

A : D(A) → l2, ξ 
→ Aξ, where (48)

D(A) =
{

ξ ∈ l2 : ∃(ξ(k))k∈N0 ⊂ c00 : lim
k→∞

ξ(k) = ξ ∧ lim
k→∞

Aξ(k) exists
}

(49)

and Aξ = lim
k→∞

Aξ(k). (50)

According to [1, Theorem 2.3.], the following statements hold true.
If x0 ∈ Ω(A) = R\σ(A) then

sup
n≥0

∑n
k=0 p2k(x0)

λ2
n(p2n(x0) + p2n+1(x0))

< ∞. (51)

Provided A is bounded, also the converse is true.
Note that the assumptions made at the beginning of Sect. 2 imply the

boundedness of (λn)n∈N0 and (βn)n∈N0 . One can show that the boundedness
of (λn)n∈N0 and (βn)n∈N0 imply that A is a bounded operator.

The relationship with our result can be derived from

(αn+1 + γn)
∑n

k=0 p2k(x0)
λ2

n(p2n(x0) + p2n+1(x0))

= αn+1
p2n(x0) + p2n+1(x0)

p2n(x0)

∑n
k=0 p2k(x0)

λ2
n(p2n(x0) + p2n+1(x0))

=
∑n

k=0 p2k(x0)
λ2
n

αn+1
p2n(x0)

=
∑n

k=0 p2k(x0)
γnp2n(x0)

=
Hn

γnhn
(52)

and sign αn+1 = sign γn.
In [1] there is no formula of the inverse as in Theorem 2.2 but there is

no restriction x0 ∈ R\N .
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