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Abstract. We consider pure quartic relative extensions of the number
field Q(i) of type K = Q( 4

√
a+ bi), where a, b ∈ Z and b �= 0, such that

a+bi ∈ Z[i] is square-free. We describe integral bases of these fields. The
index form equation is reduced to a relative cubic Thue equation over
Q(i) and some corresponding quadratic form equations. We consider
monogenity of K and relative monogenity of K over Q(i). We shall
show how our former method based on the factors of the index form
can be used in the relative case to exclude relative monogenity in some
cases.
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1. Monogenity: basic concepts

Let ϑ be an algebraic integer of degree n, set K = Q(ϑ). Denote by ZK

the ring of integers of K and by DK the discriminant of K. The number
field K is called monogenic if there exists α ∈ ZK such that (1, α, . . . , αn−1)
is an integral basis, called power integral basis (for a detailed discussion of
monogenity and power integral bases of number fields see [3]).

The index of a primitive element α ∈ ZK is defined as

I(α) = (ZK : Z[α]).

α generates a power integral basis if and only if I(α) = 1. Denoting by α(j)

(j = 1, . . . , n) the conjugates of α, we have

I(α) =
1

√|DK |
∏

1≤i<j≤n

∣
∣∣α(i) − α(j)

∣
∣∣ ,
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for a primitive element α ∈ ZK .
If α, β ∈ ZK and β = ±α + a with a ∈ Z, then α and β are called

equivalent. Equivalent algebraic integers have the same indices.
If K contains a proper subfield M , then for a primitive algebraic integer

α in K we have

I(α) = (ZK : Z[α]) = (ZK : ZM [α]) · (ZM [α] : Z[α]),

where

IK/M (α) = (ZK : ZM [α])

is called the relative index of α over M (cf. [3]). α, β ∈ ZK are called relative
equivalent if α = εβ + a where ε is a unit in M and a ∈ ZM . Relative
equivalent algebraic integers have the same relative indices.

If (1, ω2, . . . , ωn) is an integral basis in K, then the discriminant of the
linear form L(x) = x1 + ω2x2 + . . . + ωnxn can be written as

D(L(x)) = I(x2, . . . , xn)2 · DK ,

where DK is the discriminant of K and I(x2, . . . , xn) is a homogeneous
polynomial of degree n(n − 1)/2 having the property that for any α =
x1 + x2ω2 + . . . + xnωn ∈ ZK the equation I(α) = |I(x2, . . . , xn)| is sat-
isfied. Therefore, determining generators of power integral bases leads to the
Diophantine equation

I(x2, . . . , xn) = ±1 in x2, . . . , xn ∈ Z,

called the index form equation corresponding to the integral basis
(1, ω2, . . . , ωn), see [3].

To determine all inequivalent generators of power integral bases is a
complicated problem, leading to the resolution of index form equations.

There are efficient methods for the resolution of index form equations
in cubic and quartic number fields. However, this problem is only partially
solved for higher degree fields, since in those cases the index form equation
becomes much more complicated (cf. [3]).

2. The purposes of the present paper

In the present paper we consider pure quartic relative extensions of the num-
ber field M = Q(i). These fields are of type K = Q( 4

√
a + bi) where a, b ∈ Z

and b �= 0, such that a + bi is not a square in ZM . We describe the integral
bases of these fields and characterize their absolute and relative monogenity
for the case that a + bi is square-free.

Remark that formerly in [7] we considered monogenity of number fields
K = Q(i, 4

√
m). Those are also octic fields containig Q(i) as a subfield, but

those fields are composites of Q(i) and Q( 4
√

m) allowing a much easier inves-
tigation. In the present paper we study quartic relative extensions of Q(i),
which are not composites of Q(i) with a quartic field.

To construct an integral basis in K = Q( 4
√

a + bi) we shall apply an
extension of Lemma 2.17 of Narkiewicz [8] stating that if an algebraic integer
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is defined by a minimal polynomial which is p-Eisenstein with respect to the
prime p, then its index is not divisible by p.

We shall use the result of Gaál and Pohst [4], see also Chapter 14.1 of
Gaál [3], reducing the index form equations in relative quartic extensions to
a cubic relative Thue equation and to some corresponding relative quadratic
form equations, similarly as in [5] in the absolute case.

Further, in our proofs we shall give a relative analogue of another method,
based on the factors of the index form. If the index form as a polynomial with
integer coefficients in x2, . . . , xn has factors F1, F2 (also polynomials with in-
teger coefficients in x2, . . . , xn) and there exists an element of index 1 (a
generator of power integral basis), then there exist y2, . . . , yn ∈ Z such that
I(y2, . . . , yn) = ±1, therefore F1(y2, . . . , yn) = ±1 and F2(y2, . . . , yn) = ±1.
However, in some cases it can be shown that e.g. F1 − aF 2

2 is divisible by
some constant b (a, b ∈ Z\{0}). If b does not divide ±1−a with neither of the
possible choices of the sign, then it contradicts the existence of a generator of
a power integral basis with coordinates y2, . . . , yn ∈ Z in the integral basis.
This method was used e.g. in [6,7] to exclude monogenity of the correspond-
ing fields in the absolute case. In our present paper we show how a relative
analogue of this method can be used to exclude the existence of relative power
integral bases in relative extensions. This version of the method is used here
for the first time. We believe it will have several further applications in the
study of monogenity of higher degree number fields.

3. Pure quartic extensions of M = Q(i): preliminaries

We shall consider number fields of type K = Q(α) with α = 4
√

a + bi, where
a, b ∈ Z, b �= 0 and a + bi is square-free in the ring of Gaussian integers Z[i].
α is a root of the polynomial

f(X) = X8 − 2aX4 + a2 + b2 ∈ Z[X], (1)

and the conjugates of α are

± 4
√

a + bi, ±i
4
√

a + bi, ± 4
√

a − bi, ±i
4
√

a − bi.

In the proof of our theorem on the integral basis of the number field
K we need the following Lemma. This is a slight extension of Lemma 2.17
[8] to the relative case, when the ground field is M instead of Q. Our proof
strictly follows the arguments of Lemma 2.17 [8]. The same arguments seem
to remain valid also for any ground field having unique factorization in its
ring of integers.

Lemma 1. Let M = Q(i) and K = M(α), where α is an algebraic integer. If
the minimal polynomial over M of α is π-Eisenstein for a prime π ∈ ZM ,
i.e. it has the form

Xn + an−1X
n−1 + . . . + a1X + a0 ∈ ZM [X],

with a0, a1, . . . , an−1 divisible by π and π2 � a0, then there is no algebraic
integer ξ ∈ ZK , such that ξ �∈ ZM [α], but π · ξ ∈ ZM [α]. I.e. ZM [α] is
π-maximal.
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Proof. The π-Eisenstein property of the minimal polynomial of α over M
implies that αn/π is an algebraic integer, and π2 � NK/M (α) = a0. Assume
that there exists an algebraic integer ξ ∈ ZK , such that ξ �∈ ZM [α], but
π · ξ ∈ ZM [α]:

ξ =
β0 + β1α + . . . + βn−1α

n−1

π
, βi ∈ ZM , ξ �∈ ZM [α].

Let j be the minimal index with π � βj . Then

β0 + β1α + . . . + βj−1α
j−1

π
∈ ZM [α],

so

η = ξ − β0 + β1α + . . . + βj−1α
j−1

π

=
βjα

j + βj+1α
j+1 + . . . + βn−1α

n−1

π
∈ ZK .

Therefore,

ζ = αn−j−1 · η − αn

π
· (βj+1 + βj+2α + . . . + βn−1α

n−j−2) =
βjα

n−1

π
∈ ZK .

This implies

πnNK/M (ζ) = NK/M (πζ) = NK/M (βjα
n−1) = βn

j NK/M (α)n−1

hence π has to divide βj , contrary to the choice of j. �

We shall also use the result of Gaál and Pohst [4], see also Theorem 14.1
of Gaál [3]. We briefly detail the lemma here, because it is an essential tool for
the proof of Theorem 4. Let K be a quartic extension of M , generated by an α
with relative minimal polynomial f(x) = x4+a1x

3+a2x
2+a3x+a4 ∈ ZM [x].

Denote by n the relative index of α over M .
We can represent any ϑ ∈ ZK in the form

ϑ =
A + Xα + Y α2 + Zα3

d
(2)

where A,X, Y, Z ∈ ZM and d ∈ Z is a common denominator.
Then

F (U, V ) = U3 − a2U
2V + (a1a3 − 4a4)UV 2 + (4a2a4 − a2

3 − a2
1a4)V 3

is a binary cubic form over ZM and

Q1(X,Y,Z) = X2 − a1XY + a2Y
2 + (a2

1 − 2a2)XZ

+ (a3 − a1a2)Y Z + (−a1a3 + a2
2 + a4)Z2,

Q2(X,Y,Z) = Y 2 − XZ − a1Y Z + a2Z
2

are ternary quadratic forms over ZM .

Lemma 2 (Gaál and Pohst [4]). If ϑ of (2) generates a power integral basis
of K over M , then there is a unit ε ∈ M , a γ ∈ ZM of norm ±d12/n and a
solution (U, V ) ∈ Z2

M of

F (U, V ) = ε · γ, (3)
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such that

U = Q1(X,Y,Z),
V = Q2(X,Y,Z). (4)

In our case a1 = a2 = a3 = 0 and a4 = −(a + bi).

4. Integral bases

Let K = Q(α) where α = 4
√

a + bi, b �= 0 and a + bi is square-free in ZM , as
above.

Theorem 3. An integral basis of K is given by the following table:

a
(mod 8)

b (mod 8) Integral basis

1. 0, 1, 2,
3, 4, 5,
6, 7

1, 3, 5, 7
(
1, α, α2, α3, i, iα, iα2, iα3

)

2. 1 0
(
1, α, 1+α2

2 , 1+α+α2+α3

4 , i, 1+α+i+iα
2 ,

1+2α+α2+3i+iα2

4 , 1+2α+α2+2i+iα+iα3

4

)

3. 1, 5 2, 6
(
1, α, α2, α3, 1+α+α3+i

2 , 1+α+α2+iα
2 ,

α+α2+α3+iα2

2 , 1+α2+α3+iα3

2

)

4. 1 4
(
1, α, 1+α2

2 , α+α3

2 , 1+3α+α2+α3+2i
4 ,

3+α+α2+α3+2iα
4 , 3+2α+α2+i+iα2

4 ,
2+3α+α3+iα+iα3

4

)

5. 3, 7 0, 4
(
1, α, α2, α3, α2+i

2 , α3+iα
2 , 1+iα2

2 , α+iα3

2

)

6. 3, 7 2, 6
(
1, α, α2, 1+α+α2+α3

2 , i, iα,

1+α2+i+iα2

2 , 1+α2+iα+iα3

2

)

7. 5 0, 4
(
1, α, 1+α2

2 , α+α3

2 , i, 1+α+i+iα
2 ,

i+iα2

2 , 1+α+α2+α3+i+iα+iα2+iα3

4

)

Proof of Theorem 3. Obviously,
(
1, α, α2, α3, i, iα, iα2, iα3

)

is a basis of K = Q(α) over Q containing algebraic integers. The discriminant
of this basis is 224(a2 + b2)3. Therefore the discriminant DK of the field K
divides 224(a2 + b2)3.

Considering the tower of fields Q ⊂ M = Q(i) ⊂ K, we obtain

DK = 44 · NM/Q(DK/M ),
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where DK/M is the relative discriminant of K over M (see [8] Chapter IV.,
Proposition 4.15).

The minimal polynomial of α over M = Q(i) is X4 − (a + bi) with
discriminant 44(a + bi)3. Since we assumed a + bi ∈ Z[i] to be square-free,
for any prime π of ZM dividing a + bi the minimal polynomial of α is π-
Eisenstein. By Lemma 1, this implies that for any prime π | a + bi, the
basis (1, α, α2, α3) of K over M is π-maximal, i.e. (a + bi)3 | DK/M , hence
(a2 + b2)3 | DK . Therefore we have:

28(a2 + b2)3 | DK | 224(a2 + b2)3,

so the only prime which may divide the index of α is 2.
If both a and b are odd, then 1 + i | a + bi, so by Lemma 1, the basis

(1, α, α2, α3) of K over M is 1+ i-maximal and 2 does not divide the relative
index of α over Q(i). In this case (1, α, α2, α3) is a relative power integral
basis of K over M and therefore

(
1, α, α2, α3, i, iα, iα2, iα3

)

is an integral basis of K over Q.
If a is even, and b is odd, then the minimal polynomial of α − 1,

(X + 1)4 − (a + bi) is also (1 + i)-Eisenstein. Hence by Lemma 1, ZM [α − 1]
is 1 + i-maximal, and so is ZM [α]. We obtain again that (1, α, α2, α3) is a
relative power integral basis of K over M and therefore

(
1, α, α2, α3, i, iα, iα2, iα3

)

is an integral basis of K over Q.
The interesting case is when a is odd and b is even. (They can not be

both even, because a+bi is square-free.) This case splits into 6 subcases. The
integral bases are listed in the table of the Theorem, as cases 2–7.

In these cases we showed, that the elements listed in the corresponding
bases are always algebraic integers. These cases are very similar, we detail
only one of them.

If a = 8k + 1 and b = 8l + 4, then

β =
3 + α + α2 + α3 + 2iα

4
is an algebraic integer, because it is a root of the integer polynomial

X8 − 6X7 + (19 − 6k + 8l)X6 + (−8k2 + 8l2 + 28k − 24l − 34)X5

+ (−4k3 + 12kl2 + 49k2 + 12kl + l2 − 46k + 52l + 41)X4

+ (36k3 + 32k2l − 12kl2 + 32l3 − 70k2 − 4kl + 10l2 + 44k − 54l − 32)X3

+ (28k4 + 32k3l + 32k2l2 + 32kl3 + 4l4 − 36k3

+ 6k2l + 44kl2 − 26l3 + 59k2 + 12kl + 3l2 − 22k + 40l + 17)X2

+ (16k5 + 32k3l2 + 16kl4 − 20k4 + 20l4 + 16k3

− 6k2l − 16kl2 + 42l3 − 28k2 − 8kl + 8l2 + 4k − 16l − 6)X
+ (4k2 + 4l2 + 4l + 1)(k4 + 2k2l2 + l4 + 2k2l + 2l3 + 3k2 − l2 − 2l + 1).
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Furthermore, we checked that the given bases are 2-maximal by calcu-
lating the minimal polynomial of each element of the form

λ1B1 + λ2B2 + λ3B3 + λ4B4 + λ5B5 + λ6B6 + λ7B7 + λ8B8

2
,

where B is the basis given in the table, λi ∈ {0, 1}, (i = 1, . . . , 8), a = 8k + r,
b = 8l + s, (k, l = 0, . . . , 255) with the corresponding remainders r, s modulo
8. For example, if a = 8k+1 and b = 8l+4, then by the theorem on symmetric
polynomials, the minimal polynomial of

β = λ1B1 + λ2B2 + λ3B3 + λ4B4 + λ5B5 + λ6B6 + λ7B7 + λ8B8

is a polynomial of the form

X8 + P1(k, l)X7 + P2(k, l)X6 + P3(k, l)X5 + P4(k, l)X4

+P5(k, l)X3 + P6(k, l)X2 + P7(k, l)X + P8(k, l),

where Pi ∈ Z[X,Y ]. (If β is not primitive, then it is a power of its minimal
polynomial, but it does not affect the proof.) Therefore, β/2 is an algebraic
integer if and only if Pi(k, l)/2i ∈ Z for all i = 1, . . . , 8. Since the Pi-s
are integer polynomials, if k ≡ k′ (mod 28) and l ≡ l′ (mod 28), then 28 |
Pi(k, l) − Pi(k′, l′). This means, that the integrality of β/2 depends only on
the remainder of k and l modulo 28.

We did not find any algebraic integers in this form, which proves the
2-maximality. �
Remark. We do not use the assumption b = 0 in the proof of Theorem 3, so
the given integral bases are valid also for the case b = 0 and for K = Q(α, i).
Cases 2. and 7. extends the results of [7] to the case m ≡ 1 (mod 4).

5. Monogenity, relative monogenity

We investigate the relative and absolute monogenity of the field K in the
seven distinct cases corresponding to the table of Theorem 3.

Theorem 4. (1) If b ≡ 1, 3, 5, 7 (mod 8) then K is relatively monogenic over
M and there are infinitely many parameters a, b, for which K is abso-
lutely monogenic. Moreover, there exists infinitely many paramters a, b,
for which K admits at least 2 inequivalent generators of power integral
bases.

(2) If a ≡ 1 (mod 8) and b ≡ 0 (mod 8) then K is not relatively monogenic
over M .

(3) If a ≡ 1, 5 (mod 8) and b ≡ 2, 6 (mod 8) then K is absolutely monogenic
for a = 1, b = ±2, otherwise K is not relatively monogenic over M .

(4) If a ≡ 1 (mod 8) and b ≡ 4 (mod 8) then K is absolutely monogenic for
a = 1, b = ±4, otherwise K is not relatively monogenic over M .

(5) If a ≡ 3, 7 (mod 8) and b ≡ 0, 4 (mod 8) then K is not relatively mono-
genic over M .

(6) If a ≡ 3, 7 (mod 8) and b ≡ 2, 6 (mod 8) then there are infinitely many
parameters a, b, for which K admits a generator of a relative power
integral basis over M .
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(7) If a ≡ 5 (mod 8) and b ≡ 0, 4 (mod 8) then K is relatively monogenic
over M .

Remarks:

• In the cases (6) and (7) we conjecture that K is not absolutely mono-
genic.

• The absolute monogenity of K implies the relative monogenity of K
over M , but not conversely. Therefore, the cases (2), (3), (4) and (5) are
interesting in the sense that in these cases K is absolutely monogenic if
and only if it is relatively monogenic over M .

Proof of Theorem 4. In all cases we will use Lemma 2 with a1 = a2 = a3 = 0
and a4 = −(a+ bi). So to check whether some algebraic integer ϑ ∈ K of the
form

ϑ =
A + Xα + Y α2 + Zα3

d
, A,X, Y, Z ∈ Z[i], d ∈ Z, (5)

generates a power integral basis, we have to solve the equations
(
U2 + 4(a + bi)V 2

) · U = ε · γ, (6)

X2 − (a + bi)Z2 = U, (7)
Y 2 − XZ = V . (8)

where ε is a unit in Z[i], and γ ∈ Z[i] is of norm d12/IK/M (α). We intend to
use also the representation of ϑ ∈ ZK of the form

ϑ = c1 + c2B2 + c3B3 + c4B4 + c5B5 + c6B6 + c7B7 + c8B8, ci ∈ Z,

(9)

where (1, B2, B3, B4, B5, B6, B7, B8) is the integral basis given in Theorem
3. Considering these integral bases, we can see that for case (1) we have
d = 1, for cases (3),(5) and (6) we have d = 2 and for cases (2),(4) and (7)
we have d = 4. Furthermore, if S is the transition matrix form the basis
(1, α, α2, α3, i, iα, iα2, iα3) to the basis (1, B2, B3, B4, B5, B6, B7, B8), then

A = d · (c1, c2, c3, c4, c5, c6, c7, c8) · S · (1, 0, 0, 0, i, 0, 0, 0)T , (10)

X = d · (c1, c2, c3, c4, c5, c6, c7, c8) · S · (0, 1, 0, 0, 0, i, 0, 0)T , (11)

Y = d · (c1, c2, c3, c4, c5, c6, c7, c8) · S · (0, 0, 1, 0, 0, 0, i, 0)T , (12)

Z = d · (c1, c2, c3, c4, c5, c6, c7, c8) · S · (0, 0, 0, 1, 0, 0, 0, i)T . (13)

Assuming b �= 0 we have b · i = α4 − a ∈ Z[α], so (ZM [α] : Z[α]) = b4, and
therefore the square of the relative index of α is

IK/M (α)2 =
I(α)2

b8
=

D(f)
DK · b8

,

where D(f) = 224 ·(a2+b2) ·b8 is the discriminant of the minimal polynomial
f(x) of α and we applied the well-known fact D(f) = I(α)2 · DK . Since the
discriminant of the basis (1, α, α2, α3, i, iα, iα2, iα3) is 224(a2 + b2), which is
equal to D(f)/b8, and

DK = det(S)2 · 224(a2 + b2),
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then we have

IK/M (α) =
∣∣
∣∣

1
det(S)

∣∣
∣∣ .

�

Proof of (1). In the first case (1, α, α2, α3) is a relative power integral basis
of K over M . The relative index of α is IK/M (α) = 1 and we can choose
d = 1, so γ is also a unit and the right hand side of equation (6) is ε. This
equation implies NM/Q(U) = 1, V = 0. So, by Eq. (7), X and Z are coprime
Gaussian integers, and therefore by Eq. (8) either X · Z = 0 or both X and
Z are associates of squares in Z[i].

If X = 0, then both a + bi and Z are units, i.e. a = 0, b = ±1. In this
case α generates an absolute power integral basis, not only a relative power
integral basis in K. We note that this field K is the algebraic number field
generated by the 16th roots of unity.

If Z = 0, then Y = 0 and X is a unit εX . This yields the solutions
ϑ = A + εXα, which are relative equivalent to α, so they also generates a
relative power integral basis in K over M . This ϑ also generates an absolute
power integral basis if b = ±1, but otherwise we conjecture that the absolute
index of ϑ is greater than 1.

If X · Z �= 0, then let X = εX(s1 + s2i)2, Z = εZ(t1 + t2i)2 and Y =
εY (s1 + s2i)(t1 + t2i), where εX , εY and εZ are units in Z[i], such that ε2Y =
εX · εZ . Equation (8) shows that

(s1 + is2)4 ± (a + bi)(t1 + it2)4

is a unit (with either + or −). By considering the real and the imaginary
parts of this expression, we obtain the system of equations

at41 − 6at21t
2
2 + at42 − 4bt31t2 + 4bt1t

3
2 − s41 + 6s21s

2
2 − s42 = j

4at31t2 − 4at1t
3
2 + bt41 − 6bt21t

2
2 + bt42 − 4s31s2 + 4s1s

3
2 = k

(14)

or
at41 − 6at21t

2
2 + at42 − 4bt31t2 + 4bt1t

3
2 + s41 − 6s21s

2
2 + s42 = j

4at31t2 − 4at1t
3
2 + bt41 − 6bt21t

2
2 + bt42 + 4s31s2 − 4s1s

3
2 = k

(15)

where either j = ±1, k = 0 or j = 0, k = ±1. If s1, s2, t1, t2 are rational
integers, such that a and b are rational integer solutions of the system of
linear equations above, then ϑ generates a relative power integral basis in K
corresponding to the current parameters a and b.

For certain parameters a, b there exist trivial solutions. For example, if
Z is a unit, i.e. t21 + t22 = 1, then

−(a + bi) =
U − X2

Z2
= ±(U − X2),

so if

a = ±� (
U − X2

)
,

b = ±� (
U − X2

)
,
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then the algebraic integer

ϑ = A + Xα + Y α2 + Zα3

generates a relative power integral basis in K over M .
Moreover, there exist infinitely many parameters a, b for which the field

K is monogenic. The simplest example is when we set b = ±1, and then the
absolute index of α is also 1, because the discriminant 224(a2 + 1) of f is
equal to the discriminant of K.

We can go further, there exist infinitely many paramters a, b for which K
admits at least 2 inequivalent generators of power integral bases. Let q be an
arbitrary rational integer, a = q4 and b = −1, then the minimal polynomial
of

β = (α + q)(α − q)(iq − α)

is

X8 + 16q6X6 + 48q5X5 + 68q4X4 + 56q3X3 + 28q2X2 + 8qX + 1

with discriminant 224(q8 + 1) = 224(a2 + b2) = DK , so β also generates a
power integral basis in K.

In order to find all monogenic fields K, and all generators of power
integral bases, we have to find all solutions of (14) or (15), and then deter-
mine the imaginary part of A, such that the discriminant of ϑ (which is a
polynomial in �(A)) is equal to the discriminant of K. �

Proof of (2). In the second case the relative index of α is IK/M (α) = 28 and
we can use the common denominator d = 4, so γ is an algebraic integer
of norm 412/28 = 216. Up to associates, we can choose γ = 256 and then
equation (6) is of the form

(
U2 + 4(a + bi)V 2

) · U = ε · 256.

On the other hand, Eqs. (10)–(13) give

A = 4c1 + 2c3 + c4 + 2c6 + c7 + c8 + i(4c5 + 2c6 + 3c7 + 2c8),
X = 4c2 + c4 + 2c6 + 2c7 + 2c8 + i(2c6 + c8),
Y = 2c3 + c4 + c7 + c8 + ic7,

Z = c4 + ic8.

Substituting these expressions into the Eqs. (6), (7) and (8), we can see that
u = U/4, v = V/2 and (u2 + (a + bi)v2)/4 are Gaussian integers, so Eq. (6)
can be written as

u2 + (a + bi)v2

4
· u = ε.

Let F1 = u2+(a+bi)v2

4 and F2 = u. Since F1 ·F2 = ε, then both factors have to
be a unit, such that a + bi is a divisor of 4F1 − F 2

2 . To sum up, if the relative
index of ϑ is 1, then a + bi divides 3, 5, 1 − 4i or 1 + 4i. With a ≡ 1 (mod 8)
and b ≡ 0 (mod 8), b �= 0 it is not possible, so there is no such algebraic
integer ϑ, and therefore K is not relatively monogenic over M , and also not
monogenic over Q. �



On the monogenity 367

Proof of (3). In this case the relative index of α is IK/M (α) = 24 and we
can use the common denominator d = 2, so γ is an algebraic integer of norm
212/24 = 28. Up to associates, the only Gaussian integer of norm 256 is
γ = 16, so Eq. (6) is of the form

(
U2 + 4(a + bi)V 2

) · U = ε · 16.

Equations (10)–(13) give

A = 2c1 + c5 + c6 + c8 + ic5,

X = 2c2 + c5 + c6 + c7 + ic6,

Y = 2c3 + c6 + c7 + c8 + ic7,

Z = 2c4 + c5 + c7 + c8 + ic8.

Substituting these expressions into the Eqs. (6), (7) and (8), we can see that
u = U/2, v = V and (u2 + (a + bi)v2)/2 are Gaussian integers, so Eq. (6) is
equivalent to

F1 · F2 =
u2 + (a + bi)v2

2
· u = ε.

Therefore, a + bi divides 2F1 − F 2
2 , where F1 and F2 are units. With a ≡ 1, 5

(mod 8) and b ≡ 2, 6 (mod 8) it is possible only if F1 = i, a = 1 and b = ±2.
In these cases K is indeed monogenic. For example

β =
1 − i + iα + iα3

2
generates a power integral basis. If a = 1, b = 2, then the minimal polynomial
of β is

X8 − 4X7 + 10X6 − 12X5 + 12X4 − 8X3 + 6X2 − 4X + 1,

and if a = 1, b = −2, then the minimal polynomial of β is

X8 − 4X7 + 10X6 − 20X5 + 32X4 − 36X3 + 28X2 − 12X + 2.

In both cases, the discriminant of the polynomials are 216 · 53 = DK , so β
generates a power integral basis in K.

For other values of a and b, K is not relatively monogenic over M , and
therefore, K is not monogenic over Q. �

Proof of (4). It is almost the same as Case (2), except the expressions for
A,X, Y and Z. The relative index of α over M is IK/M (α) = 28 and d = 4.
Equation (6) is of the form

(
U2 + 4(a + bi)V 2

) · U = ε · 256,

and Eqs. (10)–(13) give

A = 4c1 + 2c3 + c5 + 3c6 + 3c7 + 2c8 + i(2c5 + c7),
X = 4c2 + 2c4 + 3c5 + c6 + 2c7 + 3c8 + i(2c6 + c8),
Y = 2c3 + c5 + c6 + c7 + ic8,

Z = 2c4 + c5 + c6 + c8 + ic8.
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Substituting these expressions into the Eqs. (6), (7) and (8) we obtain the
same equations and conditions as in Case (2). If the relative index of ϑ is
1, then a + bi divides 3, 5, 1 + 4i or 1 − 4i. With a ≡ 1 (mod 8) and b ≡ 4
(mod 8), it is possible only if a = 1 and b = ±4. In these cases K is indeed
monogenic. For a = 1, b = 4 and

β =
2 + α + α3 − i + iα2

4
,

the minimal polynomial of β is

X8 − 4X7 + 7X6 − 6X5 + 3X4 − 2X3 + 3X2 − 2X + 1,

with discriminant 28 · 173 = DK . So β generates a power integral basis in K.
If a = 1, b = −4, then the corresponding β has the minimal polynomial

X8 − 4X7 + 7X6 − 8X5 + 8X4 − 6X3 + 4X2 − 2X + 1

with the same discriminant, so K is monogenic in this case too.
For other values of a and b, K is not relatively monogenic over M , and

therefore, K is not monogenic over Q. �

Proof of (5). This case is similar to Case 3. The relative index of α is
IK/M (α) = 24 and we can use the common denominator d = 2, so Eq. (6) is
of the form

(
U2 + 4(a + bi)V 2

) · U = ε · 16.

Equations (10)–(13) give

A = 2c1 + c7 + ic5,

X = 2c2 + c8 + ic6,

Y = 2c3 + c5 + ic7,

Z = 2c4 + c6 + ic8.

Substituting these expressions into the Eqs. (6), (7) and (8) we obtain that
u = U/4 and v = V are Gaussian integers. Then Eq. (6) is equivalent to

F1 · F2 = (4u2 + (a + bi)v2) · u = ε.

Thus a + bi divides F1 − 4F 2
2 , i.e. a + bi divides 3, 5, 1 − 4i or 1 + 4i. With

a ≡ 3, 7 (mod 8), b ≡ 0, 4 (mod 8) and b �= 0, it is possible only if a = −1 and
b = ±4, and therefore F1 = ±i. However, if b = ±4, then the imaginary part
of F1 = 4u2 +(a+ bi)v2 is even, so there is no solution of the equation above,
K is not relatively monogenic over M , and therefore, K is not monogenic
over Q. �

Proof of (7). This is a slightly more interesting case. The relative index of α
is IK/M (α) = 23 and we can use the common denominator d = 2, so Eq. (6)
is of the form

(
U2 + 4(a + bi)V 2

) · U = ε · 16(1 + i).
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Equations (10)–(13) give

A = 2c1 + c4 + c7 + c8 + i(2c5 + c7),
X = 2c2 + c4 + i(2c6 + c8),
Y = 2c3 + c4 + c7 + c8 + ic7,

Z = c4 + ic8.

Substituting these expressions into the Eqs. (6), (7) and (8) we can see that
u = U/(2 − 2i) and v = V/2 are Gaussian integers. Thus,

F1 · F2 = (u2 + 2i(a + bi)v2) · u = ε.

Hence, NM/Q(u) = 1 and 2i(a + bi) divides F1 − F 2
2 . It is possible only if

F1 −F 2
2 = 0, i.e. v = 0. Similarly to the first case, there exist infinitely many

solutions of the equations above. For example, if Z = 1, U = 2 ± 2i and
Y 2 = X, where Y is not a multiple of 1 + i, then

a + bi = Y 4 − U.

Since U = 2 ± 2i, and Y is not a multiple of 1 + i, then a = �(Y 4 − U) ≡ 3
(mod 4) and b = �(Y 4 − U) ≡ 2 (mod 4) as it is required in this case. Thus,
there exist infinitely many parameters a, b, for which there exists an algebraic
integer ϑ with relative index equal to 1. Despite the existence of generators
of relative power integral bases, we could not find any parameters for which
K is monogenic. �

Proof of (8). In the last case the relative index of α is IK/M (α) = 26 and we
can use the common denominator d = 4, so γ is an algebraic integer of norm
412/26 = 218. Up to associates, we can choose γ = 512 and then Eq. (6) is of
the form

(
U2 + 4(a + bi)V 2

) · U = ε · 512.

On the other hand, Eqs. (10)–(13) give

A = 4c1 + 2c3 + 2c6 + c8 + i(4c5 + 2c6 + 2c7 + c8),
X = 4c2 + 2c4 + 2c6 + c8 + i(2c6 + c8),
Y = 2c3 + c8 + i(2c7 + c8),
Z = 2c4 + c8 + ic8.

Substituting these expressions into the Eq. (6), (7) and (8), we can see that
u = U/8 and v = V/4 are Gaussian integers, so Eq. (6) is equivalent to

F1 · F2 = (u2 + (a + bi)v2) · u = ε.

Hence, NM/Q(u) = 1 and (a + bi) divides F1 − F 2
2 . It is possible only if

F1 − F 2
2 = 0, i.e. v = 0. For any a and b

X = (1 + i)3, Y = 0, Z = 0

is a solution of (6),(7) and (8). These values give us

c2 = −1, c3 = 0, c4 = 0, c6 = 1, c7 = 0, c8 = 0.
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Therefore, A = 4c1 + 2 + i(4c5 + 2), so for any a and b (with a ≡ 5 (mod 8),
b ≡ 0, 4 (mod 8), a2 + b2 square-free),

ϑ =
4c1 + 2 + i(4c5 + 2) + (1 + i)3α

4
= c1 + ic5 +

i − α

1 + i
, c1, c5 ∈ Z,

generates a relative power integral basis in K over M . Despite the existence of
generators of relative power integral bases, we could not find any parameters
for which K is monogenic. �

6. Computational remarks

All calculations were perfomed on Maple [1] and were executed on a 12th
Gen Intel Core i7 PC. The checking of the 2-maximality of the given bases
required about 4 min. All other calculations took only some seconds.
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University of Debrecen, Mathematical Institute
Pf. 400, Debrecen 4002
Hungary
e-mail: gaal.istvan@unideb.hu

László Remete
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